
Stored Procedure and Subroutine
Reference for 3GL Languages
WebFOCUS Reporting Server Release 8205 
DataMigrator Server Release 7709 and Higher

June 04, 2019



Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2019, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Information You Should Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Software Training and Professional Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

1. Introducing Stored Procedures and Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Using a Stored Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Calling a Stored Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Stored Procedure Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Setting the Execution Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Valid EXORDER Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Execution Order of Stored Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Using CALLPGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Using EXEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Using CALLIMS or CALLITOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Using a Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. Calling a Program as a Stored Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Calling a Compiled Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Calling a Program With CALLPGM or EXEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Calling a Program With SQL EX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SQL Procedures and Db2 PLAN (z/OS Db2 CAF Adapter Only). . . . . . . . . . . . . . . . . . . . . . . . . 26

Storing Answer Set Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Passing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Using CALLPGM with Embedded Spaces in Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Using CALLPGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Program Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3. Calling a JAVA Class as a Stored Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Execute Using CALLJAVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Execute Using EX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Stored Procedure and Subroutine Reference for 3GL Languages  3



Execute Using SQL EX and SQL CPJAVA EX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Passing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Writing a JAVA Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

The Java Logging API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Basic Logging API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Logging Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Java Logging and Server Tracing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Logging Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Debug Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Info Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Warn Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Error Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

The Java ibtrace Tracing Interface (Deprecated). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

The ibiAnswerSet Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

The callpgm Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

JAVA Class Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Compiling and Running a JAVA Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Building a JAVA Program and Starting the Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4. Writing a 3GL Compiled Stored Procedure Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Program Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Setting Up the Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Control Block Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Setting Up a CALLPGM Control Block Structure for C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Setting Up a CALLPGM LINKAGE SECTION Control Block for COBOL. . . . . . . . . . . . . . . . . . . . 66

Setting Up a CALLPGM Data Structure Control Block for RPG. . . . . . . . . . . . . . . . . . . . . . . . . .68

Storing Program Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Issuing the CREATE TABLE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5. User Written Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Calling a User Written Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

6. Using the GENCPGM Build Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Using GENCPGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Contents

4 Information Builders



7. Additional 3GL Reference Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Subroutine Source Examples and Runtime Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

MTHNAME C Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

MTHNAME C++ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

MTHNAME Fortran Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

MTHNAME COBOL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

MTHNAME z/OS BAL Assembler Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

MTHNAME Basic Implementation (Based on HP OpenVMS Basic 1.4) . . . . . . . . . . . . . . . . . . . . . .112

MTHNAME RPG IBM i ILE Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

MTHNAME PL/1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

MTHNAME Pascal Implementation (Based on HP OpenVMS Pascal 5.8) . . . . . . . . . . . . . . . . . . . .116

UREVERSE C Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Contents

Stored Procedure and Subroutine Reference for 3GL Languages  5



Contents

6 Information Builders



Preface

This content provides information about the building and integration of compiled and linked
3GL stored procedures and subroutines (DLLs) for use within FOCEXEC applications. A 3GL-
based stored procedure allows users to build access to data sources not already supported by
the server. Use of a 3GL-based subroutine allows one to do specialized calculations at a
column level as part of a DEFINE or a COMPUTE. This content is intended for the API
Programmer, the FOCEXEC Programmer, and others who develop and maintain client/server
applications.

For up-to-the-minute information, please refer to the release notes.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 Introducing Stored
Procedures and Subroutines

Describes the types of stored procedures and
subroutines, how they are called, and their
execution order. Explains why stored procedures
and subroutines are used.

2 Calling a Program as a
Stored Procedure

Describes ways to call a compiled program using
the commands CALLPGM or EXEC in a Dialogue
Manager FOCEXEC procedure. Addresses the use of
parameters.

3 Calling a JAVA Class as a
Stored Procedure

Describes ways to call a JAVA class using the
CALLJAVA command or the EX command.

4 Writing a 3GL Compiled
Stored Procedure Program

Describes the requirements for writing a program to
be called by CALLPGM in a Dialogue Manager
FOCEXEC procedure. Addresses the control block
used for communication between the server and the
program; storage of program values; error handling;
and the command CREATE TABLE, which a program
issues to describe the answer set it is returning.

5 User Written Routines Describes how to call user written subroutines.

6 Using the GENCPGM Build
Tool

Describes how to use the script for UNIX, Windows,
and OpenVMS to assist in simple compilations.

Stored Procedure and Subroutine Reference for 3GL Languages  7



Chapter/Appendix Contents

7 Additional 3GL Reference
Examples

Describes how write and compile a 3GL user-written
subroutine in multiple languages.

Conventions

The following table describes the conventions that are used in this manual.

Convention Description

THIS TYPEFACE

or

this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value
that you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference,
or an important term. It may also indicate a button, menu
item, or dialog box option that you can click or select.

Key + Key Indicates keys that you must press simultaneously.

{  } Indicates two or three choices. Type one of them, not the
braces.

[  ] Indicates a group of optional parameters. None are
required, but you may select one of them. Type only the
parameter in the brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one
of them, not the symbol.

... Indicates that you can enter a parameter multiple times.
Type only the parameter, not the ellipsis (...).

Conventions

8  Information Builders



Convention Description

.

.

.

Indicates that there are (or could be) intervening or
additional commands.

Related Publications

Visit our Technical Content Library at http://documentation.informationbuilders.com. You can
also contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have any questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
www.informationbuilders.com also provides usage techniques, diagnostic tips, and answers to
frequently asked questions.

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities. Please be ready to provide your
six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Preface

Stored Procedure and Subroutine Reference for 3GL Languages  9

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com


Information You Should Have

To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

Your six-digit site code (xxxx.xx).

The server software version and release. You can find your server version and release using
the Version option in the Web Console.

The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

The database server release level.

The database name and release level.

The Master File and Access File.

The exact nature of the problem:

Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

Provide the error message and return code, if applicable.

Is this related to any other problem?

Has the procedure or query ever worked in its present form? Has it been changed recently?
How often does the problem occur?

What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

Is this problem reproducible? If so, how?

Have you tried to reproduce your problem in the simplest form possible? For example, if you
are having problems joining two data sources, have you tried executing a query containing
just the code to access the data source?

Do you have a trace file?

How is the problem affecting your business? Is it halting development or production? Do
you just have questions about functionality or documentation?

Information You Should Have

10  Information Builders



User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. You can contact us through our website 
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

Software Training and Professional Services

Interested in training? Our Education Department offers a wide variety of training courses for
Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

Interested in technical assistance for your implementation? Our Professional Services
department provides expert design, systems architecture, implementation, and project
management services for all your business integration projects. For information, visit our
website (http://www.informationbuilders.com/support).

Preface

Stored Procedure and Subroutine Reference for 3GL Languages  11

http://documentation.informationbuilders.com/connections.asp
http://education.informationbuilders.com
http://www.informationbuilders.com/support


Software Training and Professional Services

12  Information Builders



Chapter1 Introducing Stored Procedures and
Subroutines

A stored procedure is a program or procedure that resides on the execution path of a
server. The procedure is called by a client application such as WebFOCUS but can also
be called by another explicitly requested procedure. It is executed on the server on which
it resides.

A stored procedure is one of the following:

A compiled and linked 3GL program, written in a language such as C or COBOL, which
is located and called on a server or gateway process.

A file of 4GL command syntax (known as a FOCEXEC) written in a combination of
Dialogue Manager (DM) syntax and/or other commands, such as SET, TABLE FILE,
SQL, and DBMS passthru that run on the server.

A subroutine is a specialized 3GL-based routine that is compiled and linked as a DLL and
then called in-line within a 4GL command syntax request, thus integrating 4GL syntax
with specialized 3GL calculations. It can be thought of as a specialized calculation
integrated at the table column level, although the same subroutine might also be
applicable for use in a Dialogue Manager calculation.

This manual describes the use of compiled and 3GL programs and subroutines. Full 4GL
FOCEXEC syntax is fully covered in other documents, such as the Developing Reporting
Applications, Creating Reports With WebFOCUS Language, and Server Administration
manuals. They are not covered in this manual.

In this chapter:

Using a Stored Procedure

Calling a Stored Procedure

Stored Procedure Libraries

Setting the Execution Order

Using a Subroutine

Stored Procedure and Subroutine Reference for 3GL Languages  13



Using a Stored Procedure

The ability to use a DBMS 3GL stored procedure is limited to what an underlying product
(DBMS) supports and varies by platform. Any limitations will be noted in the DBMS
documentation.

Stored procedures allow the execution of other procedures and the inclusion of procedures,
thus allowing a very modular environment that enables you to:

Embed procedural logic in your server applications. The logic may be modular, eliminating
the need to recreate it for each application.

Update non-relational database management systems.

Calling a Stored Procedure

An application typically executes a stored procedure though a front-end tool such as an API call
to the server or any number of WebFOCUS mid-tear tools. The initial procedure is usually a 4GL
Dialogue Manager procedure that, in turn, calls other 4GL Dialogue Manager procedures,
compiled 3GL procedures, or a combination of both. 

The following types of procedure calls are supported:

A direct call to a compiled 3GL procedure using EDARPC (a sub-feature of EDAAPI, which
has been deprecated).

A 4GL Dialogue Manager procedure, which can call:

A compiled program, using the command CALLPGM or EXEC.

A proprietary RDBMS procedure, using SQL Passthru mode (where supported).

An IMS/TM transaction, using the CALLIMS or CALLIMSC procedure.

Another Dialogue Manager procedure, using the command EXEC (which is not covered in
this manual).

Using a Stored Procedure

14  Information Builders



The following figure shows calls to stored procedures from Dialogue Manager.

Stored Procedure Libraries

A stored procedure must reside in the appropriate library in order for the server to locate it. 

Type of Stored Procedure Library

Dialogue Manager
FOCEXEC Procedure

Server Procedure Library.

The external names, EDARPC (MVS) or EDAPATH (all other
platforms), are used to locate Dialogue Manager FOCEXEC
procedures. You can also use the APP PATH feature to locate
and manage application code. This process is platform
dependent. See the Server Administration manual for details.

Compiled Program Server Program Library.

The external name IBICPG or physical placement in the user
directory of EDACONF is used to locate compiled programs.
This process is platform dependent.

A common early practice was to place compiled procedures in
the installation home bin directory/library, since it was always
searched by default. This practice is no longer recommended
since service pack installations will delete these types of files.

1. Introducing Stored Procedures and Subroutines

Stored Procedure and Subroutine Reference for 3GL Languages  15



Type of Stored Procedure Library

IMS/TM Transaction Server Program Library.

Underlying routines are part of the server installation home bin
directory; no library configuration is required.

Note: An external name is a generic name for a variable that is set at the operating system
level. The various operating systems that support this feature have different names and
methods (syntax) for setting and reviewing these variables. Some of the more commonly used
terms for these external names and values are environment variables, registry variables,
globals, symbols, defines, assignments, and ddnames. See the Configuration and Operations
manual for your platform for specific aspects of working with external names.

Setting the Execution Order

This section describes the order in which the server searches for and runs stored procedures.
Understanding the execution order enables you to set it appropriately. 

The server has a default search order. To change this order:

Add the command SET EXORDER in the global or user profile. The server enforces the
execution order specified in the profile that was last run. For details on the global and user
profiles and how to customize each, see the Server Administration manual.

Run a Dialogue Manager FOCEXEC procedure on the server that contains the command SET
EXORDER. This command sets the execution order appropriately for subsequent calls to
stored procedures. If the procedure was the last run (that is, after the global or user
profile), the execution order it specifies takes precedence over the execution order in the
profile.

If you set the execution order in a Dialogue Manager procedure before you run the
procedure, make sure the execution order in effect includes a search of the Procedure
Library.

Execution order may be reset as needed. When you disconnect and then reconnect, the
global profile setting for the execution order will take effect. In a pooled environment,
however, the last setting of the prior user is maintained (unless an agent refresh has
occurred in the interim).

Valid EXORDER Settings

The following table describes valid settings for the execution order. 

Setting the Execution Order

16  Information Builders



The recommended setting is either:

SET EXORDER=FEX/PGM

or

SET EXORDER=PGM/FEX

Either setting ensures that both the Procedure Library and Program Library are searched,
providing you with the most flexibility.

Setting Library Searched Comments

SET EXORDER=FEX Procedure
Library only.

This setting is the default.

SET EXORDER=PGM Program Library
only.

 

SET EXORDER=FEX/PGM Procedure
Library first,
followed by
Program Library.

If the call is to a program, the name of the
program cannot be the same as the name
of a Dialogue Manager FOCEXEC
procedure in search path of the server. If
it is, the server will find the procedure in
the Procedure Library and execute it,
rather than executing the program.

SET EXORDER=PGM/FEX Program Library
first, followed by
Procedure
Library.

If the call is to a Dialogue Manager
FOCEXEC procedure, the name of the
procedure cannot be the same as the
name of a program in the search path of
the server. If it is, the server will find the
program in the Program Library and
execute it, rather than executing the
Dialogue Manager FOCEXEC procedure.

Syntax: How to Query the Execution Order

Issue the following Dialogue Manager command to query the current setting of EXORDER: 

? EXORDER

1. Introducing Stored Procedures and Subroutines

Stored Procedure and Subroutine Reference for 3GL Languages  17



Execution Order of Stored Procedures

This section describes the execution order used by the server to locate and run stored
procedures called from a Dialogue Manager FOCEXEC. 

Using CALLPGM

If you use explicit CALLPGM syntax in a Dialogue Manager FOCEXEC procedure to call a stored
procedure, the server recognizes that the stored procedure is a compiled program, and uses
IBICPG or the existence of EDACONF in the user directory to locate the procedure with no need
to set EXORDER. 

Using EXEC

If you use EXEC in a Dialogue Manager FOCEXEC procedure to call a stored procedure, the
server adheres to the setting of the execution order specified by SET EXORDER, since EXEC
could be calling either a compiled program or a Dialogue Manager FOCEXEC procedure. 

Using CALLIMS or CALLITOC

The CALLIMS and CALLITOC programs contain procedures (called CALLIMS and CALLIMSC) to
front-end the underlying stored procedures. If you use the CALLIMS or CALLITOC programs
directly from a Dialogue Manager FOCEXEC procedure, the server recognizes that you are
calling a compiled program, and IBICPG does not need to be set. 

Using a Subroutine

The ability to use a compiled and linked 3GL subroutine is dependent on its being used in-line
within a COMPUTE or DEFINE of a 4GL request or within a Dialogue Manager calculation. Unlike
a 3GL stored procedure that returns data sets of data, a subroutine is used for an individual
calculation.

For example, in the following Dialogue Manager procedure, the second -SET command calls the
MTHNAME subroutine, which takes a number as an argument and does a lookup call for the
corresponding month name:

-SET &MTHNUMBER = 1 ; 
-SET &MTHNAME = MTHNAME(&MTHNUMBER,'A13') ;
-TYPE Month &MTHNUMBER is &MTHNAME 

Using a Subroutine

18  Information Builders



In the following sample, a COMPUTE command in a TABLE request calls the MTHNAME
subroutine, which takes a number as an argument and does a lookup call for the
corresponding month name:

TABLE FILE ... 
COMPUTE  MTHNAME = MTHNAME(MTHNUMBER,'A13') ; 
END

1. Introducing Stored Procedures and Subroutines

Stored Procedure and Subroutine Reference for 3GL Languages  19



Using a Subroutine

20  Information Builders



Chapter2
Calling a Program as a Stored
Procedure

The following are ways to call a compiled program. You can use one of the following:

The CALLPGM command.

The EXEC command in a procedure.

Either of these methods enables you to pass parameters to programs and Dialogue
Manager FOCEXEC procedures.

Once the source language is built, the interface is agnostic of the underlying original
language.

In this chapter:

Calling a Compiled Program

Calling a Program With CALLPGM or EXEC

Calling a Program With SQL EX

Passing Parameters

Program Communication

Calling a Compiled Program

The program is called on the server in the following ways: 

CALLPGM

EXEC

SQL EX

The command EXEC functions the same way as CALLPGM, except for the difference in
execution order requirements as described in Execution Order of Stored Procedures on page
18. For simplicity, this chapter refers only to CALLPGM when both CALLPGM and EXEC apply.
The SQL EX method has the advantage of being able to also apply intermediate processing to
the initial results set before passing the final answer set to the calling request.

The term program is also used to refer to a compiled program.

Stored Procedure and Subroutine Reference for 3GL Languages  21



The following figure illustrates calls to programs made from EDARPC and Dialogue Manager.

The following figure illustrates the libraries in which compiled programs and Dialogue Manager
FOCEXEC procedures reside. See Introducing Stored Procedures and Subroutines on page 13,
for details on stored procedure libraries and stored procedure execution order.

Calling a Program With CALLPGM or EXEC

Application developers use Dialogue Manager FOCEXEC procedures for program control and
flexibility. Additionally, CALLPGM is used where needed. 

CALLPGM also provides application developers with:

A consistent call interface to any program on a server.

A simple way to create full answer sets and messages.

Calling a Program With CALLPGM or EXEC

22  Information Builders



The following figure illustrates the use of CALLPGM to call a program within a Dialogue
Manager FOCEXEC procedure.

The steps in this process are:

1. The Dialogue Manager FOCEXEC procedure is located and executed by the server. The
command CALLPGM myprog within the procedure finds and loads the external procedure
and it is run. The END statement after the CALLPGM line is required syntax to end stacking
on input to the application.

2. The program myprog executes and terminates.

Note: CALLPGM may call the program several times to allow it to construct and return
complete table data, a complete set of messages, or both. See Passing Parameters on
page 27 for more information.

3. CALLPGM performs one or both of the following actions, which are transparent to the
Dialogue Manager FOCEXEC procedure:

Passes a message or messages to the client application for processing. The client
application issues internal function calls to access the message(s).

Note: The program must return messages to the client application before any table data
(that is, description of an answer set and the rows of data), or at the end of any table
data.

Passes table data to the client application for processing. Table data consists of two
components:

A CREATE TABLE that tells the server the format of the returned data. For more
information on describing data, see Writing a 3GL Compiled Stored Procedure Program
on page 55.

2. Calling a Program as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  23



Rows of data, which the client application retrieves using internal function calls.

The Dialogue Manager FOCEXEC procedure itself does not need to create an answer set or
message.

The command CALLPGM and EXEC operate the same except EXEC has the advantage of
being able to let the EXORDER setting control if FOCEXECs by the same name will be also
searched for and which is considered first found (the compiled program or the FOCEXEC.)

Syntax: How to Call a Program Using CALLPGM or EXEC

CALLPGM progname[,parmval1][,...]
END

or

SET EXORDER=PGM/FEX
EX[EC] progname[parmval1][,...]
END

or

SET EXORDER=PGM/FEX
SET SQLENGINE=CPGFOC
SQL EX PROGRAM [parmval1][,...] 
TABLE FILE SQLOUT 
PRINT field [ON TABLE PCHOLD]
END 
SET SQLENGINE=OFF

where: 

progname

Is the name of the program to be run. (If CALLPGM is used, it cannot be another Dialogue
Manager FOCEXEC procedure.)

parmval1

Is an optional positional Dialogue Manager parameter passed to progname. A Dialogue
Manager parameter is an alphanumeric value. See Passing Parameters on page 27 for
examples.

The length of a single parameter (for example, parmval1) cannot exceed 32,000
characters. The total length of all specified parameters cannot exceed 32,000 characters.

END

Is a required command that terminates CALLPGM or EXEC.

Calling a Program With CALLPGM or EXEC

24  Information Builders



Calling a Program With SQL EX

Using SQL EX is similar to using EXEC, the difference is that the output from SQL EX is stored
into a HOLD file called SQLOUT. The resulting SQLOUT file can then be processed with
additional SELECT or TABLE statements which may (or may not) contain additional selection
criteria, and possibly return less fields or create a virtual field that is derived from the data.

Syntax: How to Call a Program Using SQL EX

CALLPGM progname[,parmval1][,...]
END

or

SET EXORDER=PGM/FEX
EX[EC] progname[parmval1][,...]
END

or

SET EXORDER=PGM/FEX
SET SQLENGINE=CPGFOC
SQL EX PROGRAM [parmval1][,...] 
TABLE FILE SQLOUT 
PRINT field [ON TABLE PCHOLD]
END 
SET SQLENGINE=OFF

where: 

progname

Is the name of the program to be run. (If CALLPGM is used, it cannot be another Dialogue
Manager FOCEXEC procedure.)

parmval1

Is an optional positional Dialogue Manager parameter passed to progname. A Dialogue
Manager parameter is an alphanumeric value. See Passing Parameters on page 27 for
examples.

The length of a single parameter (for example, parmval1) cannot exceed 32,000
characters. The total length of all specified parameters cannot exceed 32,000 characters.

