Builders

nnnnnnnnnnnnn
eeeeeeeeeeeeeeeeeeeeeeeeeee

i

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2018, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

= - - 17
(070 0177) o B 19
Related Publications o e 20
L1 1= (o 18T S T8 o o o 1 20
Information You Should Have i i e et 21
User FEedbacKo e 22
Information Builders Consulting and Trainingttt i e e e e e eeens 22

l1.HowtoUseThisManualcccucurururunnnanannsnsnnanannnnnnnnnnnnnnnnnns 23
Available LangUages oottt e 23
OpErating SYS M . ot ittt e e e e e 23

2. Introducing FUNCtionscciiienennnnnnnnsnnnsnnannnnsnnnnnnnnnnnnnnnsnns2Dd

USINE FUNCHIONS .ottt e e ettt e e ettt ettt ettt 25
TYPES Of FUNCHIONS . . .o e e e e e et e ettt it 26
WebFOCUS-specific FUNCLIONS. e e e et e e 28
Simplified Analytic FUNCLIONS. i i e e e e e 28
Simplified Character FUNCHIONS.o e e e et e e e e 28
Character FUNCHIONS. e e e ettt et 30
Variable Length Character FUNCLIONS.ttt e e e et e e e 33
Character Functions for DBCS Code Pages.o ov it e e 34
Maintain-specific Character FUNctions. i i e e e een 35

Data Source and Decoding FUNCLIONS.ottt it e e e e 36
Simplified Date and Date-Time Functions. it i i e 37

Date FUNCHIONS. . .. ottt e e e e e e e 38
Standard Date FUNCHIONS. i e e e 38

Legacy Date FUNCHIONS. o e i e e et 39

Date-Time FUNCHIONS.o e ettt e e e 41
Maintain-specific Date and Time Functions. i i i i 43
Maintain-specific Standard Date and Time Functions., 43
Maintain-specific Legacy Date Functions.ottt it iie i 43

Simplified Conversion FUNCLIONS.ot i i e e e ettt e e e 44
Format Conversion FUNCLIONS.ot e e e e et e e 45

Using Functions 3

Contents

Maintain-specific Light Update Support Functions. o it 46
Simplified Numeric FUNCLIONS. e e e e e et e 46
NUMENC FUNCHIONS. . . . i e e ettt et 47
Maintain-specific Script FUNCLioNS. i e e 49
Simplified Statistical FUNCLIONS. i e e e e e e 49
Simplified System FUNCLIONS. e e e 50
SyStemM FUNCLIONS. . ..ot e e e e e e e e e 50
Simplified Geography FUNCHIONS.o i e e e e e 52
Character Chart for ASCIl and EBCDICottt e e e e et e e 53

3. Accessingand CallingaFunctionccciciinernnnnnnnnnnsnnnsnnnnnnnnnasa6l

LOF= 1177 == T 0 T 1 o o 61
Supplying an Argument in @ FUNCHIONttt e e e et 63
L =00 L= A 1 01T 63
ArBUMENT FOMMIATS. . . oottt e ettt ettt e e 64
ArgUMENt LeNgth. . ..o e 65
Number and Order of ArBUMENTS.ottt e e e et 66
Verifying Function Parameters. et e e e 66
Calling a Function From a DEFINE, COMPUTE, or VALIDATECommand 69
Calling a Function From a Dialogue Manager Command iiiiiiinnaenennnn.. 70
Assigning the Result of a Functiontoa Variable..........o i, 71
Branching Based on the Result of a Function. i .. 72
Calling a Function From an Operating System RUN Command. 74
Calling a Function From Another FUNCLIONo i i e e e e e aens 75
Calling a Function in WHERE or IF Criteria oottt e et e e e 75
Using a Calculation or Compound IF Command.co it 77
Calling a Function in WHEN Criteriao it e ettt et e e 77
Calling a Function From a RECAP Commandttt i et ee e e 78
Storing and Accessing an External Function i e 80
Storing and Accessing a FUNCLion 0N z/0S. i e e e 80
Storing and Accessing a Function on UNIX. i i e 81
Storing and Accessing a Function on Windows.ot 81