END

Is a required command that terminates CALLPGM or EXEC.

2. Calling a Program as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  25



SQL Procedures and Db2 PLAN (z/OS Db2 CAF Adapter Only)

The z/OS Db2 CAF adapter requires that all programmed interaction with a database be
controlled at the program module level. The program is represented to the database using an
object called a plan. The installation procedure automatically creates a plan for a server. When
the server accesses the RDBMS, it uses the plan name. 

When a program executed by CALLPGM contains z/OS Db2 CAF SQL statements, it may be
necessary to switch from the plan named in the installation procedure to the plan required by
the program.

Syntax: How to Switch Plans in z/OS Db2 CAF

ENGINE DB2 SET PLAN progplan 
CALLPGM myprog...
END
ENGINE DB2 SET PLAN ' '

where: 

progplan

Is the name of the plan required by the program.

myprog

Is the name of the program to be run.

SET PLAN ' '

Resets the plan.

An alternative is to use z/OS Db2 CAF packages. Here, each CALLPGM program has its own
package (called by the same name as the program), and all programs are included in the
package list for the plan.

For example, assume that your server plan is called PGMSQL. You wish to have two stored
procedures, called SPG1 and SPG2, that use static SQL to access Db2.

In this case, there are three Db2 database resource modules (DBRMs) created: PGMSQL,
SPG1, and SPG2. Create three packages, called PGMSQL.PGMSQL, PGMSQL.SPG1, and
PGMSQL.SPG2, using the command CREATE PACKAGE. Then bind the packages together into a
plan using the command BIND PLAN with the package list option. When the server executes,
Db2 automatically selects the package with the same name as the program.

For more information on plans, see the applicable Db2 manuals.

Calling a Program With SQL EX

26  Information Builders



Storing Answer Set Data

When executing a CALLPGM stored procedure, it is sometimes desirable to retain the answer
set on the server.

Example: Processing an Answer Set on the Server

The following example illustrates the method used to retain the answer set on the server and
assumes the called program is a fex with syntax to call the actual external procedure:

1. SQL EDA SET SERVER servername
2. SQL EDA EX programname parm1,...;
3. TABLE FILE SQLOUT
   PRINT *
   ON TABLE HOLD AS filename 
   END
4. TABLE FILE filename 
   PRINT col2 AS 'COLUMN,   2'
         col3 AS 'COLUMN,   3'
   END

The procedure processes as follows:

1. Identifies the remote server name in which to execute remote requests.

2. Executes the program name on the remote server.

3. Specifies that the temporary information is to be retained on the server in an extract file.

4. Executes a TABLE request to generate an answer set containing column 2 and column 3 in
the retained table.

Note:

The file specified must be allocated prior to being used. For more information on allocating
a file, see the Stored Procedures chapter of the Server Administration manual.

The above example is also valid when running CALLPGM locally.

Passing Parameters

The following terminology is used in this section: 

Amper variables used in a Dialogue Manager FOCEXEC procedure are also called DM
variables.

Parameters in a Dialogue Manager FOCEXEC procedure not directly stored in amper
variables are called DM parameters (that is, text parameters that get passed in and used).

2. Calling a Program as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  27



Parameters passed to a program called by CALLPGM are called CPG parameters.

Using CALLPGM with Embedded Spaces in Parameters

When passing CPG parameters that contain embedded spaces or commas, the parameters
must be enclosed in quotation marks. The following profile setting controls the stripping of
quotation marks from parameters.

Syntax: How to Control the Stripping of Quotes From Parameters

ENGINE SPG SET STRIPQUOTE {ON|OFF}

where: 

ON

Causes the quotation marks to be stripped from the parameters. ON is the default value.

OFF

Prevents the stripping of the quotation marks from the parameters.

Using CALLPGM

Parameters are passed to CALLPGM as comma separated values. If a value is a string and
contains an embedded space or comma then the string must be quoted. The SET STRIPQUOTE
default is to strip the quotes for the underlying program so only the value is seen. 

The underlying program then uses the CPM specification to read the individual parameters. The
parameter order must match the parameter order that the underlying program expects, but
there is also no reason why the underlying program cannot be written to understand parameter
pair values (for example, firstname=John,lastname=Doe) so that the program is position
independent. It is also permissible to form all values as a single quoted string, if the
underlying program has code to parse the string into usable values.

For example assume myproc is a Dialogue Manager FOCEXEC procedure and the procedure
contains and sets values for the variables &1, &2, and &3 and issues a CALLPGM command
as follows:

CALLPGM &1,&2,&3
END

When the procedure executes, the server substitutes the values for the variables &1, &2, and
&3, and the result call might look like:

CALLPGM myprog,Sales,20
END

Passing Parameters

28  Information Builders



In turn the values Sales and 20 are passed to the underlying compiled program myprog.

Example: Passing Long Parameters

If a CALLPGM program is being executed directly, the parameter is passed directly to the
CALLPGM program. 

If a CALLPGM program is being executed from a procedure residing on the server, the -LINES
function is used to break up long parameters into more readable strings and internally pass
the long parameter to the CALLPGM program. The following is an example of a server
procedure passing the maximum parameter of 32,000 bytes:

"EX -LINES 401 CPG32000 LINE000000000000000000000000000000000000000000001      "
"LINEOFINFORMATION1111111111111111111111111111111111111111111111111111111111111"
"LINEOFINFORMATION2222222222222222222222222222222222222222222222222222222222222"
"LINEOFINFORMATION4004004004004004004004004004004004004004004004004004004004004"
.
.
.
"LASTLINETOTAL32000BYTESTHEENDXX"

Note:

The first line of data ends in column 72. The double quotation marks (") are not part of the
procedure. Quotation marks are used to indicate the beginning and end of lines, some of
which may contain leading or trailing spaces.

The value after -LINES is the number of lines to read for parameters. In this example, for
brevity, several hundred lines are not shown.

Program Communication

A control block is used for communication between the server and the program. 

The program is called repeatedly until it indicates that it is done by supplying the correct value
in the field action_value in the control block on return to CALLPGM.

For more information, including the specific values to be returned in an action_value, see 
Writing a 3GL Compiled Stored Procedure Program on page 55.

2. Calling a Program as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  29



The process is illustrated below.

Program Communication

30  Information Builders



Chapter3
Calling a JAVA Class as a Stored
Procedure

You can easily access a JAVA class in your application, much as you would access an
external program with CALLPGM. There are two ways to call a JAVA class:

CALLJAVA call.

EX command.

Either method enables you to pass parameters to the JAVA class and receive data back.

CALLJAVA is also known as the Call Java Adapter.

In this chapter:

Execute Using CALLJAVA

Execute Using EX

Execute Using SQL EX and SQL CPJAVA EX

Passing Parameters

Writing a JAVA Class

JAVA Class Communication

Compiling and Running a JAVA Program

Execute Using CALLJAVA

You can invoke a user-written JAVA class with the CALLJAVA command from your user session.
This usage assumes the desired class is in a jar on the CLASSPATH of the running server.

Syntax: How to Use CALLJAVA to Execute a JAVA Class

CALLJAVA class,parameter1, parameter2, ...

where:

class

Is the full name of the class to be invoked.

Stored Procedure and Subroutine Reference for 3GL Languages  31



parameter1, parameter2,...

Are the remaining parameters which must be passed to the JAVA class according to the
rules described in Passing Parameters on page 34.

Example: Calling ibi.cjsamples.cjsamp Using CALLJAVA

CALLJAVA ibi.cjsamples.cjsamp,parameter1,
 "subparm1=val1,subparm2=val2",simple parameter3

Execute Using EX

You can invoke a user-written JAVA class with the EX command from your user session if SET
EXORDER is also used when considering external programs for execution. This usage assumes
the desired class is in a jar on the CLASSPATH of the server. 

Syntax: How to Use EX to Execute a JAVA Class

EX java.classparameter1, parameter2, ...

where:

java.class

Is the full name of the class to be invoked and must be preceded by the prefix java.

parameter1, parameter2,...

Are the parameters which must be passed to the JAVA class according to the rules
described in Passing Parameters on page 34.

Example: Calling ibi.cjsamples.cjsamp Using EX

SET EXORDER=PGM/FEX
EX java.ibi.cjsamples.cjsamp parameter1,
 "subparm1=val1,subparm2=val2",simple parameter3

Execute Using SQL EX and SQL CPJAVA EX

Using SQL EX or SQL CPJAVA EX is similar to using EXEC, the difference is that the output from
SQL EX is stored into a HOLD file called SQLOUT. The resulting SQLOUT file can then be
processed with additional SELECT or TABLE statements which may (or may not) contain
additional selection criteria, and possibly return less fields or create a virtual field that is
derived from the data.

You can invoke a user-written JAVA class with the EX command if SET EXORDER is also used
when considering external programs for execution.

Execute Using EX

32  Information Builders



Syntax: How to Use SQL EX to Execute a JAVA Class

SET SQLENGINE=CPJAVA
SQL EX classparameter1,, parameter2, ... ;
TABLE FILE SQLOUT
PRINT * [ON TABLE [PC]HOLD]
SET SQLENGINE=OFF

where:

java.class

Is the full name of the class to be invoked and must be preceded by the prefix java.

parameter1, parameter2,...

Are the parameters which must be passed to the JAVA class according to the rules
described in Passing Parameters on page 34.

Syntax: How to Use SQL CPJAVA EX to Execute a JAVA Class

SET CPJAVA EX classparameter1,parameter2, , ... ;
TABLE FILE SQLOUT
PRINT * [ON TABLE [PC]HOLD]
END

where:

java.class

Is the full name of the class to be invoked and must be preceded by the prefix java.

parameter1, parameter2,...

Are the parameters which must be passed to the JAVA class according to the rules
described in Passing Parameters on page 34.

The trailing semi-colon is required syntax. Either syntax is valid and one may be stylistically
better for any given application.

Example: Calling ibi.cjsamples.cjsamp Using SQL CPJAVA EX

SQL CPJAVA EX java.ibi.cjsamples.cjsamp parameter1,
   "subparm1=val1, subparm2=val2", simple parameter3;
TABLE FILE SQLOUT
PRINT *
END

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  33



Passing Parameters

You must adhere to the following usage requirements when passing parameters:

All parameters in either a CALLJAVA call or EX command are separated by commas.

You must enclose complex parameters containing commas in double quotation marks.

If a parameter contains a double quote, code it as two consecutive double quotation marks
with no spaces.

Parameter names can have spaces.

Enclose parameters with leading and/or trailing spaces that need to be retained in double
quotation marks.

Two consecutive commas do not represent a null parameter. To pass a blank parameter,
use " " or code a keyword, such as null or blank, as an application flag.

A parameter is generated for an unbalanced double quotation mark; quotes should never
be unbalanced.

For information on parameter parsing techniques, see the example under Compiling and
Running a JAVA Program on page 42.

Example: Passing Parameters

The following command, based on the sample later in this chapter, invokes the JAVA class
java.ibi.cjsamples.cjsamp with three parameters:

EX java.ibi.cjsamples.cjsamp Parameter1, " ", ""Parameter3""

Writing a JAVA Class

When you write a JAVA class to be invoked by the Reporting Server, you use the class with the
CALLJAVA interface, as much as you would use a 3GL program with the CALLPGM interface.
The CALLJAVA interface defines two methods, execute and fetch.

The execute method receives three parameters: user ID, password ID, and the String array
of parameters. Any one of those parameters can be a null object reference. Null reference
for the parameters array represents invocation with no parameters. The server invokes the
JAVA class in the “password passthru” mode. The execute method is used to instantiate
column attributes (name, data type, and size), and return the instantiated IBI Answer Set
object, populated with the answer set description, to the server.

Passing Parameters

34  Information Builders



The fetch method populates the object with data and is invoked by the server to receive
one row of the answer set at a time. The IBI_EOD flag is returned when the answer is
finished; the IBI_DATA flag is returned to indicate that more data is coming.

Note: The CALLJAVA interface is also used internally, and, as such, requires an additional
execute method as a signature returning a null to exist in user application so the two uses can
co-exist. The additional method is:

public ibianswr
execute(String username, String password, Object obj, String[] parms)
             throws Exception { return null; }

Tip: This signature is already included in the sample application, so if the sample is just
cloned as a template for another application, the signature will already properly placed.

For applications built prior to 7.6.3 to work with 7.6.3 (or higher) servers, the signature must
be added and the application rebuilt. The current sample can be used to determine where to
place the signature in older applications (current sample JAVA CALLPGM code is shown in 
Compiling and Running a JAVA Program on page 42).

Please note that while you must include this code, you may neither modify nor use it.

The Java Logging API

A logging api is provided to assist in transaction logging, tracing and debugging. The api
follows the industry practices followed by many providers. If you have experience working with
other widely accepted Java logging packages (for example, java.logging,
org.apache.commons.logging, log4j, slf4j), then you will be familiar with these methods.

Note: This API replaces the deprecated ibtrace methods in earlier releases.

Basic Logging API

Assume you need to add logging capabilities to the following class:

public class Foo 
{
   public static String concatenate(String s1, String s2) 
   {
      return s1 + s2;
   }
}

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  35



Add static member of type ibi.trace.ILogger (commonly named “log”) to the class, then use it
to log actions within the code:

import ibi.trace.ILogger;
import ibi.trace.IBILogFactory;
 
public class Foo 
{
   private static final ILogger log = IBILogFactory.getLogger(Foo.class);
   public static String concatenate(String s1, String s2) 
   {
      log.debug("About to concatenate ''{0}'' and ''{1}''", s1, s2);
      return s1 + s2;
   }
}

Logging Levels

The logging API supports the following levels:

Debug. For detailed logging.

Info. For informational messages.

Warn. For warnings.

Error. For errors.

Each level allows formatted output and exception logging. For example, at warn level:

   log.warn("About to sleep 100 millis");
   try 
   {
      Thread.sleep(100);
   }
   catch(InterruptedException ex) 
   {
      log.warn("Warning: interrupted", ex);
   }

Java Logging and Server Tracing

When the server is started with the -traceon option, java logging is enabled at the debug level
(this level automatically includes all other levels).

The special logger name edaprint.log can be used to duplicate logging messages to the
edaprint.log file of the server. Only error, warn, and info levels can go to edaprint.log. Also,
edaprint.log logger is always enabled, regardless of whether server was started with traces on
or off.

The use edaprint.log method should be done sparingly - only important and critical events
should be put to edaprint.

Writing a JAVA Class

36  Information Builders



The following code illustrates the edaprint.log logging functionality:

public class Foo
{
   private static final log      = IBILogFactory.getLogger(Foo.class);
   private static final edaprint = IBILogFactory.getLogger("edaprint.log");
   public static void concatenateAndWrite(Writer writer, String s1, String s2) 
   {
      log.debug("About to concatenate {0} and {1}", s1, s2);
      String s = s1 + s2;
      log.debug("Result is: {0}", s);
      try
      {
          writer.write(s);
      }
      catch(IOException ex)
      {
          // this sends error report to the server's edaprint.log 
          // regardless of server tracing setting.
          // Additionally, if traces are on, the error report
          // will be sent to the standard trace facility
          edaprint.error("Failed to write", ex);
      }
   }
}

Logging Reference Guide

The following sections describe different logging levels.

Debug Level

public boolean isDebugEnabled();

Returns true if logging is enabled at the Debug level. Useful to avoid time-consuming
computations that are needed only for logging purposes.

public void debug(String message);

Sends message string to the logging destination, but only if logging is enabled at the debug
level.

public void debug(String messageFormat, Object arg1);
public void debug(String messageFormat, Object arg1, Object arg2);
public void debug(String messageFormat, Object arg1, Object arg2, Object arg3);

Formats message and sends the result to the logging destination, but only if logging is enabled
at the debug level.

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  37



public void debug(String messageFormat, Throwable th);

Prints message and exception trace to the logging destination, but only if logging is enabled at
the debug level.

Info Level

public boolean isInfoEnabled();

Returns true if logging is enabled at the Info level. Useful to avoid time-consuming
computations that are needed only for logging purposes.

public void info(String message);

Sends message string to the logging destination, but only if logging is enabled at info or higher
level.

public void info(String messageFormat, Object arg1);
public void info(String messageFormat, Object arg1, Object arg2);
public void info(String messageFormat, Object arg1, Object arg2, Object arg3);

Formats message and sends the result to the logging destination, but only if logging is enabled
at info or higher level.

public void info(String messageFormat, Throwable th);

Prints message and exception trace to the logging destination, but only if logging is enabled at
info or higher level.

Warn Level

public boolean isWarnEnabled();

Returns true if logging is enabled at the Warn level. Useful to avoid time-consuming
computations that are needed only for logging purposes.

public void warn(String message);

Sends message string to the logging destination, but only if logging is enabled at warn or
higher level.

public void warn(String messageFormat, Object arg1);
public void warn(String messageFormat, Object arg1, Object arg2);
public void warn(String messageFormat, Object arg1, Object arg2, Object arg3);

Formats message and sends the result to the logging destination, but only if logging is enabled
at warn or higher level.

Writing a JAVA Class

38  Information Builders



public void warn(String messageFormat, Throwable th);

Prints message and exception trace to the logging destination, but only if logging is enabled at
warn or higher level.

Error Level

public boolean isErrorEnabled();

Returns true if logging is enabled at the Error level. Useful to avoid time-consuming
computations that are needed only for logging purposes.

public void error(String message);

Sends message string to the logging destination, but only if logging is enabled at error or
higher level.

public void error(String messageFormat, Object arg1);
public void error(String messageFormat, Object arg1, Object arg2);
public void error(String messageFormat, Object arg1, Object arg2, Object arg3);

Formats message and sends the result to the logging destination, but only if logging is enabled
at error or higher level.

public void error(String messageFormat, Throwable th);

Prints message and exception trace to the logging destination, but only if logging is enabled at
error or higher level.

The Java ibtrace Tracing Interface (Deprecated)

The ibi.trace methods described here are considered deprecated as of Version 7 Release 7,
but remain (with one exception) for backward compatibility purposes. The normal edastart -
traceon facility captures the trace interactions between the user (TSCOM3) process, the
CALLJAVA API and any ibtrace.println() statements that may be in the application. The user
process interactions are stored in the normal TS###### trace files and the Java traces are
stored in the JS###### trace files of the Java service, both in the EDATEMP directory.

The numbering of the JS###### files is based on the current JAVA execution number. As a
reference, in the EDATEMP directory, you will also find JSCOM3 and JSCOM3_J trace files
related to the start up of the Java service.

The API also includes ibtrace class methods for the Java application to more precisely control
trace activities in which the main traces can be off, yet specific events using ibtrace.println()
can be tracked, much like an activity log.

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  39



Tracing is typically used when an exception is thrown and a user wants to send special
information to the process trace (which may or may not be active) before taking the next step,
possibly performing some remediative action.

} catch (Exception e)
  {
    ibtrace.println(ClassName + ": Parm One Not Integer: " + e + "\n");
    Rows = 1; /* Reset to 1 if not numeric */
  }

Reference: Trace Methods and Uses

The following chart lists a complete set of trace methods and typical uses. 

Method Typical Use

closeTrace( ) Closes an open trace file. This is required before
the first initTrace() call in order to close the internal
default file. If not supplied, the initTrace() is
ineffective and the prior trace file remains active.

initTrace(String fname) Is used after closeTrace() to initialize and provide
an alternate trace file name. If a previously used
file is provided, it is opened as new and the
contents are over-written.

initTrace(String fname, append flag) Is used after closeTrace() to initialize and provide
an alternate trace file name with a boolean flag
(true/false) to indicate appending to an existing
file. An append flag of false is effectively the same
as initTrace(String fname).

println(String msg) Prints a text message into a trace file.

println(Exception e + String id) Prints an exception into a trace file with a string ID.

traceOn( ) Enables Write operations for trace file. This is the
default if the server was start with tracing.

traceOff( ) Disables Write operations for trace file. This is the
default if the server was started without tracing.

isTraceOn( ) Checks for tracing on/off status to control logic
flow. The reply response is "true" or "false."

Writing a JAVA Class

40  Information Builders



Note: Prior releases supported a method of printIn(exception e), however, it was necessary to
remove the method and not just deprecate it. It is easily replaced by concatenating with a
string (for example, +”\n”).

The ibiAnswerSet Interface

package ibi.callpgm;
 
public interface ibiAnswerSet {
 
public static final int IBI_ALPHA
public static final int IBI_INTEGER
public static final int IBI_FLOAT
public static final int IBI_DOUBLE
public static final int IBI_TIME
public static final int IBI_DATE
public static final int IBI_TIMESTAMP
public static final int IBI_SMALLINT
public static final int IBI_BIGINT
public static final int IBI_DECIMAL
public static final String IBI_MISSING
 
public int getColsNumb();
public void setColName(int colIndex, String name);
public void setColType(int colIndex, int type);
public void setColSize(int colIndex, int size);
public void setColValue(int colIndex, String value);
}

See Compiling and Running a JAVA Program on page 42 for an illustration of how
setColName, setColType, setColSize, and setColValue are used.

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  41



The callpgm Interface

package ibi.callpgm;
 
public interface callpgm {
/**
* executes the request and returns answer set description
* @param username - the user name or null
* @param password - the user password or null
* @param parms - array of parameters or null
* @param ibianswr - the IBI Answer Set object
* @return ibianswr populated with the meta information
*/
public ibianswr
       execute(String username, String password, String[] parms)
               throws Exception;
/**
* returns one row of the answer
* @param - none. IBI Answer Set object instantiated in "execute" 
*          is used to return data
* @return End-Of-Data indicator
*/
public Integer fetch() throws Exception;
 
public static final Integer IBI_EOD = null;
public static final Integer IBI_DATA = new Integer(1);
} 

JAVA Class Communication

When you execute a JAVA class regardless of execute method used, the server and the
program communicate using an IBI answer set object. 

This object has to be instantiated and populated with the answer set description on an
"execute" method call. This method is called by the server only once. The server will call a
"fetch" method repeatedly until it receives an IBI_EOD indicator. The server expects to receive
the answer set row by row in the same instance of the IBI answer set object.

Compiling and Running a JAVA Program

When you compile your JAVA program, the ntj2c.jar file (and the ibtrace.jar file when including
any ibtrace or log method), located in the EDAHOME etc/java/java16 (7706/81x releases) or
etc/java/srvr (7707/82x and higher releases) subdirectory, needs to be accessible. If you are
manually building with Javac, you can then compile your JAVA program using the CLASSPATH
environment variable or the javac -classpath command parameter. If GENCPGM is used to build
your JAVA program, including the jars is automatic. Specific details follow the sample.

JAVA Class Communication

42  Information Builders



When you execute your JAVA class, you need to place the client jar file containing the JAVA
class to be invoked in the CLASSPATH environment variable prior to starting the Reporting
Server or configure the JVM environment of the server using the Web Console to include the
jars.

When writing your own application, create a .java file containing the application, then build and
run as described in the sections that follow.

Note that the following is a working example that needs no customization. Users are expected
to build and test this example in order to confirm a properly configured and usable environment
for CALLPGM applications before attempting any custom applications.

The example has two modes: echo back the command line parameters sent to it or display
data of the various supported data types. The example does not work with or use external data
so it has no external dependencies, such as a configured DBMS. However, in practical use, a
real application would typically retrieve data from an external source. (It is the users
responsibility to do the real coding of the application.)

Example: Compiling and Running a JAVA CALLPGM Program

You can use the following sample code (cjsamp.java) as a model for writing your own JAVA
program.

The main mode is to echo parameters back, and, if the first parameter is a number, the
application echoes the parameters back as individual columns of that many tuples of data. If
the first parameter is not numeric, the exception handler detects and sets the tuple return
count to 1. A number greater than 50 also activates a safety (against excessive processing),
and resets the tuple return count to 9. (You can change the safety, if that is what you want.
For this example, the safety is simply a precaution against excessive records for the demo
sample.)

If the first parameter is numeric and the second is the word datatype, the second test mode
activates and returns arbitrary data in the various supported data types, for as many tuples as
specified. Within this mode, passing a null for string is used for one of the columns, which, in
turn, display as MISSING data (dot) within the tuple sent back.

Remember that a real call java program would use the structure of this example to parse the
incoming parameters and take some action, such as setting column sizes and returning data
from an sql source, but the coding is left to the user.

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  43



/*
 * Title:        cjsamp.java
 * Description:  Example implementation of a JAVA callpgm program
 * Company:      Information Builders, Inc.
*/
/*
   This example has two modes, echo back the command line parms sent to
   it or display data of the various supported data types. It does not
   work with/use external data so has no external dependencies such as a
   configured DBMS, but in practical use would retrieve data from a
   external source; it is left to the user to do such coding.

   The main mode is to echo parms back and if the first parm is a number,
   the application echoes the parms back as individual columns of that
   many tuples of data. If the first parm is not numeric, the exception
   handler detects and sets the tuple return count to 1. A number greater
   than 50 also activates a safety (for excessive processing) and resets
   the tuple return count to 9 (the user is free to change the safety,
   if that is what they really want, it is simply a precaution for the
   example). If no parms are passed, it is detected and a no parms
   message passed back.

   If the first parm is numeric and the second is the word "datatype",
   the second test mode activates and returns arbitrary data in the
   various supported data types for as many tuples as specified. Within
   this mode, the use of passing a null for string is used for one of
   the columns, these in turn display as MISSING data (dot) within the
   tuple sent back.

   As already stated, a real call java program would use the structure
   of this example to parse the incoming parms and take some action
   such as setting column sizes and returning data from an sql source,
   but is left to the user to code.

   Execution syntax is (see full documentation for parm rules):
     CALLJAVA ibi.cjsamples.cjsamp, parm1, parm2, ...
     END
   or
     SET EXORDER=PGM/FEX
     EX java.ibi.cjsamples.cjsamp parm1,parm2,...
   or
     SET SQLENGINE=CPJAVA
     SQL EX ibi.cjsamples.cjsamp parm1,parm2,... ;
     TABLE FILE SQLOUT
     PRINT field [ON TABLE PCHOLD]
     END
     SET SQLENGINE=OFF
   or
     SQL CPJAVA EX ibi.cjsamples.cjsamp parm1,parm2,... ;
     TABLE FILE SQLOUT
     PRINT field [ON TABLE PCHOLD]
     END

Compiling and Running a JAVA Program

44  Information Builders



   CALLJAVA syntax uses no leading "java.", has a comma after the
   class and requires the END statement. Where EX syntax requires
   a SET EXORDER, a leading "java." and no comma after the class.
   Where SQL EX uses a SET SQLENGINE, no leading "java.", no comma
   after the class and requires a trailing semi-colon. Where SQL
   CPJAVA EX eliminates the SET SQLENGINE step. Which method
   to use is the users choice.

   The functions ibtrace.traceon and ibtrace.println have been deprecated
   (respectively) in flavor of log.isDebugEnabled() and log.debug, but
   the original functions are still active. This example uses the log.*
   functions.

   The indentation and formatting in this sample may seem odd,
   but is done to control wrapping and readability in the printed
   documentation.
*/

package ibi.cjsamples;
/* Required ibi classes */
import ibi.trace.*;
import ibi.callpgm.*;
import ibi.callpgm.ibianswr;
import ibi.trace.IBILogFactory;
import ibi.trace.ILogger;

/* Needed for time/date usage here, but generally typically needed. */
import java.sql.*;
import java.math.*;
import java.util.*;

public class cjsamp implements callpgm{
  private static final ILogger log = IBILogFactory.getLogger(cjsamp.class);
  private ibianswr answr = null;
  private int rownum = 0;
  private int numOfColumns = 0;
  private int Rows = 0;
  private String[] arrParms = null;
  /* Get class name for error messages */
  private String ClassName = getClass().toString();
  /* Array for no parms passed */
  private String[] NoParms = { "No ","Parameter ","Data ","Supplied!" };
  public cjsamp(){}
  /*
   Applications are required to have the next signature due to
   internal interface requirements for graph, but is not for
   customer use. Attempted customer use is not supported.
  */

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  45



  public ibianswr
    execute(String username, String password, Object obj, String[] parms)
               throws Exception { return null; }
  /* Actual application ... */
  public ibianswr
       execute(String username, String password, String[] parms)
               throws Exception
  {
  /*
    General init info tracing. Tracing only displays only if server
    tracing on and displays in the stardard server traces jc######.trc.
    log.isDebugEnabled() is used to avoid the overhead of forming strings
    when tracing is not enabled.
  */

  int numParms = (parms != null) ? parms.length : 0;
  if (log.isDebugEnabled())
     {
     log.debug(" ... " + ClassName + ": Constructor ...");
     log.debug(" ... " + ClassName + ": Username: " +
               username + ", Password: " + password);
     log.debug(" ... " + ClassName +
               ": Number of parameter(s): " + numParms);
     for(int i=1; i <= numParms; i++)
        { log.debug(" ... -> Parameter " + i + ": " + parms[i-1]); }
     }

  /* Check parm 1 for numeric and if too high of a repeat value. */
  if(numParms == 0)
    { /* No parms defaults to 1 in echo mode */
      arrParms = NoParms;
      numParms = (arrParms != null) ? arrParms.length : 0;
      Rows = 1;
    }
    else
    {
      arrParms = parms;
      /* Example of exception handling and writing to trace */
      try { Rows = Integer.parseInt(arrParms[0],10);
          } catch (Exception e)
          {
          if (log.isDebugEnabled())
             {
             log.debug(" ... " + ClassName +
                       ": Parm 1 Non Integer: " + e + "\n");
             }
          Rows = 1; /* Reset to 1 if not numeric */
          }
      /* This is an example, reduce unrealistic repeats to 9. */
      if(Rows > 50) { Rows = 9 ; }
    }

Compiling and Running a JAVA Program

46  Information Builders



  /* Based on array contents, set field attributes for SQLOUT master */
  /* If parm 2 is "datatype", run in datatype mode else echo mode. */
  if(arrParms[1].equalsIgnoreCase("datatype"))
    { /* Create arbitrary number of columns for our datatypes. */
      numOfColumns = 11; /* Actually 10 plus 1 for MISSING example */
      if (log.isDebugEnabled())
         {
         log.debug(" ... " + ClassName +
                   ": Number of Columns: " + numOfColumns);
         }
      answr = new ibianswr(numOfColumns);
      for(int index = 0; index < numOfColumns; index++)
         {
         int colNum = index + 1 ; /* We start at 1 not 0 */
         if (colNum==1 || colNum==2)
         { /* Column 2 for MISSING example */
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_ALPHA");
            answr.setColType(colNum,ibianswr.IBI_ALPHA);
            answr.setColSize(colNum,10);
         }

         else if (colNum == 3)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_INTEGER");
            answr.setColType(colNum,ibianswr.IBI_INTEGER);
            answr.setColSize(colNum,4);
         }

         else if (colNum == 4)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_FLOAT");
            answr.setColType(colNum,ibianswr.IBI_FLOAT);
            answr.setColSize(colNum,4);
         }

         else if (colNum == 5)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_DOUBLE");
            answr.setColType(colNum,ibianswr.IBI_DOUBLE);
            answr.setColSize(colNum,8);
         }

         else if (colNum == 6)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_TIME");
            answr.setColType(colNum,ibianswr.IBI_TIME);
            answr.setColSize(colNum,10);
         }

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  47



         else if (colNum == 7)
         {
            /*
            IBI_DATE must be java.sql.Date class format.
            Dates like DD-MMM-YYYY (ie OpenVMS format) are not,
            either convert to java.sql.Date or use IBI_ALPHA.
            */
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_DATE");
            answr.setColType(colNum,ibianswr.IBI_DATE);
            answr.setColSize(colNum,10);
         }

         else if (colNum == 8)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_TIMESTAMP");
            answr.setColType(colNum,ibianswr.IBI_TIMESTAMP);
            answr.setColSize(colNum,21);
         }

         else if (colNum == 9)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_SMALLINT");
            answr.setColType(colNum,ibianswr.IBI_SMALLINT);
            answr.setColSize(colNum,2);
         }

         else if (colNum == 10)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_BIGINT");
            answr.setColType(colNum,ibianswr.IBI_BIGINT);
            answr.setColSize(colNum,8);
         }

         else if (colNum == 11)
         {
            answr.setColName(colNum,"FLD_"+colNum+"_IBI_DECIMAL");
            answr.setColType(colNum,ibianswr.IBI_DECIMAL);
            answr.setColSize(colNum,18,7);
         }
         }
    }

Compiling and Running a JAVA Program

48  Information Builders



    else
    { /* Create arbitrary number of columns for number of parms */
      answr = new ibianswr(arrParms.length);
      if (log.isDebugEnabled())
         {
         log.debug(" ... " + ClassName +
                   ": Number of columns: " + answr.getColsNumb()); }
         for(int column = 1; column <= answr.getColsNumb(); column++)
            {
            answr.setColSize(column,(column == 1) ?
                  Math.max(1,arrParms[column-1].length()) :
                             arrParms[column-1].length());
            answr.setColName(column, "Column" + column);
            }
    }
    return answr;
  }

  /* Based on array, return data for as many rows passed in parm 1 */
  public Integer fetch() throws Exception
  {
    if( ++rownum > Rows ) return IBI_EOD;
    /* If parm 2 is "datatype" run in test mode else echo mode. */
    if(arrParms[1].equalsIgnoreCase("datatype"))
      { /* For datatype test, set arbitrary data to send back */
      if (log.isDebugEnabled())
         {
          log.debug(" ... " + ClassName + ": fetching row: " + rownum);
         }
      for(int colNum = 1; colNum <= numOfColumns; colNum++)
      {
         if (colNum == 1)
          {  /* IBI_ALPHA */
          String value = new String("Col"+colNum+" Row"+rownum);
          answr.setColValue(colNum, value);
          }

          else if (colNum == 2)
          { /* IBI_ALPHA - Pass null for IBI_MISSING value behavior */
          String value = null;
          answr.setColValue(colNum, value);
          }

          else if (colNum == 3)
          { /* IBI_INTEGER */
          int vali = 2 ; answr.setColValue(colNum, vali);
          }

          else if (colNum == 4)
          { /* IBI_FLOAT */
          Float fl = new Float(7.0);
          float valf = fl.floatValue(); answr.setColValue(colNum, valf);
          }

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  49



          else if (colNum == 5)
          { /* IBI_DOUBLE */
          double vald = 6.0 ; answr.setColValue(colNum, vald);
          }

          else if (colNum == 6)
          { /* IBI_TIME */
          java.sql.Time DV = new java.sql.Time(10000);
          answr.setColValue(colNum, DV);
          }

          else if (colNum == 7)
          { /* IBI_DATE */
          java.sql.Date DV = new java.sql.Date(100000);
          answr.setColValue(colNum, DV);
          }

          else if (colNum == 8)
          { /* IBI_TIMESTAMP */
          Timestamp ts = new Timestamp(100000);
          answr.setColValue(colNum, ts);
          answr.setColSize(colNum,ts.toString().length());
          }

          else if (colNum == 9)
          { /* IBI_SMALLINT */
          short vals= 4 ; answr.setColValue(colNum, vals);
          }

          else if (colNum == 10)
          { /* IBI_BIGINT */
          long vals= 6 ; answr.setColValue(colNum, vals);
          }

Compiling and Running a JAVA Program

50  Information Builders



          else if (colNum == 11)
          { /* IBI_DECIMAL */
          BigDecimal BD = new BigDecimal("12345678.90876");
          answr.setColValue(colNum, BD);
          }
          }
      }
      else /* For echo test, send back the same parms passed in */
      {
      /* If no parms passed, load array with no parms message */
      if(arrParms == null) { arrParms = NoParms ; }
      /* Return parms received for as many rows passed in parm 1 */
      for(int i = 1; i <= Rows ; i++)
         {
         if (log.isDebugEnabled())
            {
               log.debug(" ... " + ClassName + ": fetching row: " + i);
            }
         for(int column = 1; column <= answr.getColsNumb(); column++)
            { answr.setColValue(column, arrParms[column-1]) ; };
         }
      }
      return IBI_DATA;
  }
}

Building a JAVA Program and Starting the Server

The following are examples that can be used when building a JAVA program and starting a
server. Note that the etc/java/srvr 7707/82x and higher jar location is used in the following
examples and may need to be adjusted for older releases.

Example: Building a JAVA Application Manually on UNIX or IBM i

The following example assumes javac compiler is on $PATH.

One might typically build an application manually using code such as the following: 

JARS=$HOME/ibi/srv77/home/etc/java/srvr
javac cjsamp.java -classpath $JARS/ntj2c.jar:$JARS/ibtrace.jar
mkdir ibi ibi/cjsamples 2> /dev/null
cp cjsamp.class ibi/cjsamples
jar cvf cjsamp.jar ibi/cjsamples/cjsamp.class

The result is a cjsamp.jar file in the current directory. In order to use your application, you must
copy the resulting .jar file from the build directory to a production location, such as /usr/local/
jars, and place it on the classpath before server start up.

Example: Building a JAVA Application Manually on Windows

The following example assumes javac compiler is on PATH.

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  51



One might typically build an application manually using code such as the following:

set JARS=C:\ibi\srv77\home\etc\java\srvr
javac cjsamp.java -classpath %JARS%\ntj2c.jar;%JARS%\ibtrace.jar
mkdir ibi ibi\cjsamples 2> nul:
copy cjsamp.class ibi\cjsamples
jar cvf cjsamp.jar ibi\cjsamples\cjsamp.class

The result is a cjsamp.jar file in the current directory. In order to use your application, you must
copy the resulting .jar file from the build directory to a production location, such as C:\jars,
and place it on the classpath before server start up.

Example: Building a JAVA Application Manually on OpenVMS

The following example assumes that the HP-supplied script for activating Java has been
executed so the javac compiler can be found on the system path.

One might typically build an application manually using code such as the following:

$ DEFINE /USER JAVA$CLASSPATH-
  IADMIN:[IADMIN.IBI.SRV77.HOME.ETC.JAVA.SRVR]NTJ2C.JAR,-
  IADMIN:[IADMIN.IBI.SRV77.HOME.ETC.JAVA.SRVR]IBTRACE.JAR
$ JAVAC -verbose -d . cjsamp.java 
$ JAR -cvf CJSAMP.jar [.ibi.cjsamples]cjsamp.class 

The result is a cjsamp.jar file in the current directory. In order to use your application, you must
copy the resulting .jar file from the build directory to a production location, such as IADMIN:
[IADMIN.JARS], and place it on the classpath before server start up.

Example: Building a JAVA Application Using GENCPGM

This example assumes that the javac compiler is on $PATH (UNIX and IBM i), PATH (Windows)
or system path (OpenVMS) and that GENCPGM has been copied to the current directory
(otherwise, the full path must be used).

Use the following notations to build a class inside a jar (cjsamp in this example).

Platform Syntax

Windows gencpgm –m cjava cjsamp.java

UNIX gencpgm.sh –m cjava cjsamp.java

IBM i (formerly known as i5/OS) gencpgm.sh –m cjava cjsamp.java

OpenVMS @gencpgm –m cjava cjsamp.java

Compiling and Running a JAVA Program

52  Information Builders



For details about setting specific JAR names, see Using the GENCPGM Build Tool on page
89. GENCPGM supports building classes in a jar on all platforms.

Example: Starting a Server on UNIX or IBM i

In order for a server to recognize a new or updated CALLJAVA application, the CLASSPATH
variable must be set with all required jars (including ntjzc.jar and ibtrace.jar) before you start
the server. You must also restart the server if a .jar file is updated. For example, on UNIX you
can start the server using the following code: 

CLASSPATH=/usr/iadmin/ibi/srv77/home/etc/java/srvr/ntj2c.jar:
   /usr/iadmin/ibi/srv77/home/etc/java/srvr/ibtrace.jar:
   /usr/local/jars/cjsamp.jar
export CLASSPATH
edastart -start

Alternately, the properties page from the Web Console allows the configuration of CLASSPATH
with user built jars as part of the servers configuration. To access the properties page from the
Web Console, click Workspace, then Configuration/Monitor, and then Java Services.

For an example of how an application executes a Java class, see the various Execute methods
at the start of the chapter.

Example: Starting a Server on Windows

In order for a server to recognize a new or updated CALLJAVA application, you must set the
CLASSPATH variable with all required jars (including ntjzc.jar and ibtrace.jar) before you start
the server. You must also restart the server if a .jar file is updated.

For example, on Windows you can start the server by selecting the following options:

My Computer > Properties > Advanced Tab > Environment Variables

Next, either add or edit the CLASSPATH variable and include ntjzc.jar, ibtrace.jar, and the new
jar in the value. For example:

CLASSPATH C:\ibi\srv77\home\etc\java\srvr\ntj2c.jar;c:\ibi\srv77\home\etc
\java\srvr\ibtrace.jar;c:\jars\cjsamp.jar;

Then, start the server as a service or use any of the standard Windows start menu options of
the server.

For an example of how an application executes a Java class, see the various Execute methods
at the start of the chapter.

3. Calling a JAVA Class as a Stored Procedure

Stored Procedure and Subroutine Reference for 3GL Languages  53



Example: Starting a Server on OpenVMS

In order for a server to recognize a new or updated CALLJAVA application, you must set the
CLASSPATH or JAVA$CLASSPATH variable with all required jars (including ntjzc.jar and
ibtrace.jar) before you start the server. You must also restart the server if a .jar file is updated.

If CLASSPATH is used for setting classpath, then UNIX file notation must be used, as
described in the Java documentation for HP. Otherwise, JAVA$CLASSPATH may be used with
OpenVMS file notation as illustrated next.

On OpenVMS you can start the server using the following code:

DEFINE JAVA$CLASSPATH JAVA$CLASSPATH-
 IADMIN:[IADMIN.IBI.SRV76.HOME.ETC.JAVA.SRVR]NTJ2C.JAR, -
 IADMIN:[IADMIN.IBI.SRV76.HOME.ETC.JAVA.SRVR]IBTRACE.JAR, -
 IADMIN:[IADMIN.JARS]CPSAMP.JAR
@EDASTART -START 

For an example of how an application executes a Java class, see the various Execute methods
at the start of the chapter.

Compiling and Running a JAVA Program

54  Information Builders



Chapter4 Writing a 3GL Compiled Stored
Procedure Program

These topics describe the requirements for writing a 3GL complied program to be called
by the EDARPC function call or by the CALLPGM command. They explain how to set up
control blocks for communication between the server and the program, and how to store
program values so that the program retrieves addresses of allocated data storage. These
topics also discuss the CREATE TABLE command, which the program issues in order to
describe the answer set that it is returning. 

In this chapter:

Program Requirements

Setting Up the Control Block

Storing Program Values

Error Handling

Issuing the CREATE TABLE Command

Program Requirements

If you are writing a program to be stored on a server and called as a 3GL stored procedure, you
must: 

Write and compile a program as a loadable library.

Create a control block for communication within the program.

Retain values used by your program.

Issue the CREATE TABLE command to describe any answer set before returning it.

Theoretically, any 3GL language can be used provided it can be compiled and linked as a
loadable library. However, reference examples and tools (GENCPGM) to assist in compilation
and linking only exist for a limited set of languages. Thus, any 3GL language is supported, but
some are untested and unlikely to be tested. For more information about GENCPGM, see 
Additional 3GL Reference Examples on page 103 for languages supported and the samples in
this chapter. If you are using an untested language and are having problems, contact
Information Builders customer support so that a specialist can assist you.

For details on calling a compiled program with CALLPGM, see Calling a Program as a Stored
Procedure on page 21.

Stored Procedure and Subroutine Reference for 3GL Languages  55



Note: Loadable library is a generic term. The actual technical name varies by operating system.
Other commonly used terms for these types of files are dll, service program, shared library,
and shared image. The script, gencpgm, is provided on UNIX, Windows, IBM i, and OpenVMS to
assist in the actual compilation of a program, but any method is allowed provided that it links
in the appropriate library and builds the file as a dynamic load library (for example, .so for
UNIX, .dll for Windows, service program on IBM i, and shared library on OpenVMS). For more
information, see Additional 3GL Reference Examples on page 103.

Setting Up the Control Block

The server uses a control block for communication with a compiled program. The following
applies:

Under MVS, OpenVMS, UNIX, IBM i, or Windows, the address of the control block is sent to
the program as the first parameter.

Under CICS, the control block is the COMMAREA.

CALLPGM supports two styles of control block layouts (old and new) and SET command to
control which is used. The default continues to remain the old style for backward compatibility
for existing applications. The difference between the two styles is the number of address areas
(buffers) and the applicable values for signaling actions. The old style uses two address areas
(buffers), one for passing messages and a shared one for creates and answers rows. The new
style has a third address area so creates and answer rows each have their own buffer. Which
style is used is controlled with the command statement

SQL SPG SET CPGUB style

where:

OLD

Uses two address area buffers.

NEW

Uses three address area buffers.

Applications are allowed to set the style at any time, but if all applications use the new style,
then the command should be put in the server profile.

The benefit of the new style is that some new action flags were added for both OLD and NEW
but some flags that are strictly for NEW. For example:

Normally, to send a message, the subroutine would be called twice; first to send the
message and a second time so the "all done" exit flag could be set. With the newer flag, a
value of 13 (which means message and exit), the routine is only called once.

Setting Up the Control Block

56  Information Builders



Normally, to send multiple records, several calls would be used to set the create
statement, get each record, and then the exit flag. Under the newer flags (specifically 18),
and with CPGUB NEW, a single call can set the create buffer, load the answer set buffer
with multiple records, and set the exit flag.

Therefore, even a minor recoding of an old application to use the newer exit flags can
improve performance, but applications that can buffer up all data into a single pass will
particularly benefit.

The following sections provide the control block specifications and examples of the control
block in C, COBOL, and RPG.

Values for the fields in the control block are supplied by either the server or the called
program. If a field is designated non-modifiable in the sample control block in C, its value is
supplied by the server and cannot be changed by the program. This restriction also applies to
the corresponding field in the sample control block in COBOL and RPG.

Control Block Specification

Data layouts used in the control blocks in the following sections are described in the table
below. Specific variable names used within an actual program and the samples provided vary
based on the limitations of the languages, but closely follow the names below.

 Field Length (in
bytes)

Data
Type

Description

input_CB_length 2 Integer Specifies the length of the input_CB passed by the server,
including any passed parameters.

Non-modifiable. The server supplies the value; the called
program cannot modify it.

reserved 2 Integer Non-modifiable. Reserved for server use.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  57



 Field Length (in
bytes)

Data
Type

Description

flag_value 4 Integer Specifies whether this is the first time the server has
called the program for this client application:

1
First time.

0
All other times (unless an error occurs; see the
following error codes).

Non-modifiable
The server supplies the value; the called program
cannot modify it.

If the server encounters a problem, it sets the flag_value
to one of the following error codes, and calls the program
again. The called program should check for these errors; if
it receives one, it should clean up and log the flag_value.

The server supplies the value; the called program cannot
modify it.

100
Program name invalid.

101
Cannot get main parameter buffer.

200
CS/2 error condition (a communications subsystem
error).

300
Cannot get memory.

302
Cannot load program.

305
Bad value from user program.

306
Remote program abend.

307
Client abend.

Setting Up the Control Block

58  Information Builders



 Field Length (in
bytes)

Data
Type

Description

flag_value 
(continued) 

4 Integer 308
CVT not found.

309
Cxinit call failed (an internal API error).

310
Cxdefault call error (an internal API error).

311
Cxsetuser call error (an internal API error).

312
Cxset call failed (an internal API error).

313
Invalid blocking factor. Action_value of 14, 15, or 18
was specified, but the blocking factor was ≤ 0.

400
CS/3 error condition (a communications subsystem
error).

500
Cannot get memory.

501
Unexpected message received.

502
Cannot load program.

503
Premature disconnect.

600
NTTK (tokenizer) error in a CREATE TABLE (an internal
component error).

602
Main buffer failure in a CREATE TABLE.

603
Left parenthesis missing in a CREATE TABLE.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  59



 Field Length (in
bytes)

Data
Type

Description

flag_value 
(continued) 

4 Integer 604
Field name missing in a CREATE TABLE.

605
Data type missing in a CREATE TABLE.

606
Unidentified data type in a CREATE TABLE.

607
Too many digits in column length in a CREATE TABLE.

608
Right parenthesis missing in a CREATE TABLE.

700
NTTKOP call failed (an internal API error).

701
More than 254 fields in a CREATE TABLE.

702
Invalid Master File.

Setting Up the Control Block

60  Information Builders



 Field Length (in
bytes)

Data
Type

Description

action_value

Initial value on first
call: 4

4 Integer Specifies the type of response from the called program:

1
Program returning a CREATE TABLE statement.

2
Program returning binary data.

3
Program returning character data.

4
Program returning a message.

9
Program done, exit flag ... terminate and do not call
routine again.

10
Program returning a CREATE TABLE statement plus
exit flag.

11
Program returning binary data plus exit flag.

12
Program returning character data plus exit flag.

13
Program returning message plus exit flag.

14
Program returning data as a block of tuples. Row
length supplied via message_length.

15
Program returning CREATE TABLE and data as a block
of tuples. Row length supplied via message_length.

16
Program returning CREATE TABLE and binary data.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  61



 Field Length (in
bytes)

Data
Type

Description

action_value

Initial value on first
call: 4

(continued)

4 Integer 17
Program returning CREATE TABLE and character data.

18
Program returning CREATE TABLE and data as a block
of tuples plus exit flag. Row length supplied via
message_length.

19
Program returning CREATE TABLE, binary data plus exit
flag.

20
Program returning CREATE TABLE, character data plus
exit flag.

Action values 15 and higher are only valid for use with SQL
SPG SET CPGUB NEW. Undefined action values result in
exit flag behavior.

The called program supplies the value.

Pointer padding filler for IBM i pointers. Only required to
exist for IBM i applications. Do not declare on other
platforms.

filler 4 Any type Pointer padding filler for IBM i pointers. Only required to
exist for IBM i applications. Do not declare on other
platforms.

answer_area

Initial value on first
call: 0

4 (32 bit)
8 (64 bit)
16 (IBM i)

Pointer
Address

The address of the data returned by the called program.

The called program supplies the value, depending on the
action value.

See Storing Program Values on page 70 for more
information on the use of this field.

answer_length

Initial value on first
call: 0

4 Integer The length of the data returned by the called program.

The called program supplies the value, depending on the
action value.

Setting Up the Control Block

62  Information Builders



 Field Length (in
bytes)

Data
Type

Description

filler 12 Any type Pointer padding filler for IBM i pointers. Only required to
exist for IBM i applications. Do not declare on other
platforms.

message_area

Initial value on first
call: 0

4 (32 bit)
8 (64 bit)
16 (IBM i)

Pointer
(address)

The address of a message returned by the called program.

The called program supplies the value when action_value
is 4.

See Storing Program Values on page 70 for more
information on the use of this field.

message_length

Initial value on first
call: 0

4 Integer The length of the message returned by the called program.

Or

The length of an answer row when data is returned as a
block used when action_value is 14, 15, or 18.

The called program supplies the value.

filler 12 Any type Pointer padding filler for IBM i pointers. Only required to
exist for IBM i applications. Do not declare on other
platforms.

Only existing and applicable when SQL SET CPGUB NEW,
do not code when CPUG OLD is used.

create_area

Initial value on first
call: 0

4 (32 bit)
8 (64 bit)
16 (IBM i)

Pointer
Address

The address of a CREATE returned by the called program.

The called program supplies the value when action_value
is 4.

See Storing Program Values on page 70 for more
information on the use of this field.

Only existing and applicable when SQL SET CPGUB NEW,
do not code when CPUG OLD is used.

filler 12 Any type Pointer padding filler for IBM i pointers. Only required to
exist for IBM i applications. Do not declare on other
platforms.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  63



 Field Length (in
bytes)

Data
Type

Description

parmlen 4 Integer The length of a parameter passed to the called program.

The server supplies the value.

This field is paired with parmdata (see next item). Twelve
pairs are permitted per program call.

parmdata Variable Any type The value of the parameter passed to the program.

The server supplies the value (from a Dialogue Manager
FOCEXEC procedure).

This field is paired with parmlen. Twelve pairs are
permitted per program call.

Setting Up a CALLPGM Control Block Structure for C

To use CALLPGM with C, a data structure needs to be created. The precise structure depends
on whether SQL SPG SET CPGUB is set to NEW or OLD. 

The following examples use a static length string to carry size/data pairs for information
passed as parameters to the program. It is the responsibility of the developers to place the
string into specific variables by reading a given size (length) and moving the correct portion of
the string into a variable, then moving down the string to the next size/value pairs until the
length of the string is read. It is very important to not read past the end of the total length of
the actual data structure (carried in input_CB_length, for example, commonarea_length in the
C example) as this memory area may contain excess data depending on how a given operating
system initializes memory. The examples included in this manual and the example on disk use
one particular style for reading the input area into variables for use in the actual program, but
any method can be used.

Setting Up the Control Block

64  Information Builders



Example: Using SQL SPG SET CPGUB OLD in the C Control Block

typedef struct tag_CPGUB_ext   /* CPGUB structure                    */
{
   short commarea_length;   /* non-modifiable                        */
   short reserved;          /* reserved                              */
   long flag_value;         /* i:flag=1 1st time, =0 all other       */
#define CPGUB_flag_frst 1   /*  First time value for flag            */
#define CPGUB_flag_nfst 0   /*  Non-first time value for flag        */
   long action_value;       /* o:Action to be taken on callback      */
#define CPGUB_action_CT  1  /*  Create Table                         */
#define CPGUB_action_DA  2  /*  Data (Binary)                        */
#define CPGUB_action_CD  3  /*  Character Data                       */
#define CPGUB_action_MS  4  /*  Message                              */
#define CPGUB_action_EX  9  /*  Exit                                 */
#define CPGUB_action_CTE 10 /*  Create Table  & exit                 */
#define CPGUB_action_DAE 11 /*  Data (Binary) & exit                 */
#define CPGUB_action_CDE 12 /*  Character Data & exit                */
#define CPGUB_action_MSE 13 /*  Message & exit                       */
#define CPGUB_action_DAB 14 /*  Data Block of Tuples                 */
                            /*  Use of any action not define is      */
                            /*  treated as CPGUB_action_EX, ie exit. */
   char *answer_area;       /* o:answer area address                 */
   long  answer_length;     /* o:answer area length                  */
   char *return_value;      /* o:reply area address                  */
                            /*  for msg on _MS call (sent to client) */
                            /*  for reply on _EX calls               */
   long  return_length;     /* o:reply area length                   */
} t_CPGUB;

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  65



Example: Using SQL SPG SET CPGUB NEW in the C Control Block

typedef struct tag_CPGUB_ext   /* CPGUB structure                    */
{
   short commarea_length;   /* non-modifiable                        */
   short reserved;          /* reserved                              */
   long flag_value;         /* i:flag=1 1st time, =0 all other       */
#define CPGUB_flag_frst 1   /*  First time value for flag            */
#define CPGUB_flag_nfst 0   /*  Non-first time value for flag        */
   long action_value;       /* o:Action to be taken on callback      */
#define CPGUB_action_CT  1  /*  Create Table                         */
#define CPGUB_action_DA  2  /*  Data (Binary)                        */
#define CPGUB_action_CD  3  /*  Character Data                       */
#define CPGUB_action_MS  4  /*  Message                              */
#define CPGUB_action_EX  9  /*  Exit                                 */
#define CPGUB_action_CTE 10 /*  Create Table  & exit                 */
#define CPGUB_action_DAE 11 /*  Data (Binary) & exit                 */
#define CPGUB_action_CDE 12 /*  Character Data & exit                */
#define CPGUB_action_MSE 13 /*  Message & exit                       */
#define CPGUB_action_DAB 14 /*  Data Block of Tuples                 */
#define CPGUB_action_CTB 15 /*  Create Table & Data Block of Tuples  */
#define CPGUB_action_CTD 16 /*  Create Table & Data (Binary)         */
#define CPGUB_action_CTC 17 /*  Create Table & Character Data        */
#define CPGUB_action_CTBE 18/*  Create Table, Block of Tuples & exit */
#define CPGUB_action_CTDE 19/*  Create Table & Data (Binary) & exit  */
#define CPGUB_action_CTCE 20/*  Create Table & Character Data & exit */
                            /*  Use of any action not define is      */
                            /*  treated as CPGUB_action_EX, ie exit. */
   char *answer_area;       /* o:answer area address                 */
   long  answer_length;     /* o:answer area length                  */
   char *return_value;      /* o:reply area address                  */
                            /*  for msg on _MS call (sent to client) */
                            /*  for reply on _EX calls               */
   long  return_length;     /* o:reply area length                   */
   char *create_address;    /* o:create table data address           */
   long  create_length;     /* o:create table data length            */
} t_CPGUB_ext;

The difference between control blocks SQL SPG SET CPGUB NEW and OLD is that an additional
CREATE pointer and length exist for returning separate CREATE information.

Setting Up a CALLPGM LINKAGE SECTION Control Block for COBOL

To use CALLPGM with COBOL, an 01 level data structure needs to be created. The precise
structure depends on whether SQL SPG SET CPGUB is set to NEW or OLD.

COBOL requires the use of fillers for padding out pointer lengths on IBM i. The padding is a
combination of being an IBM i behavior for pointer alignment and COBOL requiring pointer
alignment to be explicitly coded on IBM i. Do not use these IBM i specific fillers on the
platforms.

Setting Up the Control Block

66  Information Builders



The following examples use a static length string to carry size/data pairs for information
passed as parameters to the program. It is the responsibility of the developers to place the
string into specific variables by reading a given size (length) and moving the correct portion of
the string into a variable, then moving down the string to the next size/value pairs until the
length of the string is read. It is very important to not read past the end of the total length of
the actual data structure (carried in input_CB_length, for example, CALLPGM-DATA-LEN in the C
example) as this memory area may contain excess data depending on how a given operating
system initializes memory. The examples included in this manual and the example on disk use
one particular style for reading the input string into variables for use in the actual program, but
any method can be used.

Example: Using SQL SPG SET CPGUB OLD in the COBOL Control Block

01  CALLPGM-DATA.
    05  FIXED-LENGTH-PART.
        10  CALLPGM-DATA-LEN        PIC S9(4) BINARY.
        10  FILLER                  PIC  X(2).
        10  FLAG-VALUE              PIC S9(8) BINARY.
            88  FLAG-FIRST-TIME         VALUE +1.
            88  FLAG-NOT-FIRST-TIME     VALUE  0.
            88  FLAG-ERROR              VALUE +2 THRU +1999.
        10  ACTION-VALUE            PIC S9(8) BINARY.
            88  CREATE-TABLE            VALUE +1.
            88  RETURNING-MIXED-DATA    VALUE +2.
            88  RETURNING-CHAR-DATA     VALUE +3.
            88  RETURNING-MESSAGE       VALUE +4.
            88  PROGRAM-FINISHED        VALUE +9.
**** IBM i Needs the filler on the next line for alignment.
**** All other platforms should have it commented out
*OS400  10  FILLER                  PIC X(4).
        10  ANSWER-ADDRESS          POINTER.
        10  ANSWER-LENGTH           PIC S9(8) BINARY.
****  IBM i Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400  10  FILLER                  PIC X(12).
        10  MESSAGE-ADDRESS         POINTER.
        10  MESSAGE-LENGTH          PIC S9(8) BINARY.
****  IBM i Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
**** The filler also needs to be here vs next section so
**** fix part length test operate correctly.
*OS400  10  FILLER                  PIC X(12).
    05  PARAMETERS-PART.
        Length is arbitrary at 80, could have been longer.
        Should be set the maximum expected length plus extra.
        10  INSTRING                PIC X(80).

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  67



Example: Using SQL SPG SET CPGUB NEW in the COBOL Control Block

01  CALLPGM-DATA.
    05  FIXED-LENGTH-PART.
        10  CALLPGM-DATA-LEN        PIC S9(4) BINARY.
        10  FILLER                  PIC  X(2).
        10  FLAG-VALUE              PIC S9(8) BINARY.
            88  FLAG-FIRST-TIME         VALUE +1.
            88  FLAG-NOT-FIRST-TIME     VALUE  0.
            88  FLAG-ERROR              VALUE +2 THRU +1999.
        10  ACTION-VALUE            PIC S9(8) BINARY.
            88  CREATE-TABLE            VALUE +1.
            88  RETURNING-MIXED-DATA    VALUE +2.
            88  RETURNING-CHAR-DATA     VALUE +3.
            88  RETURNING-MESSAGE       VALUE +4.
            88  PROGRAM-FINISHED        VALUE +9.
****  IBM i Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400  10  FILLER                  PIC X(4).
        10  ANSWER-ADDRESS          POINTER.
        10  ANSWER-LENGTH           PIC S9(8) BINARY.
****  IBM i Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400  10  FILLER                  PIC X(12).
        10  MESSAGE-ADDRESS         POINTER.
        10  MESSAGE-LENGTH          PIC S9(8) BINARY.
****  IBM i Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400  10  FILLER                  PIC X(12).
        10  CREATE-ADDRESS          POINTER.
        10  CREATE-LENGTH           PIC S9(8) BINARY.
****  IBM i Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
**** The filler also needs to be here vs next section so
**** fix part length test operate correctly.
*OS400  10  FILLER                  PIC X(12).
    05  PARAMETERS-PART.
        Length is arbitrary at 80, could have been longer.
        Should be set the maximum expected length plus extra.
        10  INSTRING                PIC X(80).

The difference between control blocks SQL SPG SET CPGUB NEW and OLD is that an additional
CREATE pointer and length exist for returning separate CREATE information.

Setting Up a CALLPGM Data Structure Control Block for RPG

Note: RPG is an IBM i only language. 

To use CALLPGM with RPG, a data structure needs to be created. The precise structure
depends on whether SQL SPG SET CPGUB is set to NEW or OLD.

Setting Up the Control Block

68  Information Builders



RPG (like COBOL on IBM i) requires the use of fillers for padding out pointer lengths. This
padding is a combination of being an IBM i behavior for pointer alignment and RPG requiring
pointer alignment to be explicitly coded.

The following examples use a static length string to carry size/data pairs for information
passed as parameters to the program. It is the responsibility of the developers to place the
string into specific variables by read a given size (length) and moving the correct portion of the
string into a variable, then moving down the string to the next size/value pairs until the length
of the string is read. It is very important to not read past the end of the total length of the
actual data structure (carried in CB_LENGTH) as this memory area may contain excess data
depending on how the operating system initialized memory. The examples included in this
manual and the examples on disk use one particular style for reading the input string into
variables for use in the actual program, but any method can be used.

Example: Using SQL SPG SET CPGUB OLD in the RPG Control Block

 * Control Block Data Structure ...
D cbds            DS
D  CB_LENGTH                     5I 0
D  FILLER                        2A
D  FLAG_VALUE                    9B 0
D  ACTION_VALUE                 10I 0
D  FILLERA                       4A
D  ANSWER_AREA                    *
D  ANSWER_LEN                   10I 0
D  FILLERM                      12A
D  MESSAGE_AREA                   *
D  MESSAGE_LEN                  10I 0
D  FILLERI                      12A
 * Parm Area (arbitrary minimum length)
D  PARMDATA                   1024A

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  69



Example: Using SQL SPG SET CPGUB NEW in the RPG Control Block

 * Control Block Data Structure ...
D cbds            DS
D  CB_LENGTH                     5I 0
D  FILLER                        2A
D  FLAG_VALUE                    9B 0
D  ACTION_VALUE                 10I 0
D  FILLERA                       4A
D  ANSWER_AREA                    *
D  ANSWER_LEN                   10I 0
D  FILLERM                      12A
D  MESSAGE_AREA                   *
D  MESSAGE_LEN                  10I 0
D  FILLERC                      12A
D  CREATE_AREA                    *
D  CREATE_LEN                   10I 0
D  FILLERI                      12A
 * Parm Area (arbitrary minimum length)
D  PARMDATA                   1024A

The difference between control blocks SQL SPG SET CPGUB NEW and OLD is that an additional
CREATE pointer and length exist for returning separate CREATE information.

Storing Program Values

When running in a multi-user environment, programs called by CALLPGM may be multi-
threaded. If so, data returned to the server must be returned in dynamically allocated storage,
and the program must know how to retrieve the address of that storage. This is illustrated in
the sample code in the following subsections. 

Programs called by CALLPGM typically return the following data to the server:

Messages (up to 80 bytes).

Messages returned by the program are pointed to by the control block field message_area.
The length is given in the field message_length.

Answer set descriptions, that is, CREATE TABLEs (up to 1,000 bytes).

Answer set descriptions or rows (see below) returned by the program are pointed to by the
control block field answer_area. The length is given in the field answer_length.

Rows or tuples (up to 32,000 bytes).

A program returns data by placing it in an address (pointer) area.

Storing Program Values

70  Information Builders



Address area space allocations are by default 1024-bytes, which may suffice in some
applications. An application may acquire dynamic storage on its own using those facilities of
the language that are available for use within any given language on any given operating
system or by issuing explicit commands to have the calling process (the server) set specific
address area allocations for the called program to use.

To have the server set specific address allocations, use one or more of the following
commands

SQL SPG SET SPGALLOC_CRT n    (SQL SPG SET CPGUB NEW ONLY)
SQL SPG SET SPGALLOC_MSG n 
SQL SPG SET SPGALLOC_ANS n

where n is a number between 1024 (1K) and 32768 (32K). The allocated address is then
placed into the respective control block pointer location for the CALLPGM program to use.

To have the application itself acquire dynamic storage depending upon your environment use
features such as:

malloc in C.

EXEC CICS GETMAIN in COBOL or C under CICS.

'GETCOR' in COBOL under VTAM.

"LIB$GET_VM" in COBOL under OpenVMS.

It is the program's responsibility to free such storage at its last invocation.

It may also be necessary for subsequent invocations of a program to retrieve previously stored
values, which would also require the use of dynamically acquired storage method.

By placing the address of the storage in the control block fields message_area and
answer_area, the server returns the values to you on the next call, and then re-addresses the
variables. Always point the message_area and answer_area to valid data when control is
returned to the server.

The examples in the following sections show how values are saved across invocations of a
program. The first time a program is called, it allocates dynamic storage for the values to be
saved. Each subsequent time the program is called, the address of the dynamic storage is
retrieved using the message_area or answer_area.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  71



Sample programs are supplied with your software in locations as described below.

Type of Program Supplied As

C The sample is stored in hlq.HOME.ETC (CPT) for PDS deployment.

All other platforms are: cpt.c in the etc/src3gl directory of
EDAHOME

COBOL The samples are stored in hlq.HOME.ETC (SPGOLD) and
hlq.HOME.ETC (SPGNEW) for PDS deployment.

All other platforms are, respectively:

SPGOLD.CBL in the etc/src3gl directory of EDAHOME

SPGNEW.CBL in the etc/src3gl directory of EDAHOME

RPG (IBM i only)

SPGOLD.RPG in the etc/src3gl directory of EDAHOME

SPGNEW.RPG in the etc/src3gl directory of EDAHOME

The portable COBOL examples have specifically been tested with IBM Enterprise COBOL V3R2,
HP OpenVMS COBOLv2.7, and IBM i ILE COBOL. Depending on the target platform, minor
editing (for example, commenting or un-commenting of lines) is required for use. Specific
instructions are contained as comments at the beginning of the file.

The supplied samples work by parsing the parameters passed to the program and passing
back information such as a number of records to return. None of the samples use actual
database access; they simulate what and how to send data and messages back to the calling
process using arbitrary text, therefore they need little in the way of setup for demonstration
purposes. The samples all contain comments on requirements for compilation and use.

Storing Program Values

72  Information Builders



Example: Storing Program Values in C

The following sample C code illustrates the allocation of dynamic storage on the first call, and
addressability to program variables on subsequent calls. 

typedef struct message_buffer
   { char     message[80] ;
   } message_buffer;
 
 typedef struct answer_tuple
   { char     customer_name[40]    ;
     char     customer_address[90] ;
     char     balance_due[20]      ;
     char     comments[300]        ;
   } answer_tuple;
 
 typedef struct answer_buffer
   { int                  *program_variable_buffer_ptr ;
     struct answer_tuple   answer_set_tuple            ;
   } answer_buffer;
 
 typedef struct program_variable_buffer
   { long     number_of_rows     ;
     long     last_record        ;
     short    reserved           ;
     short    close_pending_flag ;
   } program_variable_buffer;
                      .
                      .
                      .
                      .
                      .
                      .

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  73



 /* On the first call, allocate message, answer, and program variable  */
 /* buffers and anchor them in the input control block. The program's  */
 /* local variables are anchored by saving a pointer immediately       */
 /* preceding the answer_area. The pointer saved in the answer_area is */
 /* actually 4 bytes into the answer_buffer, providing the correct     */
 /* interface to the server for processing answer set requests,        */
 /* while still anchoring the program's local variables by "hiding" the*/
 /* pointer in the memory immediately preceding the answer_area. By    */
 /* placing the pointer before the answer_set_tuple, it is not seen    */
 /* by the server.                                                     */
 /*                                                                    */
 /* Check for first call of this program.                              */
 if ( flag_value = CPGUB_flag_first )
 
 {  /* Allocate answer_buffer.                                         */
    answer_buffer_ptr = ( answer_buffer * ) 
                malloc(sizeof(answer_buffer), 1);
 
    answer_area = ( int * ) ( ((long) (answer_buffer_ptr)) + 4 );
    answer_length = sizeof(answer_buffer) - 4;
 
    /* Allocate buffer for program variables.                          */
    program_variable_buffer_ptr = ( int * )
                malloc(sizeof(program_variable_buffer), 1);
 
    /* Allocate buffer for messages.                                   */
    message_area = ( int * ) malloc(sizeof(message_buffer),1);
 
    message_length = sizeof(message_buffer);
  }
 /* On subsequent calls, locate addressability to the program's local  */
 /* variables via the pointer saved immediately before the answer_area */
 
 else
  { answer_buffer_ptr = ( answer_buffer * ) (((long) (answer_area)) - 4);
  }
                      .
                      .
                      .

On the first call, the sample code allocates dynamic storage for:

Answer set descriptions or rows returned by the program (pointed to by the control block
field answer_area).

Program variables to be saved across invocations of the program.

Messages returned by the program (pointed to by the control block field message_area).

Storing Program Values

74  Information Builders



The pointer to the program variable buffer is saved at a fixed location (a known offset), in the
first n bytes of the buffer, for the answer set description or row (called the answer buffer). This
is illustrated in the image below.

For example, you might allocate an answer buffer of 1,004 bytes with 1,000 bytes used to
store the largest answer set description and the 4 extra bytes used to store the pointer to the
program variable buffer.

As shown in the following figure, the pointer stored in the control block's answer_area points
to the answer buffer, excluding the 4 bytes used to store the pointer to the program variable
buffer. That is, the pointer is directed toward the beginning of an answer set description or
row. (The message_area could also be used to store the pointer to the program variable buffer,
but for the purpose of illustration, the answer_area was chosen.)

The length of bytes to be stored in the control block's answer_length would be 1,004 minus 4,
or a value of 1,000, to reflect the value of the largest answer set description or row.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  75



To determine the address of the program variable buffer on subsequent calls, the program
would subtract the size of the pointer to the program variable buffer (4 bytes on most
machines) from the answer_area in the control block.

When freeing memory on exit, the program determines the size of the answer buffer by adding
the answer_length to the size of the pointer to the program variable buffer.

When using this technique, it is important to keep the answer_area in the control block
consistent with the definition in the interface. Always point the answer_area and
message_area to valid data when control is returned to the server. Program variables are kept
in any allocated memory buffer using this technique.

The program must free all memory allocated during execution before returning an action_value
of 9 (exit) to the server. This requirement applies to the memory for program variables,
messages, answer set descriptions, and rows. If all memory is not freed at program exit,
server failure may result at a later time.

Example: Storing Program Values in COBOL

In COBOL, one way to save program variables across invocations of a program is to allocate
one block of storage big enough to hold: 

Any returned messages (up to 80 bytes).

Answer set descriptions, that is, CREATE TABLEs (up to 1,000 bytes).

Rows or tuples (up to 32,000 bytes).

Program variables.

Dynamic storage is acquired in this example using EXEC CICS GETMAIN in COBOL under CICS
as the reference platform, but any language supporting the setting of dynamic storage can be
used with the syntax specific to that language.

The following sample COBOL code describes a MESSAGEAREA. It provides the field MESSAGE-
OUT for messages, answer set descriptions (CREATE TABLEs), and rows. It provides the fields
NUM-ROWS, LAST-REC, and CLOSE-PENDING-FLAG for program values to be retrieved in
subsequent invocations.

01  MESSAGEAREA.
    05  MESSAGE-OUT              PIC X(1000).
    05  NUM-ROWS                 PIC S9(8)  COMP-4.
    05  LAST-REC                 PIC S9(8)  COMP-4.
    05  CLOSE-PENDING-FLAG       PIC X.
        88  CLOSE-PENDING        VALUE "1".
        88  CLOSE-NOT-PENDING    VALUE "0".
    05  FILLER                   PIC X(15).

Storing Program Values

76  Information Builders



The code to store values is:

      IF FLAG-FIRST-TIME
        MOVE LENGTH OF MESSAGEAREA TO MESSAGE-LENGTH
******* GETMAIN, SET LENGTH, ADDRESSES
        EXEC CICS GETMAIN SET (ADDRESS OF MESSAGEAREA)
                  FLENGTH (MESSAGE-LENGTH)
                  INITIMG (INITVALUE)
        END-EXEC
        SET MESSAGE-ADDRESS TO ADDRESS OF MESSAGEAREA
        SET ANSWER-ADDRESS TO ADDRESS OF MESSAGEAREA
      ELSE
***** IF NOT THE FIRST TIME, RETRIEVE THE GETMAIN ADDRESS
***** FROM EITHER COMMAREA ADDRESS, AND SET THE ADDRESS
***** OF THE GETMAIN AREA SO IT IS ADDRESSABLE IN COBOL.
        SET ADDRESS OF MESSAGEAREA TO MESSAGE-ADDRESS.

The previous code fragment is executed each time the program is invoked. The first time, the
program uses EXEC CICS GETMAIN to allocate the storage to the length of the MESSAGEAREA.
On each subsequent execution, it gets the address of the MESSAGEAREA from the field
MESSAGE-ADDRESS.

The following figure illustrates the program logic in the code fragment. In the figure, the field
MESSAGE-ADDRESS in the code is represented as message_area in the control block.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  77



In this example, the program allocates a buffer (MESSAGEAREA) of 1,000 bytes (for the largest
message, answer set description, or row to be returned), plus 24 bytes for the program
variables.

In the control block:

The message_area and answer_area are set to the address of the beginning of the buffer.

The message_length reflects the size of the messages returned to the client application.

The answer_length reflects the size of the answer set descriptions or rows returned to the
client application.

To address program variables stored between invocations in this way, use

SET ADDRESS OF MESSAGEAREA TO MESSAGE-ADDRESS

as shown in the preceding sample code. This code enables the program to refer to the
variables NUM-ROWS, LAST-REC, and CLOSE-PENDING-FLAG.

To free storage allocated this way, use:

EXEC CICS FREEMAIN (MESSAGEAREA) END-EXEC

CICS frees the correct length.

Below is output from a sample session that runs CPGCICS using RDAAPP, a test program
supplied on your distribution media.

<<< RDAAPP : Initializing API SQL, Version x   >>>
<<< Initialization Successful >>>
Trace level ?
 
Enter User Name :
 
Enter Password :
 
Enter Server name (Hit return for 'CICS    ') :
 
<<< Successfully connected to server >>>
Enter (S/P <sql stmt;> / X <RPC> <parms> / D <tbl> / E <prep id> / C/R / Q) :
x cpgcics 1
Please Wait.
000100
S. D. BORMAN
SURREY, ENGLAND
3215677826
11 81
$0100.11
*********
<<< 1 record(s) processed. >>>
Enter (S/P <sql stmt;> / X <RPC> <parms> / D <tbl> / E <prep id> / C/R / Q) :
***

Storing Program Values

78  Information Builders



Example: Storing Program Values in COBOL/LE

The following example uses VTAM MVS COBOL/LE as the reference platform.

To allocate dynamic storage, use the 'GETCOR' function, supplied on your distribution media in
the HOME.DATA(GETCOR) library member. 

Specify the following three parameters on the function call:

The address of the length of the storage to be allocated.

The address of the allocated memory to be returned.

The address of an area in which to place the return code.

The following is the code for allocating dynamic storage:

01  COR-DATA.
    05  MESSAGEAREA-LENGTH               PIC S9(8) BINARY.
    05  MESSAGEAREA-ADDRESS              POINTER.
    05  COR-RESP                         PIC S9(8) BINARY.
                    .
                    .
                    .
MOVE LENGTH OF MESSAGEAREA TO MESSAGEAREA-LENGTH
CALL 'GETCOR' USING
BY REFERENCE MESSAGEAREA-LENGTH,
    BY REFERENCE MESSAGEAREA-ADDRESS,
    BY REFERENCE COR-RESP

To free dynamic storage on program exit, use the 'FRECOR' function, also supplied on your
distribution media in the HOME.DATA(GETCOR) library member.

Specify the following three parameters on the function call:

The address of the allocated memory to be freed.

The address of the length of the storage to be freed.

The address of the area that held the return code.

The following is the code for freeing dynamic storage:

CALL 'FRECOR' USING
    BY CONTENT LENGTH OF MESSAGEAREA,
    BY REFERENCE MESSAGEAREA,
    BY REFERENCE COR-RESP

Note: Use the COR-RESP return code, not the COBOL RETURN-CODE, as the latter has an
arbitrary value.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  79



To link edit the sample program (supplied as HOME.DATA(CPGVTAM) on your distribution
media), use the statements below. Use the HOME.DATA(GENCPGM) JCL as a reference, or
your own JCL:

INCLUDE EDALIB(CPGUSRO)
  INCLUDE OBJECT
  MODE AMODE(31),RMODE(ANY)
  ENTRY CPGVTAM
  NAME CPGVTAM(R)

GETCOR is an assembler source program that provides functions 'GETCOR' and 'FRECOR'.

Example: Linking Program Variables to the Control Block

The following code fragment illustrates how to link program variables to the answer and
message pointers, defined in the control block in Control Block Specification on page 57.

WORKING-STORAGE SECTION.
01  MESSAGE-BUFFER            PIC X(100) VALUE SPACES.
01  ANSWER-BUFFER             PIC X(100) VALUE SPACES.
   .
   .
   .
SET ANSWER-ADDRESS TO ADDRESS OF ANSWER-BUFFER
SET MESSAGE-ADDRESS TO ADDRESS OF MESSAGE-BUFFER

Note: OpenVMS uses the keywords "TO REFERENCE OF" instead of "TO ADDRESS OF".

Example: Checking for First-time Execution

The following code checks for the initial execution of the program so that it initializes program
variables on the first call: 

PROCEDURE DIVISION USING CPGUB.
A010-BEGIN.
     IF FLAG-FIRST-TIME
        PERFORM A020-INIT-DATA
     ELSE
        IF PARM-COUNT < 5 AND PARM-REMAIN > ZERO PERFORM A030-READ-DATA.
     EXIT PROGRAM.

Storing Program Values

80  Information Builders



Example: Allocating and Freeing Dynamic Storage

The following code illustrates how to allocate and free dynamic storage used for storing
program values: 

01 NUMBER-OF-BYTES PIC S9(9) COMP.
01 BASE-ADDRESS    PIC S9(9) COMP.
01 RET-STATUS      PIC S9(9) COMP.
      .
      .
      .
A080_ALLOC_STORAGE.
   MOVE +1000 TO NUMBER-OF-BYTES.
   CALL "LIB$GET_VM"
      USING BY REFERENCE NUMBER-OF-BYTES, BASE-ADDRESS
      GIVING RET-STATUS.
      .
      .
      .
A090_FREE_STORAGE.
   MOVE +1000 TO NUMBER-OF-BYTES.
   CALL "LIB$FREE_VM"
      USING BY REFERENCE NUMBER-OF-BYTES, BASE-ADDRESS
      GIVING RET-STATUS.

Error Handling

When the server encounters an error during the execution of a program, it calls the program
again, indicating the error condition in the control block field flag_value. The program then
does one of the following, indicating its response in the action_value field: 

Free any memory allocated during program execution, and exit, issuing an action_value of 9
(exit). The program must allocate and free its own dynamic storage. Make sure that the
program frees any allocated resources (especially memory) before issuing an action_value
of 9. Not freeing memory may cause the server to fail at a later point in time.

Return a message to the server to explain the error, issuing an action_value of 4. The
server then attempts to return the message to the client application and call the program
again, which must free its resources and end, as described above.

Messages are retrieved by the client application before the processing of an answer set, or
after the completion of answer set processing.

Only the action_values for returning a message, or for exiting, are valid after the server has
reported an error. Any other action_value returned by the program causes the server to end
without further calls to the program. If the program does return another action_value, the
server attempts to report the program's incorrect behavior to the client application using a
server-initiated message.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  81



The following figure illustrates the correct error handling sequence. In the figure, the following
flag_values are shown:

Flag Value Description

1 Indicates the first call to the program.

0 Indicates a subsequent call to the program, without an error.

606 Indicates an error.

Error Handling

82  Information Builders



The program's choices when it receives the error code 606 are also illustrated.

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  83



Issuing the CREATE TABLE Command

To return rows of table data to a client application, a program must first issue a CREATE TABLE
command. It is a description of the answer set, telling the server the format of the row being
returned (that is, the column name and type of data). The server uses that information to
inform the client application, converting it to a format the client retrieves with the API function
call EDAINFO.

The program then returns the actual rows of data in the table. The client application retrieves
the data rows with the function call EDAFETCH.

A CREATE TABLE may not exceed 1,000 bytes in length.

Syntax: How to Issue a Create Table

CREATE TABLE table_name ( col_name col_type[,...] )

where:

table_name

Is the name of the table to be created. The length and format of table_name must comply
with standard SQL requirements.

col_name

Is the name of a column to be created. The length and format of col_name must comply
with standard SQL requirements. The maximum number of columns permitted in one
CREATE TABLE is 254.

col_type

Is the data type of the column. Possible values are:

Data Type Description

CHAR(n) for fixed-length alphanumeric, where n is less than 254. The
value CHAR(10) is used for date formats.

SMALLINT for two-byte binary integer.

INTEGER for four-byte binary integer.

DECIMAL(p,s) for packed decimal containing p digits with an implied number
s of decimal points.

Issuing the CREATE TABLE Command

84  Information Builders



Data Type Description

REAL for four-byte, single-precision floating point.

FLOAT for eight-byte, double-precision floating point.

As shown in the syntax, you must include a blank:

After table_name (before the left parenthesis).

After the left parenthesis (before col_name).

Before the right parenthesis.

Blanks are not permitted in col_type definitions. For example:

DECIMAL(15,2) is valid.

DECIMAL (15,2) is invalid.

When the CREATE TABLE specifies a DECIMAL value, the associated row must pass back the
value as an eight-byte packed field. For example,

DECIMAL(13,2)

and

DECIMAL(5,2)

would require an eight-byte packed field.

In COBOL, both the above fields are defined as:

PIC S9(13)V99 COMP-3

or

PIC S9(15) COMP-3

4. Writing a 3GL Compiled Stored Procedure Program

Stored Procedure and Subroutine Reference for 3GL Languages  85



Issuing the CREATE TABLE Command

86  Information Builders



Chapter5
User Written Routines

In addition to direct calls (that is, EX or CALLPGM) to compiled procedures, compiled
procedures can be created for use in COMPUTEs, DEFINEs, and Dialogue Manager
calculations. This allows one to take what might be a complex task and simply it into a
reusable function. A classic example of this is a lookup function for strings or statistical
model that requires many inputs and yields a single result.

The User Written Routines are also known as User Written Subroutines, UWSR functions,
FUSE functions, and FUSELIB functions in some documentation. They are all the same
feature.

In this chapter:

Calling a User Written Routine

Calling a User Written Routine

Additional 3GL Reference Examples on page 103 contains reference examples primarily
centered on writing and compiling a MTHNAME routine (a number-to-name lookup example) in a
number of 3GL languages. Here are three simple ways to use the function:

In Dialogue Manager

-SET &NAME = MTHNAME(1,'A13') ;
-TYPE The month is &NAME

In TABLE

...
COMPUTE NAME/A13 = MTHNAME(1,'A13') ;
...

In a DEFINE

...
NAME/A13 = MTHNAME(1,'A13') ;
...

The compiled and linked user written routine must reside in one of the following locations: the
user directory under EDACONF, the location pointed to by the IBICPG environmental variable, or
in an app directory. The z/OS and IBM i environments are limited to routine name lengths that
are respectively 8 and 10 characters due to platform limitations. The limits for other platforms
are generally much higher, but still must live within the limits of the operating system.

Stored Procedure and Subroutine Reference for 3GL Languages  87



The GENCPGM build tool is generally used to build the routines. See Additional 3GL Reference
Examples on page 103 for reference examples.

Calling a User Written Routine

88  Information Builders



Chapter6
Using the GENCPGM Build Tool

The building and compilation of 3GL applications is platform-specific and sometimes
driven by standards with which a site must conform in terms of programming style or
managing programming source. Due to this wide variation, we only make
recommendations, test certain languages, and provide limited examples with a script
that minimally compiles the test examples.

The specific uses for 3GL programs and examples are documented elsewhere, but the
general purposes are:

To create and add a user written routine to the functions of the product (also known
as a FUSELIB).

To create and customize user exits that provide special functions.

To create CALLPGM programs that the server executes.

In this chapter:

Using GENCPGM

Using GENCPGM

GENCPGM is the general term for a series of platform specific scripts for compiling and linking
3GL programs (for example, C, COBOL, Fortran, Java, etc.) that interact with Information
Builders products.

The scripts and their associated platforms are:

gencpgm.sh (UNIX, Linux, z/OS and OS400)

gencpgm.bat (Windows)

gencpgm.com (OpenVMS)

The script for a given platform is located in the bin directory of the software installation
directory (EDAHOME), except on a z/OS PDS deployment, where it is it in the member
hlq.HOME.ETC(GENCPGM), and must be copied to and given execute privileges to be used
under HFS.

Stored Procedure and Subroutine Reference for 3GL Languages  89



Examples of the types of programs that can be built are:

HLI applications to talk directly to FOCUS databases or servers using FDS access to FOCUS
databases

Call Java Adapter (CALLJAVA) applications which use Java classes to retrieve row(s) data

Call Procedural Program Adapter (CALLPGM) applications which use a DDL to retrieve row(s)
data.

Subroutine applications which use a DLL to do specialized inline calculations for Dialogue
Manager, DEFINEs or COMPUTEs.

From a technical perspective, the above list breaks down into 3 classes of 3GL programs that
GENCPGM builds:

Dynamic link libraries.

Executables.

Java applications as a class in a jar.

A dynamic link library is also known as a DLL and is generally thought of as a Windows specific
term, however, there are equivalences on all other platforms. DLL libraries have an extension
of .dll on Windows. On UNIX and USS, the term for DLL is shared library with an extension
of .so except for some HPUX systems, which use .sl. On OS400, a DLL is a service program
(programs marked SRVPGM). On OpenVMS, the term for DLL is also shared library, but the file
extension is .exe.

The GENCPGM scripts are solely supplied as an assist tool for building basic applications. The
GENCPGM scripts are not intended to support all languages and complex cases, like building
several objects all linked into a final program. The GENCPGM scripts actually depend on an
appropriate native compiler and linker being installed and accessible. Native refers to the
compiler of the operating system vendor (for example, Microsoft on Windows, IBM on AIX, and
so forth). Accessible means that it is known to the registry on Windows or is in the PATH for
other operating systems, and that it employs the normal program names used by the
originating vendors (for example, cl.exe on Windows, cc on many UNIX systems, gcc on Linux,
javac (and jar) for Java, and so forth). The compiler also needs to generate binaries that match
the bit requirements of the application software (32-bit servers require 32-bit compilers),
although some compilers control this using a switch (for example, -m32 and -m64).

Using GENCPGM

90  Information Builders



Because of the widespread use of GNU GCC (which is free), the Windows and UNIX versions of
GENCPGM also recognize and allow gcc as a compiler specification, although they still depend
on gcc being in the path or, in the case of Windows, having the variable MINGWROOT set (see
the Windows section for more details). In short, GENPGM is a build assistant to access
existing compiler tools, but is not itself a compiler/linker and, as such, the user is responsible
for having the appropriate compilers and linkers installed and accessible if GENCPGM
compilation is needed. Note that many instances are strictly for build-time use, and the
resulting binaries may simply be deployed thereafter if the operating system and application bit
requirements match (32-bit or 64-bit), and the deployment machines do not have compiler/
linker requirements.

The use of GENCPGM as a build tool is not actually required for applications when proper build
rules are followed, as implemented in GENCPGM and outlined in the build rules section. Since
complex cases that use other languages or multiple sources are a legitimate requirement, it is
left to the user to code and maintain their own build scripts for these cases and alternate
languages (possibly using GENCPGM as a template and following the rules outlined in the build
rules section).

It should also be noted that a subroutine is sometimes referred to by its former terminology of
Fuselib or Fuselib Routine. From an application perspective (that is, a focexec) they are one in
the same, however, FOCUS products used a single library to implement and store multiple
routines where WebFOCUS uses individual libraries for each routine. This means older existing
FOCUS libraries are not directly usable with WebFOCUS, but the underlying 3GL sources are
usable and simply need to be built using the current methodologies documented here.

While there are a few platform and need specific switch options, most switches and many
languages work on most platforms. Concerning specific 3GL languages, C is the officially
supported language on all platforms, other languages vary by platform as noted in the
samples. Theoretically, any 3GL language that is capable of being compiled and linked into a
DLL or executable and is capable of being used with Information Builders products, however,
GENCPGM is only coded for certain commonly used languages that we have easy access to
and expertise in creating scripts and working samples. Requests for additional languages will
be considered on a case by case basis.

GENCPGM is also used dynamically in the server product for the COMPILED DEFINE feature
and as such the version in the EDAHOME directory should never be customized to prevent
changes from affecting the COMPILED DEFINE feature. If you have customizations that you feel
would be useful to others, they may be submitted via Customer Support for consideration as a
permanent change.

6. Using the GENCPGM Build Tool

Stored Procedure and Subroutine Reference for 3GL Languages  91



Reference: USAGE Chart (Typical Syntax Plus Extended Options)

UNIX, Linux, IBM i, USS:

{path}gencpgm.sh [-h] [-x] [-q] [-v] [-e] [-n] [-s script] 
 [-H EDAHOMELIB] [-p LOADLIB] [-d directory|-w directory] [-g] 
 [-c language] [-m application type]  [-b lib/srvprg] [-j jarname] 
 {path}{program name}[.{extension}]

Windows:

{path}gencpgm.bat [-h] [-x] [-q] [-v] [-e] [-n] [-s script] 
 [-d directory|-w directory] [-g]  [-c language] 
 [-m application type] [-j jarname]
 {path}{program name}[.{extension}]

OpenVMS:

@{path}gencpgm.com [-h] [-x] [-q] [-d directory|-w directory] [-g]
 [-c language] [-m application type] [-j jarname]
 {path}{program name}[.{extension}]

where:

Switch/Option Description

-h Outputs this Help text.

-x Turns on set -x shell tracing to assist in debugging.

-q Turns on quiet mode to redirect Microsoft compiler/linker output to nul: on Windows. The
switch does nothing on other platforms because the compliers and linkers on most other
platforms are already "quiet".

-v Turn on compiler/linker verbose options plus selective informational messages.

-e Extended trace/compiler/linker info from just before compiler/linker step.

-H EDAHOMELIB Server for z/OS in a PDS deployment only. Indicates installation home {HLQ}.HOME of
ETC.H for picking up standard IBI C include files (needed for some samples).

-C EDACONFHLQ Server for z/OS in a PDS deployment only. Indicates installation configuration {HLQ} of ETC
for picking up standard IBI files (that is, server and communications configuration files).

-A APPROOTHLQ Server for z/OS in a PDS deployment. Indicates installation configuration {HLQ} of APPS
(APPROOT) for picking up application files for HLI applications.

Using GENCPGM

92  Information Builders



Switch/Option Description

-S SCRIPTSPDS Server for z/OS in a PDS deployment only. Indicates PDS to copy application build JCL and
run time execution scripts for batch JCL and interactive CLIST and REXX of the application.

-s SCRIPT For z/OS PDS Unified Environment deployment. Indicates generate only (no compile/link) to
a fully qualified PDS or dataset name.

-p LOADLIB Server for z/OS in a PDS deployment only. Indicates JCL type compilation and points to the
load lib to use. The load lib must be in run time STEPLIB.

-d directory Work in the given directory. The C file should be in this directory. All resulting files will be
generated in this directory. This is for COMPILED DEFINE purposes and not intended for
customer use.

-w directory Write final executable (and any helper scripts) in the given target directory.

-i directory Include directory. Multiple uses allowed.

-n No runner shell creation for api*, hli and odbc programs. Use to prevent overwrite of an
existing shell that may have been customized.

-g Generate a debuggable program by including debug switch in the compilation and link.

The -c option is described in the following chart:

Language Compiler to use for a given language source.

cc Use standard C compiler to compile "progname.c". C is the default compiler language.

assembler Use assembler compiler. Only implemented for z/OS currently. HFS usage requires source
to have a .s file extension.

fortran

for

f

Use default Fortran to compile Fortran with a .fortran extension.

Use default Fortran to compile Fortran with a .for extension.

Use default Fortran to compile Fortran with a .f extension.

Supply explicit extension to override extension. If default compiler is not available, GNU
g77 will be checked for availability and used.

6. Using the GENCPGM Build Tool

Stored Procedure and Subroutine Reference for 3GL Languages  93



Language Compiler to use for a given language source.

f77

f90

f95

old_f77

Use a specific Fortran compiler to compile. Fortran implementation on UNIX is limited to
Sun SUNWspro f95 and GNU (g77/f77) as most UNIX OS vendors do not supply Fortran
compilers. OpenVMS supports F90 (default), F77 (Compaq Specification) and OLD_F77
(DEC Specification).

g77 Use the GNU Fortran (g77/f77) compiler to compile "progname.f". GNU is only selectively
supported as we do not have it installed on all platforms, but should work because GNU is
GNU.

gcc Use the GNU C (gcc) compiler to compile "progname.c". GNU is only selectively supported
as we do not have it installed on all platforms, but should work because GNU is GNU.

CC

CXX

cpp

Use the "C++" compiler to compile "progname.cpp" programs. C++ programs are expected
to have a .cpp suffix on all platforms except on MVS OE, which requires .C as an explicit
extension.

rpg IBM i Only: Use RPG compiler to compile IFS "progname". Default extension is .rpg. Source
may alternately exist as member in *CURLIB/QRPGLESRC.

pl1 z/OS Only: PL/1

basic

bas

OpenVMS Only: Basic

pascal

pas

OpenVMS Only: Pascal

cobol

cob

cbl

Use COBOL compiler to compile progname.cobol, progname.cob, and progname.cbl. Supply
explicit extension to override.

java Dummy placeholder, -m cjava is the driving factor for Java source compilation.

The -m option is described in the following chart:

Using GENCPGM

94  Information Builders



Application Type Type of Application to Build

hli Generate an HLI program linked to the EDA HLI library that opens and
modifies FOCUS data files.

odbc Generate an ODBC API client program linked to the ODBC API driver
w/o Visigenics Driver Manager (deprecated).

cpgm

dll

Generate a "callpgm" server program library or sub routine (also
known as a Fuselib routine). Default is a C source with .c extension
unless specified by explicit (known) extension or specific -c compiler
flag.

cjava Generate a class in a jar for "calljava" server program usage.
Multiple .java sources are allowed under this feature. Default jar file
name is the same as the first named java source (use -j to create
specific jar file names). Not supported on OpenVMS.

cl IBM i only: Compile CL command file. Default extension of .cl; LIB/
FILE(MBR) type of file specification allowed if quote enclosed to
prevent sub shell interpretation by the command line parser.

cmd IBM i Only: Compile CMD command file. Default extension of .cmd;
LIB/FILE(MBR) type of file specification allowed if quote enclosed to
prevent sub shell interpretation by the command line parser.

dds IBM i Only: Compile DDS screen file. Default extension is .dds.
Source may alternately exist as member in *CURLIB/QDDSSRC. DDS
is an IBM i only extension for compiling screen handling files for RPG
and other IBM i languages that use DDS.

-b lib/srvprg IBM i Only: Bind in additional IBM i service programs during the link
phase.

-ansi OpenVMS Only: Indicates /ANSI switch should be added to compiler
string. For COBOL this allows line numbers. For C this uses ANSI C
aliasing rules.

-ieee OpenVMS Only: Indicates /FLOAT=IEEE should be added to compile
string. The G_FLOAT version of the product automatically does /
FLOAT=G_FLOAT, this switch allows IEEE to be forced by the G_FLOAT
version.

6. Using the GENCPGM Build Tool

Stored Procedure and Subroutine Reference for 3GL Languages  95



Application Type Type of Application to Build

-gfloat OpenVMS Only: Indicates /FLOAT=G_FLOAT should be added to
compile string. The IEEE version of the product automatically does /
FLOAT=IEEE, this switch allows G_FLOAT to be forced by the IEEE
version.

-j jarname Used solely in conjunction with -m cjava to specify a specific jar to
create. A .jar extension may be supplied, but extensions other
than .jar are ignored and automatically switched to .jar. If the switch
is not included, the first java source will be used to form the jar name
(that is, myapp.java yields myapp.jar).

[{path}]{program name}[[.extension}] Name of source program to build. Must be last argument. All
arguments after program name are ignored.

Extension is optional, but can serve to override a language default for
a -c language specification. A path to a source is allowed (that is,
source/foo.c), but non-system includes must be in current directory
or the -i option must be used.

On Server for z/OS in a PDS deployment, a dataset name or PDS
name may be specified if -p option is in use, however, the use of
parenthesis characters in the specification also requires the name to
be quoted to prevent sub shell interpretation by the command line
parser.

Procedure: How to Compile and Link a Procedure

This section outlines the steps required to compile and link a sample procedure provided with
the product: 

1. Copy GENCPGM from the EDAHOME bin directory to your working directory, or use the full
path name to the location, and:

For a CALLPGM program or to build the CALLPGM sample program (CPT, SPG*.CBL, or
SPG*.RPG), copy the sample program and any required include files from the etc/
src3gl directory of EDAHOME to your working directory.

For user exits, copy the desired sample exit from the etc/src3gl directory of EDAHOME
to your working directory.

Using GENCPGM

96  Information Builders



For user routines, write the routine or copy and modify an existing routine to your
working directory. (This document provides MTHNAME samples for C, COBOL, RPG, and
Fortran, which you can use for reference.)

2. Issue an EDAHOME environment variable pointing to the EDAHOME directory. For example:

Windows SET EDAHOME=C:\ibi\srv77\home

IBM i (formerly known as
i5/OS)

export EDAHOME=/home/iadmin/ibi/srv77/home

UNIX export EDAHOME=/home/iadmin/ibi/srv77/home

USS export EDAHOME=/home/iadmin/ibi/srv77/home

OpenVMS DEFINE EDAHOME IADMIN:[IADMIN.IBI.SRV77.HOME]

3. If building an API program, also issue an EDACONF environment variable pointing to the
EDACONF directory. For example:

Windows SET EDACONF=C:\ibi\srv77\ffs

IBM i export EDACONF=/home/iadmin/ibi/srv77/ffs

UNIX export EDACONF=/home/iadmin/ibi/srv77/ffs

USS export EDACONF=/home/iadmin/ibi/srv77/ffs

OpenVMS DEFINE EDACONF IADMIN:[IADMIN.IBI.SRV77.FFS]

4. Run GENCPGM. For example, on UNIX:

gencpgm.sh -m cpgm mysub.c

Reference: GENCPGM Usage Notes

While there may not be a sample in every language for every application type, the first step is
to confirm that there is a working environment by building one of the standard samples for the
desired application type and confirming that it runs. If the samples do not work, there is little
hope that a custom program will work. 

Switches function similarly on all implementations, although, some are platform/need specific.

6. Using the GENCPGM Build Tool

Stored Procedure and Subroutine Reference for 3GL Languages  97



Programs generated for HLI will also have command file shell wrappers created with the
system variables used for run time execution (that is, EDAHOME, EDACONF, EDACS3 and the
library path needed for HLI to load) producing a self contained environment for runtime
execution. At runtime, all application setup needs are self-contained within the wrapper so that
the application simply runs. The explicit use of a GENCPGM-generated application wrapper is
not required if the settings within a given wrapper are issued elsewhere (such as in a system
or login profile) and the executable is directly used.

On IBM i CL and CMD, wrappers are also created in *CURLIB so applications can also be
called directly on the IBM i command line. On z/OS PDS deployment, JCL, CLIST, and REXX
wrappers are created as appnameJ, appnameC and appnameR (respectively), if the application
is 7 characters (or less) and the -S switch has been used to indicate a save PDS name. Since
the running interactive or batch and selecting a preferred language are strictly run time
choices, PDS mode creates all three scripts to be prepared for all situations.

Due to the numerous third party vendors of COBOL, Fortran and other languages, inconsistency
of switches between third party vendors and across platforms, GENCPGM has only limited
testing of third party compilers. The actual supplied COBOL and Fortran sample programs
themselves are known to work on several platforms where we do have compilers so if
GENCPGM for you platform doesn't support a particular language the sole question is of
figuring out how to compile and link them in order to work. Please also note that some
samples (particularly COBOL) have comments of specific platform related changes that must
be made for to accomplish proper compilation such as changing the PROGRAM-ID to a quoted
lowercase string to achieve a properly created program entry point.

For CALLJAVA applications (-m cjava) more than one source to compile is allowed and the
resulting classes are created into a single jar is supported. Java sources must have file
extension of .java and specifying the actual extension on the GENCPGM command line is
optional. If there are multiple source and no -j jar switch is supplied, the first source will be
used to form the jar name.

The language parameter value for -c drives the default extension for a given language (except
for Java), but supplying a full program name (ie mthname.cbl) will override a default.

If the compilation was for CALLPGM, a user exit, or a routine, the final step is to either copy
the resulting routine to the user directory of EDACONF or set the environment variable IBICPG
to the name of the actual working directory (and restart the server). This final step puts the
resulting routine in a path that the server searches for routines at run time. User exits are not
explicitly covered in this manual, but follow the same rules as a routine.

Using GENCPGM

98  Information Builders



Reference: Language and Platform Notes

Theoretically any compiled 3GL language can be used to create an HLI, Call Procedural
Program, or Subroutine programs. C is generally considered the standard language and is
universally tested and implemented on all supported platforms with samples for all application
types. Other languages are more selective in terms of applications for which samples exist and
platforms in which they can be tested (usually due to complier availability on a given platform). 

Java and JavaScript do not have options for generating Dynamic Load Libraries (DLLs), and, as
such, cannot be used for creating HLI, Call Procedural Program, or Subroutine programs.
However, in a language like C, it is possible to create a wrapper that loads and passes
parameters to Java and receives parameters back. Thus, while Java is feasible, it is not direct
and would present performance issues if done in this context and thus can not be
recommended or officially supported.

Fortran: It is possible to build DLLs and programs using Fortran on any platform, however, at
this time GENCPGM is only coded for Fortran on z/OS, OpenVMS, UNIX GNU g77 and SunOS
SUNWspro. Additionally, there is only a sample for SubrRoutine usage. The -c fortran switch on
SunOS defaults to f77 usage on AMD64 and f90 on Sparc9, use the -c f77/f90/f95 switch to
force other specific levels. The -c fortran switch on UNIX's will attempt to use g77, if found on
the path.

COBOL: It is possible to build routines using Cobol on any platform. At this time gencpgm is
coded to do Cobol only on select platforms and using select Cobol vendors, specifically ... on
UNIX with MicroFOCUS Cobol (using the mf* switches), OpenVMS using HP's Cobol, on IBM i
using IBM ILE Cobol and IBM z/OS using Enterprise Cobol in -p mode. MicroFOCUS Cobol use
has some additional use restrictions as described in the -c mfcobol section of the gencpgm
chart.

On IBM i: Only ILE compilers are supported. Only the IBM i C compiler can directly compile files
on the IFS file system. GENCPGM on IBM i does this feat for other languages by checking the
default library location (for a given source type) for the existence of the desired file and if it
does not exist it does a CPYFRMSTMF to duplicate the file into the library for the compilation
process. If GENCPGM does a source file copy to a library, it will also remove the file afterwards
so extra copies aren't floating around. In this way, sources on IBM i can exist as either IFS or
library files.

On z/OS PDS Deployment: The script in hlq.HOME.ETC(GENCPGM) is an OMVS shell script
and is not JCL, so it cannot be directly run from the PDS. To use under PDS deployment, copy
the GENCPGM member to HFS, do a chmod +x to the script, and use as described below with
z/OS switches.

6. Using the GENCPGM Build Tool

Stored Procedure and Subroutine Reference for 3GL Languages  99



Once the script is copied to an HFS directory, it is executed with the -L, -C, -A, -,S and -p
options, which creates and then submits a JCL compilation stack that is language- and
application-specific. If the JCL is successful, the resulting program will end up in the specified -
p PDS. Regardless of build success, the JCL stack is always left behind and is saved in the
current directory as the program name with a .jcl extension, as well as in the -S location if a -S
switch was used. Additionally the -s switch will allow you to directly generate JCL into an HFS
file or DSN, but not execute. The -s switch (lowercase s is required) is useful for sites where
standard IBM libraries locations are not used for compiler and link library updates (as is
commonly done at sites for add on features and updates), thus allowing a site to generate and
then "adjust" the JCL for site specific needs before submission. The -S switch (uppercase S is
required) does actual compilation plus saves build and run time scripts into the specified PDS
for later use.

On OpenVMS: Special Oracle and Rdb relinking options are supported (-relink oracle, -relink rdb
and -relink rdball (rdball is for when Multi Release Rdb is in use) for when library identity
mismatches occur and require on-site linking. Do not use these options unless an explicit
problem has been identified with customer support and you are requested to do so.

Reference: Build Rules

Should you chose to write a build script instead of using GENCPGM, the rules are fairly simple.

DLLs for Subroutine and CALLPGM Usage: Library name (less extension and any prefix such as
lib) and entry point name must match. Some compilers are case sensitive on entry point name
usage and some are not or uppercase entry points automatically; thus some require special
coding to force lower case names as in mentioned COBOL cases. Specifically entry points
must be lowercase.

Executables for HLI Usage: Must link in edahli DLL and create an executable with a main.
Various environment variables must be set in order for application to run, the wrapper created
by building the appropriate test sample should be used as a template as it contains any
general and platform specific coding.

In both cases it is suggested that you use the standard test samples for your language of
choice with the -x switch to examine the precise build switches used in any particular
environment to assist in any custom built scripts.

Example: Generating a Subroutine Program From a C Source File

The following example will generate a debuggable callpgm program library from a C source
code file named myprog.c using the standard C compiler. 

Using GENCPGM

100  Information Builders



Optionally, the explicit API switch could have been used:

gencpgm -g -m cpgm myprog

Example: Generating an HLI Program From a C Source File

Because the Standard C compiler and HLI mode are default options, the following example will
generate a debuggable HLI program from a sample C source file named myprog.c using the
standard C compiler. 

Optionally, the explicit HLI switch could have been used:

gencpgm -g -m hli myprog

Example: Generating a CALLPGM Program From a C Source File

The following example will generate a debuggable callpgm program library from a C source
code file named myprog.c using the standard C compiler. 

gencpgm -g -m cpgm myprog

For actual CALLPGM code samples, see Writing a 3GL Compiled Stored Procedure Program on
page 55.

6. Using the GENCPGM Build Tool

Stored Procedure and Subroutine Reference for 3GL Languages  101



Using GENCPGM

102  Information Builders



Chapter7
Additional 3GL Reference Examples

The Java and Stored Procedure chapters directly contain reference examples that
annotate the interaction of these types of procedures. The examples in this appendix are
in reference to user written routines (User Written Routines on page 87) and are primarily
the same example written in a number of 3GL languages. This is done to show the
flexibility of the user written routine feature in languages with which a developer might be
more familiar.

In this chapter:

Subroutine Source Examples and Runtime Testing

MTHNAME C Implementation

MTHNAME C++ Implementation

MTHNAME Fortran Implementation

MTHNAME COBOL Implementation

MTHNAME z/OS BAL Assembler Implementation

MTHNAME Basic Implementation (Based on HP OpenVMS Basic 1.4)

MTHNAME RPG IBM i ILE Implementation

MTHNAME PL/1 Implementation

MTHNAME Pascal Implementation (Based on HP OpenVMS Pascal 5.8)

UREVERSE C Implementation

Stored Procedure and Subroutine Reference for 3GL Languages  103



Subroutine Source Examples and Runtime Testing

This section illustrates select sample subroutines. All 3GL reference examples for subroutines
(as well as Exit, RPC and API examples) are delivered within the etc/src3gl sub directory and
z/OS PDS locations and names as noted in the reference samples below (and in other
examples in this manual). One reference example is actual several different language
implementations (C, C++, Fortran, Cobol, BAL, Basic, RPG, PL/1 and Pascal) of a fairly simple
task, translate a number into a spelled out month name (mthname). The different language
implementations allow one to focus on the implementation issues in a language they may be
more familiar with. The other example is a string reversing example that accounts for how to
handle Unicode UTF-8 (UREVERSE) which is strictly a C example. Each has been tested and
works for its given target environment.

Note that some of the samples have comments within them about portions that need to be
adjusted to account for known language implementation differences on some platforms. For
example, IBM i COBOL requires a change in the PROGRAM-ID specification to force a lower
case entry point name and OpenVMS doesn't support GOBACK. As stated earlier, in theory any
compiled and linked languages that can create a DLL can be used to create subroutines. Once
a program is built as a DLL, the loading and execution process is generally agnostic of the
original language.

Please note that while Microsoft Visual Basic (VB) and C# are popular Windows languages,
they do not have options for generating true WIN32 Dynamic Link Libraries (DLLs with .dll
extensions) and, as such, cannot be used for building subroutines because the loader process
requires that only standard DLL objects be used. This is considered a Microsoft issue. Also
note that an internet search for "build dll in vb or C# " yields a number of sites that describe
how to force VB and C# to create DLLs. While such techniques seem promising for customers
who want to use these languages, and may very well execute properly, Information Builders
cannot officially support unsupported techniques. However, we will work with customers to
resolve problems within this scope.

Some language samples (Pascal for instance) may not be capable of being built by GENCPGM
for a given platform (ie UNIX and Linux), but is still provided on the media for all platforms for
reference purposes and for people that decide to create their own build scripts.

The disk locations below, use PDS notation for PDS Deployment and UNIX notation for "all
other platforms" for the purpose of being brief. The locations for Windows would be the same
except the slashes are back slashes. The locations for OpenVMS would be dots instead of
slashes and the directory portion would be enclosed in square braces.

Subroutine Source Examples and Runtime Testing

104  Information Builders



Any of the MTHNAME sample routines can be tested by creating a simple FOCEXEC and using
the following sample steps:

Create FOCEXEC mthname.fex

-SET &MTHNAME = MTHNAME(&MTHNUMBER,'A12') ;
-TYPE Month &MTHNUMBER is &MTHNAME

Compile and set IBICPG (this is using the C example on UNIX):

export EDAHOME=/home/iadmin/ibi/srv76/home
gencpgm.sh -m cpgm mthname.c
export IBICPG=`pwd`

After restarting the server, execute an RPC like:

EX MTHNAME MTHNUMBER=4

And receive:

Month 4 is March

MTHNAME C Implementation

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMC) for PDS deployment and as home/etc/
src3gl/mthname.c on all other platforms.

On PDS deployment use "-o mthname" to build using alternate source name of MTHNAMC.

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  105



Source:

/*                                                      */
/* MTHNAME: Sample User Written Routine in C            */
/*                                                      */
/* iWay/EDA refers to these as User Written Routines    */
/* and WebFOCUS/FOCUS refers to them as FUSELIBs        */
/* Routines. They are written in the same way for all   */
/* platforms and products, but the compilation and      */
/* link steps may differ depending on release and       */
/* product level. See appropriate platform/product      */
/* documentation for compilation and link instructions. */
/*                                                      */
 
void
mthname(double *mth, char *month)
{
static char *nmonth[13] = {"** Error **",
                           "January    ",
                           "February   ",
                           "March      ",
                           "April      ",
                           "May        ",
                           "June       ",
                           "July       ",
                           "August     ",
                           "September  ",
                           "October    ",
                           "November   ",
                           "December   ",};
int imth, loop;
imth = (int)*mth;
imth = (imth < 1 || imth > 12 ? 0:imth);
for (loop=0;loop < 12;++loop)
     month[loop] = nmonth[imth][loop];
return;
}

MTHNAME C++ Implementation

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMCP) for PDS deployment and as
home/etc/src3gl/mthname.cpp on all other platforms.

On PDS deployment use "-o mthname" to build using alternate source name of
MTHNAMCP.

MTHNAME C++ Implementation

106  Information Builders



Source:

// MTHNAME: Sample User Written Routine in C++
// Warning: Use on MVS OE requires extension to be renamed as .C
extern "C" int mthname(double* mth, char* month)
{
const char *nmonth[13] = {"** Error **",
                           "January   ",
                           "February  ",
                           "March     ",
                           "April     ",
                           "May       ",
                           "June      ",
                           "July      ",
                           "August    ",
                           "September ",
                           "October   ",
                           "November  ",
                           "December  ",};
int imth, loop;
imth = (int)*mth;
imth = (imth < 1 || imth > 12 ? 0:imth);
for (loop=0;loop < 12;++loop)
     month[loop] = nmonth[imth][loop];
return 0;
}

MTHNAME Fortran Implementation

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMF) for PDS deployment and as home/etc/
src3gl/mthname.f on all other platforms.

On PDS deployment use "-o mthname" to build using the alternate source name of
MTHNAMF.

This sample is based on the original mainframe Fortran sample with a name of MTHNAM.
This has been changed to have a uniquely sourced version that more closely matches the C
version and has comments. The samples are otherwise the same.

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  107



Source:

      SUBROUTINE MTHNAME (MTH,MONTH)
      REAL*8     MTH
      INTEGER*4  MONTH(3),A(13,3),IMTH
      DATA
     +     A( 1,1)/'Janu'/, A( 1,2)/'ary '/, A( 1,3)/'    '/,
     +     A( 2,1)/'Febr'/, A( 2,2)/'uary'/, A( 2,3)/'    '/,
     +     A( 3,1)/'Marc'/, A( 3,2)/'h   '/, A( 3,3)/'    '/,
     +     A( 4,1)/'Apri'/, A( 4,2)/'l   '/, A( 4,3)/'    '/,
     +     A( 5,1)/'May '/, A( 5,2)/'    '/, A( 5,3)/'    '/,
     +     A( 6,1)/'June'/, A( 6,2)/'    '/, A( 6,3)/'    '/,
     +     A( 7,1)/'July'/, A( 7,2)/'    '/, A( 7,3)/'    '/,
     +     A( 8,1)/'Augu'/, A( 8,2)/'st  '/, A( 8,3)/'    '/,
     +     A( 9,1)/'Sept'/, A( 9,2)/'embe'/, A( 9,3)/'r   '/,
     +     A(10,1)/'Octo'/, A(10,2)/'ber '/, A(10,3)/'    '/,
     +     A(11,1)/'Nove'/, A(11,2)/'mber'/, A(11,3)/'    '/,
     +     A(12,1)/'Dece'/, A(12,2)/'mber'/, A(12,3)/'    '/,
     +     A(13,1)/'**ER'/, A(13,2)/'ROR*'/, A(13,3)/'*   '/
      IMTH=MTH+0.000001
      IF (IMTH .LT. 1 .OR. IMTH .GT. 12) IMTH=13
      DO 1 I=1,3
    1 MONTH(I)=A(IMTH,I)
      RETURN
      END

Note: Some Fortran compilers support character variables longer than 4 bytes and, in this
case, the example’s array could be constructed as a CHARACTER*10 with
A(1)/’January’/, ..., A(13)/’***ERROR**’/ syntax, but the split array syntax used in
example above is known to work on all Fortran compilers.

MTHNAME COBOL Implementation

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMCB) for PDS deployment and as
home/etc/src3gl/mthname.cbl on all other platforms.

GENCPGM for COBOL is supported on OpenVMS, z/OS and i/OS (not UNIX/Linux) and the
sample on disk is only provided for reference for all other platforms.

On PDS deployment use "-o mthname" to build using alternate source name of
MTHNAMCB.

COBOL generally requires small changes depending on platform as outlined in the notes
with the sample.

Some compilers ignore line numbers and some have compiler switches to ignore.
GENCPGM on OpenVMS can use the -ansi switch to ignore the numbers or (alternately) the
COBOL command can be redefined to be COBOL /ANSI in the environment.

MTHNAME COBOL Implementation

108  Information Builders



Source:

000100*
000200 IDENTIFICATION DIVISION.
000300*
000400* MTHNAME: Sample User Written Routine in Cobol
000500*
000600* Notes:
000700*
000800*  1. This sample is based on the original mainframe
000900*     sample with a PROGRAM-ID of MTHNAM. This has been
001000*     changed to have a uniquely sourced version that
001100*     more closely matches the C version and has these
001200*     comments. The samples are otherwise the same.
001300*
001400*  2. Original mainframe sample had a GOBACK as the
001500*     last statement. OpenVMS Cobol seems to object
001600*     to this, so commented it out as noted below.
001700*     Unix compiler support for GOBACK may also vary
001800*     by vendor and untested at this time (5/1/2003).
001900*
002000*  3. OpenVMS compiled and was found, but initial
002100*     always returned the error case. This was
002200*     actually a GENCPGM.COM error that the Cobol
002300*     needed the /FLOAT=G_FLOAT switch, so be sure
002400*     that you are using a GENCPGM.COM from 5.2.3
002500*     or higher where this is fixed.
002600*

002700*  4. The PROGRAM-ID name may also needed some
002800*     special handling depending on the platform.
002900*     The reason for this is that iWay routines
003000*     are searched for in lower case and there
003100*     seems to be some case sensitivity problems
003200*     for the platforms tested so far. OpenVMS
003300*     doesn't seem to care if name is lower or
003400*     upper case.  i5/OS Cobol is not only case
003500*     sensitive but requires explicit lower case
003600*     values to be in single quotes, but also
003700*     needs the compiler option *NOMONOPRC to
003800*     respect the coded value. So, depending
003900*     on your platform, the PROGRAM-ID value may
004000*     need editing as per notes below.
004100*
004800*
004900* ID Usage for Mainframe and OpenVMS ...
005000*PROGRAM-ID. MTHNAME.
005100* ID Usage for Unix and Windows ...
005200*PROGRAM-ID. mthname.
005300* ID Usage for i5/OS ...
005400*PROGRAM-ID. 'mthname'.
005500*
005600* ID Usage for this run ...
005700 PROGRAM-ID. mthname.
005800*

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  109



005900 ENVIRONMENT DIVISION.
006000 CONFIGURATION SECTION.
006100 DATA DIVISION.
006200 WORKING-STORAGE SECTION.
006300    01 MONTH-TABLE.
006400      05 FILLER PIC X(9) VALUE 'January  '.
006500      05 FILLER PIC X(9) VALUE 'February '.
006600      05 FILLER PIC X(9) VALUE 'March    '.
006700      05 FILLER PIC X(9) VALUE 'April    '.
006800      05 FILLER PIC X(9) VALUE 'May      '.
006900      05 FILLER PIC X(9) VALUE 'June     '.
007000      05 FILLER PIC X(9) VALUE 'July     '.
007100      05 FILLER PIC X(9) VALUE 'August   '.
007200      05 FILLER PIC X(9) VALUE 'September'.
007300      05 FILLER PIC X(9) VALUE 'October  '.
007400      05 FILLER PIC X(9) VALUE 'November '.
007500      05 FILLER PIC X(9) VALUE 'December '.
007600      05 FILLER PIC X(9) VALUE '**ERROR**'.
007700    01  MLIST REDEFINES MONTH-TABLE.
007800      05  MLINE OCCURS 13 TIMES INDEXED BY IX.
007900          10 A  PIC X(9).
008000    01  IMTH    PIC S9(5) COMP.
008100 LINKAGE SECTION.
008200    01  MTH     COMP-2.
008300    01  MONTH   PIC X(9).
008400 PROCEDURE DIVISION USING MTH, MONTH.
008500 BEG-1.
008600       ADD 0.000001 TO MTH.
008700       MOVE MTH TO IMTH.
008800       IF IMTH < +1 OR > 12
008900         SET IX TO +13
009000       ELSE
009100         SET IX TO IMTH.
009200       MOVE A (IX) TO MONTH.
009300*
009400* On OpenVMS ... Comment out the GOBACK.
009500*
009600       GOBACK.

MTHNAME z/OS BAL Assembler Implementation

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMAS) for PDS deployment and as
home/etc/src3gl/mthname.x on all other platforms.

GENCPGM for BAL is only supported on z/OS and the sample on disk is only provided for
reference for all other platforms.

On PDS deployment use "-o mthname" to build using alternate source name of
MTHNAMAS.

Source:

MTHNAME z/OS BAL Assembler Implementation

110  Information Builders



*
* MTHNAME: Sample User Written Routine in z/OS BAL Assembler
*
* If this is used as a source read directly from an HFS file
* system the extension must be .x for assembler files.
*
MTHNAME  CSECT
MTHNAME  AMODE 31
MTHNAME  RMODE ANY
         STM   14,12,12(13)        save registers
         BALR  12,0                load base reg
         USING *,12
*
         L     3,0(0,1)            load addr of first arg into R3
         LD    4,=D'0.0'           clear out FPR4 and FPR5
         LE    6,0(0,3)            FP number in FPR6
         LPER  4,6                 abs value in FPR4
         AW    4,=D'0.00001'       add rounding constant
         AW    4,DZERO             shift out fraction
         STD   4,FPNUM             move to memory
         L     2,FPNUM+4           integer part in R2
         TM    0(3),B'10000000'    check sign of original no
         BNO   POS                 branch if positive
         LCR   2,2                 complement if negative
*
POS      LR    3,2                 copy month number into R3
         C     2,=F'0'             is it zero or less?
         BNP   INVALID             yes. so invalid
         C     2,=F'12'            is it greater than 12?
         BNP   VALID               no. so valid
INVALID  LA    3,13(0,0)           set R3 to point to item @13 (error)
*

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  111



VALID    SR    2,2                 clear out R2
         M     2,=F'9'             multiply by shift in table
*
         LA    6,MTH(3)            get addr of item in R6
         L     4,4(0,1)            get addr of second arg in R4
         MVC   0(9,4),0(6)         move in text
*
         LM    14,12,12(13)        recover regs
         BR    14 return
*
         DS    0D                  alignment
FPNUM    DS    D                   floating point number
DZERO    DC    X'4E00000000000000' shift constant
MTH      DC    CL9'dummyitem'      month table
         DC    CL9'January'
         DC    CL9'February'
         DC    CL9'March'
         DC    CL9'April'
         DC    CL9'May'
         DC    CL9'June'
         DC    CL9'July'
         DC    CL9'August'
         DC    CL9'September'
         DC    CL9'October'
         DC    CL9'November'
         DC    CL9'December'
         DC    CL9'**ERROR**'
         END   MTHNAME

MTHNAME Basic Implementation (Based on HP OpenVMS Basic 1.4)

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMBS) for PDS deployment and as
home/etc/src3gl/mthname.bas on all other platforms.

GENCPGM for Basic is only supported on OpenVMS and the sample on disk is only provided
for reference for all other platforms.

MTHNAME Basic Implementation (Based on HP OpenVMS Basic 1.4)

112  Information Builders



Source:

1000 SUB mthname BY REF(REAL MTH, STRING MONTH = 12)
1001 REM
1002 REM MTHNAME: Sample User Written Routine in Basic
1003 REM This sample is based on FOCUS/VMS 6.x sample.
1004 REM
1005 REM Only changes were to make it more like the standard
1006 REM sample (entry point of lowercase mthname (vs. MTHNAM)
1007 REM datatype of REAL (vs. DOUBLE) and use mixed case 
1008 REM month names.
1009 REM
2000 ON INTEGER(MTH) GOTO 2001,2002,2003,2004,2005,2006, &
                          2007,2008,2009,2010,2011,2012 &
                          OTHERWISE 2013
2001 MONTH = "January" \ EXIT SUB
2002 MONTH = "February" \ EXIT SUB
2003 MONTH = "March" \ EXIT SUB
2004 MONTH = "April" \ EXIT SUB
2005 MONTH = "May" \ EXIT SUB
2006 MONTH = "June" \ EXIT SUB
2007 MONTH = "July" \ EXIT SUB
2008 MONTH = "August" \ EXIT SUB
2009 MONTH = "September" \ EXIT SUB
2010 MONTH = "October" \ EXIT SUB
2011 MONTH = "November" \ EXIT SUB
2012 MONTH = "December" \ EXIT SUB
2013 MONTH = "** Error **" \ EXIT SUB
3000 END SUB

MTHNAME RPG IBM i ILE Implementation

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMRP) for PDS deployment and as
home/etc/src3gl/mthname.rpg on all other platforms.

GENCPGM for RPG is only supported on i/OS and the sample on disk is only provided for
reference for all other platforms.

Code must start in column 7 of file.

Source:

HNOMAIN
 
* MTHNAME: Sample User Written Routine in RPG
*          Converts month number to month name
 
* This is an IBM i RPG version of the standard mthname.c
* sub routine supplied with IBI products.

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  113



* This a no main dll service type program with a lowercase
* exported symbol ... which is what is needed to integrate
* with programs that typically use lower or mixed case
* symbols in there dlls (ie. C).

* This routine is stored for z/OS PDS Deployment purposes
* as MTHNAMRP so it does not conflict with any of the
* other MTHNAME samples. Gencpgm on z/OS doesn't support
* RPG so building there is a non issue.

* Declare procedure parameter prototype.
* EXTPROC needed for lower case symbol ... very important!
 
D mthname         PR                    EXTPROC('mthname')
D   MTH                          8F
D   MTHNAME                     11A

* Procedure begin with external symbol export declaration.
P mthname         B                     EXPORT

* Declare procedure parameter interface.
D mthname         PI
D   MTH                          8F
D   MTHNAME                     11A
* Error Cases ... check if below 1 or above 12
C                   IF        MTH < 1 OR MTH > 12
C                   MOVE      '** Error **' MTHNAME
C                   ENDIF

MTHNAME RPG IBM i ILE Implementation

114  Information Builders



* Look up by month ... 
* (Using LOOKUP would be better, but lets keep it simple)
C                   IF        MTH =  1
C                   MOVE      'January    ' MTHNAME
C                   ENDIF
C                   IF        MTH =  2
C                   MOVE      'February   ' MTHNAME
C                   ENDIF
C                   IF        MTH =  3
C                   MOVE      'March      ' MTHNAME
C                   ENDIF
C                   IF        MTH =  4
C                   MOVE      'April      ' MTHNAME
C                   ENDIF
C                   IF        MTH =  5
C                   MOVE      'May        ' MTHNAME
C                   ENDIF
C                   IF        MTH =  6
C                   MOVE      'June       ' MTHNAME
C                   ENDIF
C                   IF        MTH =  7
C                   MOVE      'July       ' MTHNAME
C                   ENDIF
C                   IF        MTH =  8
C                   MOVE      'August     ' MTHNAME
C                   ENDIF
C                   IF        MTH =  9
C                   MOVE      'September  ' MTHNAME
C                   ENDIF
C                   IF        MTH =  10
C                   MOVE      'October    ' MTHNAME
C                   ENDIF
C                   IF        MTH =  11
C                   MOVE      'November   ' MTHNAME
C                   ENDIF
C                   IF        MTH =  12
C                   MOVE      'December   ' MTHNAME
C                   ENDIF
 
* Done; return to caller.
C                   RETURN
* Procedure End
P                 E

MTHNAME PL/1 Implementation

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMPL) for PDS deployment and as home/etc/
src3gl/mthname.pl1 on all other platforms.

PL/1 is only supported on z/OS and the sample on disk is only provided for reference for
all other platforms.

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  115



On PDS deployment use "-o mthname" to build using alternate source name of
MTHNAMAS.

PL/1 coding must start in column 2 of file.

Source:

/* MTHNAME: Sample User Written Routine in PL/1 */
 
MTHNAME: PROC(MTHNUM,FULLMTH) OPTIONS(COBOL);
DECLARE MTHNUM DECIMAL FLOAT (16) ;
DECLARE FULLMTH CHARACTER (9) ;
DECLARE MONTHNUM FIXED BIN (15,0) STATIC ;
DECLARE MONTH_TABLE(13) CHARACTER (9) STATIC
                      INIT ('January',
                            'February',
                            'March',
                            'April',
                            'May',
                            'June',
                            'July',
                            'August',
                            'September',
                            'October',
                            'November',
                            'December',
                            '**ERROR**') ;
MONTHNUM = MTHNUM + 0.00001 ;
IF MONTHNUM < 1 | MONTHNUM > 12 THEN MONTHNUM = 13 ;
FULLMTH = MONTH_TABLE(MONTHNUM) ;
RETURN ;
END MTHNAME ;

MTHNAME Pascal Implementation (Based on HP OpenVMS Pascal 5.8)

Note:

This sample is stored in hlq.HOME.ETC(MTHNAMPS) for PDS deployment and ashome/etc/
src3gl/mthname.pas on all other platforms. 

GENCPGM for Pascal is only supported on OpenVMS and the sample on disk is only
provided for reference for all other platforms.

MTHNAME Pascal Implementation (Based on HP OpenVMS Pascal 5.8)

116  Information Builders



Source:

{
  MTHNAME: Sample User Written Routine in Pascal
  This sample is based on FOCUS/VMS 6.x sample.
  Only changes were to make it more like the standard
  C sample (entry point of lowercase mthname (vs. MTHNAM)
  and use mixed case month names).
}
MODULE MTH;
TYPE
  monthstring = packed array [1..12] OF CHAR;
[GLOBAL] PROCEDURE mthname(MTH:double ; var month : monthstring);
  VAR
IMONTH :INTEGER;
 BEGIN
   IMONTH:= ROUND(MTH);
   IF IMONTH IN [1..12] THEN
     CASE IMONTH OF
       1 : MONTH := 'January';
       2 : MONTH := 'February';
       3 : MONTH := 'March';
       4 : MONTH := 'April';
       5 : MONTH := 'May';
       6 : MONTH := 'June';
       7 : MONTH := 'July';
       8 : MONTH := 'August';
       9 : MONTH := 'September';
      10 : MONTH := 'October';
      11 : MONTH := 'November';
      12 : MONTH := 'December';
    END
  ELSE
    MONTH := '** Error **'
 END;
END.

UREVERSE C Implementation

Note:

This sample is stored in hlq.HOME.ETC(UREVERSE) for PDS deployment and as home/etc/
src3gl/ureverse.c on all other platforms.

Sample reverses a string, but checks server codepage for UTF-8 (65001) condition and
handles the string accordingly.

The example is not only an example of how to handle UTF-8, but also how an existing
routine can be updated and use getenv() to obtain codepage information instead of using a
passed parameter, which would in turn lead to having to also update FOCEXEC application
code for the extra parameter (which may or may not be frequent within an application).

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  117



Comments within example describe typical usage and how to test.

/*                                                                                 */
/* Sample User Written Routine in C ...                                            */
/* UREVERSE: Unicode UTF-8 capable string reversing routine                        */
/*                                                                                 */
/* Typical usage:                                                                  */
/* -SET &STRING = 'abcd' ;                                                         */
/* -SET &RSTRING = UREVERSE(&STRING,&STRING.LENGTH,&FOCCODEPAGE,A&STRING.LENGTH) ; */
/* -TYPE Reverse of &STRING is &RSTRING                                            */
/* Note: &FOCCODEPAGE is standard amper variable for server code page              */
/*                                                                                 */

/* Servers using the Unicode 65002 page are effectively UTF-EBCDIC and beyond      */
/* the scope of this simple sample. Customer implementations should follow the     */
/* information at http://www.unicode.org/reports/tr16 when using the 65002         */
/* UTF-EBCDIC code page.                                                           */

#include <stdio.h>
#include <stdlib.h>

void ureverse( char *instr, double *charsize, double *codepage, char *outstr )
{
  unsigned short codepg = (unsigned short)*codepage;
  int            csize = (int)*charsize;
  int            bsize, offset, clen, ccnt;
  unsigned char *cptr;
  char          *foccodepage;

  /* External var override, normally var is not set. If trying to make an       */
  /* existing routine Unicode compliant without passing an extra var, this      */
  /* method can be used to get a code page value if following is added to       */
  /* the server profile (edasprof) or other application code:                   */
  /* -SET &RC = FPUTENV(11,'FOCCODEPAGE',&FOCCODEPAGE.LENGTH,&FOCCODEPAGE,D8) ; */

  foccodepage = getenv("FOCCODEPAGE");
  if( foccodepage != NULL )
  {
    codepg = atoi( foccodepage );
  }

UREVERSE C Implementation

118  Information Builders



  if( codepg == 65001 ) /* Unicode reference number used by server for UTF-8 */
  {
    /* Unicode UTF-8 */
    /* Pass 1. Calculate the byte length of 'instr' in character length 'charsize' */
    /* Pass 2. Copy each character from 'instr' to 'outstr' in reverse             */
    bsize = csize * 3; /* maximum byte size */
    for( ccnt = offset = 0; ccnt < csize && offset < bsize; ccnt++, offset += clen )
    {
      cptr = (unsigned char *)&instr[offset];
      if(      *cptr < 0x80 )  clen = 1;
      else if( *cptr < 0xE0 )  clen = 2;
      else                     clen = 3;
    }
    bsize = offset; /* actual byte size in utf-8 for charsize */
    for( offset = 0; offset < bsize; offset += clen )
    {
      cptr = (unsigned char *)&instr[offset];
      if(      *cptr < 0x80 )  clen = 1;
      else if( *cptr < 0xE0 )  clen = 2;
      else                     clen = 3;
      memcpy( &outstr[bsize - offset - clen ], cptr, clen );
    }
  }
  else
  {
    /* Non-Unicode */
    /* Copy each character from 'instr' to 'outstr' in reverse */
    for( offset = 0; offset < csize; offset++ )
    {
      outstr[csize - offset - 1] = instr[offset];
    }
  }
}

7. Additional 3GL Reference Examples

Stored Procedure and Subroutine Reference for 3GL Languages  119



UREVERSE C Implementation

120  Information Builders



Index

? EXORDER command 17

3GL programs 55, 89

requirements 55

A

allocating dynamic storage 81

answer sets 27

returning 70, 73, 76

B

building an application on UNIX 51

C

CALLIMS procedure 18

calling programs 21, 22, 24, 25

calling stored procedures 14

Dialogue Manager 18

CALLITOC program 18

CALLJAVA command 31

CALLPGM command 18, 21, 22, 24, 25, 28, 70

Db2 plans 26

callpgm interface 42

communicating between the server and the

program 29

compiled programs 21, 55

calling 21, 22, 24, 25

libraries 15

compiled programs 21, 55

requirements 55

running 80, 81

compiling and linking 3GL programs 89

control block fields 57, 64, 66, 68

control blocks 29, 56, 57, 64, 66, 68, 80

CPG parameters 28

CREATE TABLE command 70, 84

D

Db2 plans 26

Dialogue Manager procedures 15, 16, 18, 21, 22

dynamic storage 70, 73, 76, 79

allocating 81

E

EDAFETCH method call 84

EDAINFO method call 84

EDAPATH method call 15

EDARPC method call 14, 15

error processing 81

EX command 32

EXEC command 18, 21, 24, 25

executing a JAVA class 42

executing external programs 32

execution order 16, 18

Dialogue Manager 18

querying 17

Stored Procedure and Subroutine Reference for 3GL Languages  121



execution order 16, 18

setting 16

EXORDER command 16

EXORDER parameter 16

F

freeing dynamic storage 81

G

GENCPGM scripts 89

Basic implementation (HP OpenVMS Basic

1.4) 112

build rules 100

C implementation 105

C++ implementation 106

CALLPGM Library from C source 101

COBOL implementation 108

HLI program from C source 101

language and platform notes 99

Pascal implementation (HP OpenVMS Pascal

5.8) 116

PL/1 implementation 115

RPG IBM i ILE implementation 113

sample implementations 104

subroutine program from C source 100

usage chart 92

usage notes 97

z/OS BAL implementation 110

generating CALLPGM programs 101

generating HLI programs 101

generating subroutine programs 100

I

ibiAnswerSet interface 41

IBICPG library 15

ibtrace interface 39

IMS/TM transactions 15

J

JAVA class 31

K

keyword parameters 28

L

libraries 15

long parameters 29

M

messages 70

returning 73, 76

multi-threaded programs 70

O

order of execution 16, 18

Dialogue Manager 18

querying 17

setting 16

Index

122 Information Builders



P

parameters 27, 34

passing 28, 29

passing parameters 27–29, 34

plans for Db2 26

positional parameters 28

procedure libraries 15

procedures 13

compiling 96

linking 96

program libraries 15

program values 70, 73, 76, 79

storing 81

program variables 80

program-to-server communication 29

Q

quotes 28

S

SET parameters

EXORDER 16

starting a server 53

stored procedure libraries 15, 21

stored procedures 13, 55

calling 14, 21

requirements 55

running 16, 18, 27

stored values 70, 73, 76, 79

storing program values 70, 73, 76, 79, 81

stripping quotes from parameters 28

subroutines 13

T

trace methods and uses 40

U

user-written EX command 32

user-written JAVA class 31

Index

Stored Procedure and Subroutine Reference for 3GL Languages  123



Index

124 Information Builders



Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.



Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Stored Procedure and Subroutine Reference for 3GL Languages
WebFOCUS Reporting Server Release 8205
DataMigrator Server Release 7709 and Higher

DN4501044.0219


	Contents
	Preface
	Conventions
	Related Publications
	Customer Support
	Information You Should Have
	User Feedback
	Software Training and Professional Services

	1. Introducing Stored Procedures and Subroutines
	Using a Stored Procedure
	Calling a Stored Procedure
	Stored Procedure Libraries
	Setting the Execution Order
	Valid EXORDER Settings
	Syntax: How to Query the Execution Order

	Execution Order of Stored Procedures
	Using CALLPGM
	Using EXEC
	Using CALLIMS or CALLITOC


	Using a Subroutine

	2. Calling a Program as a Stored Procedure
	Calling a Compiled Program
	Calling a Program With CALLPGM or EXEC
	Syntax: How to Call a Program Using CALLPGM or EXEC

	Calling a Program With SQL EX
	Syntax: How to Call a Program Using SQL EX
	SQL Procedures and Db2 PLAN (z/OS Db2 CAF Adapter Only)
	Syntax: How to Switch Plans in z/OS Db2 CAF

	Storing Answer Set Data
	Example: Processing an Answer Set on the Server


	Passing Parameters
	Using CALLPGM with Embedded Spaces in Parameters
	Syntax: How to Control the Stripping of Quotes From Parameters

	Using CALLPGM
	Example: Passing Long Parameters


	Program Communication

	3. Calling a JAVA Class as a Stored Procedure
	Execute Using CALLJAVA
	Syntax: How to Use CALLJAVA to Execute a JAVA Class
	Example: Calling ibi.cjsamples.cjsamp Using CALLJAVA


	Execute Using EX
	Syntax: How to Use EX to Execute a JAVA Class
	Example: Calling ibi.cjsamples.cjsamp Using EX


	Execute Using SQL EX and SQL CPJAVA EX
	Syntax: How to Use SQL EX to Execute a JAVA Class
	Syntax: How to Use SQL CPJAVA EX to Execute a JAVA Class
	Example: Calling ibi.cjsamples.cjsamp Using SQL CPJAVA EX


	Passing Parameters
	Example: Passing Parameters

	Writing a JAVA Class
	The Java Logging API
	Basic Logging API
	Logging Levels
	Java Logging and Server Tracing
	Logging Reference Guide
	Debug Level
	Info Level
	Warn Level
	Error Level


	The Java ibtrace Tracing Interface (Deprecated)
	Reference: Trace Methods and Uses

	The ibiAnswerSet Interface
	The callpgm Interface

	JAVA Class Communication
	Compiling and Running a JAVA Program
	Example: Compiling and Running a JAVA CALLPGM Program
	Building a JAVA Program and Starting the Server
	Example: Building a JAVA Application Manually on UNIX or IBM i
	Example: Building a JAVA Application Manually on Windows
	Example: Building a JAVA Application Manually on OpenVMS
	Example: Building a JAVA Application Using GENCPGM
	Example: Starting a Server on UNIX or IBM i
	Example: Starting a Server on Windows
	Example: Starting a Server on OpenVMS



	4. Writing a 3GL Compiled Stored Procedure Program
	Program Requirements
	Setting Up the Control Block
	Control Block Specification
	Setting Up a CALLPGM Control Block Structure for C
	Example: Using SQL SPG SET CPGUB OLD in the C Control Block
	Example: Using SQL SPG SET CPGUB NEW in the C Control Block

	Setting Up a CALLPGM LINKAGE SECTION Control Block for COBOL
	Example: Using SQL SPG SET CPGUB OLD in the COBOL Control Block
	Example: Using SQL SPG SET CPGUB NEW in the COBOL Control Block

	Setting Up a CALLPGM Data Structure Control Block for RPG
	Example: Using SQL SPG SET CPGUB OLD in the RPG Control Block
	Example: Using SQL SPG SET CPGUB NEW in the RPG Control Block


	Storing Program Values
	Example: Storing Program Values in C
	Example: Storing Program Values in COBOL
	Example: Storing Program Values in COBOL/LE
	Example: Linking Program Variables to the Control Block
	Example: Checking for First-time Execution
	Example: Allocating and Freeing Dynamic Storage

	Error Handling
	Issuing the CREATE TABLE Command
	Syntax: How to Issue a Create Table


	5. User Written Routines
	Calling a User Written Routine

	6. Using the GENCPGM Build Tool
	Using GENCPGM
	Reference: USAGE Chart (Typical Syntax Plus Extended Options)
	Procedure: How to Compile and Link a Procedure
	Reference: GENCPGM Usage Notes
	Reference: Language and Platform Notes
	Reference: Build Rules
	Example: Generating a Subroutine Program From a C Source File
	Example: Generating an HLI Program From a C Source File
	Example: Generating a CALLPGM Program From a C Source File



	7. Additional 3GL Reference Examples
	Subroutine Source Examples and Runtime Testing
	MTHNAME C Implementation
	MTHNAME C++ Implementation
	MTHNAME Fortran Implementation
	MTHNAME COBOL Implementation
	MTHNAME z/OS BAL Assembler Implementation
	MTHNAME Basic Implementation (Based on HP OpenVMS Basic 1.4)
	MTHNAME RPG IBM i ILE Implementation
	MTHNAME PL/1 Implementation
	MTHNAME Pascal Implementation (Based on HP OpenVMS Pascal 5.8)
	UREVERSE C Implementation

	Index
	Feedback