4. Simplified Analytic Functionscccciiiiiciinecsnnsnassnnssnnsnnnnnnnes 83

4 Information Builders

Contents I

FORECAST_MOVAVE: Using a Simple Moving AVeragecvuii it it i i enennenns 83
FORECAST_EXPAVE: Using Single Exponential Smoothing i, 89
FORECAST_DOUBLEXP: Using Double Exponential Smoothingo, 92
FORECAST_SEASONAL: Using Triple Exponential Smoothingo i, 94
FORECAST_LINEAR: Using a Linear Regression Equation i, 98
PARTITION_AGGR: Creating Rolling Calculations i 102
PARTITION_REF: Using Prior Field Values in Calculations 112

5. Simplified Character Functionsccciveinnnnnnnnnnsnnnsnnnnnnnnnnsas 117

CHAR_LENGTH: Returning the Length in Charactersofa String 118
CONCAT: Concatenating Strings After Removing Trailing Blanks From the First 119
DIGITS: Converting a Number to a Character Stringcv it it et e e 121
LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing 124
LOWER: Returning a String With All Letters Lowercasec.ciiiiiiiiiiiininnnnnnnn 125
LPAD: Left-Padding a Character String vttt e e et e ettt e et aeas 126
LTRIM: Removing Blanks From the Left Endofa String 128
PATTERNS: Returning a Pattern That Represents the Structure of the Input String 129
POSITION: Returning the First Position of a Substring in a Source String 131
REGEX: Matching a String to a Regular EXpression ...t i i 132
REPLACE: ReplacCing @ String oottt et e e ettt 134
RPAD: Right-Padding a Character Stringcu ittt e ettt e et aeaens 136
RTRIM: Removing Blanks From the Right End of a String o it 138
SPLIT: Extracting an Element From a String i et 139
SUBSTRING: Extracting a Substring From a Source Stringt 140
TOKEN: Extracting a Token From @ Stringottt e e e e e eaes 142
TRIM_: Removing a Leading Character, Trailing Character, or Both From a String 144
UPPER: Returning a String With All Letters Uppercasecoviiiiiiiiiniinennns 147

6.Character Functionscocirirennnnsenannnsnsnnnnsnnnnnsnnannnsnnnnnssssdd9

Character FUNCHION NOTES oot e e e e e e et e 150
ARGLEN: Measuring the Length of a Stringo e e 150
ASIS: Distinguishing Between Space and Zero ..ottt e et 151
BITSON: Determining If a Bit Is On or Off i e i e 153
BITVAL: Evaluating a Bit String as an Integer o e e 155

Using Functions 5

Contents

BYTVAL: Translating a Characterto Decimalot it e e 156
CHKFMT: Checking the Format of @ Stringt e e e e 158
CHKNUM: Checking a String for Numeric Format it 160
CTRAN: Translating One Character to Anothert i i et 161
CTRFLD: Centering @ Character String oottt i et e e et e e eaens 164
EDIT: Extracting or Adding CharacCtersottt et 165
GETTOK: Extracting a Substring (TOKEN) ot ittt e e e e e e ettt es 167
LCWORD: Converting a String 1o Mixed-Case ittt e e e 169
LCWORD2: Converting a String to Mixed-Casettt e 170
LCWORDS3: Converting a String 1o MiXed-Case vt ii ittt e e e e aeae s 171
LJUST: LeftJustifying @ Stringot e ettt 172
LOCASE: Converting Text 10 LOWEICASE oottt e e e e et ea et 174
OVRLAY: Overlaying a Character Stringo v i it et e ettt i e et eaeas 175
PARAG: Dividing Text Into Smaller Lines ou it e e it 177
PATTERN: Generating a Pattern From a String i et 179
POSIT: Finding the Beginning of @ SUbStringt e e e e 181
REVERSE: Reversing the Charactersin a String i i e e 183
RJUST: Right-Justifying a Character String e e 184
SOUNDEX: Comparing Character Strings Phoneticallyot 185
SPELLNM: Spelling Out @ Dollar AMOUNtot et et e e e e 187
SQUEEZ: Reducing Multiple Spacestoa Single Space ...ttt i i 188
STRIP: Removing a Character From a Stringco ittt e et teeee e 189
STRREP: Replacing Character Stringsttt e it e et e e 191
SUBSTR: Extracting @ SUDSTINGo e e e et 193
TRIM: Removing Leading and Trailing OCCUIMENCES v vttt it enennns 195
UPCASE: Converting Text 10 UPPerCase ov ittt ittt ettt st et et et e e e 198
XMLDECOD: Decoding XML-Encoded Characterso, 199
XMLENCOD: XML-Encoding CharaCtersc.uuit ittt e ettt e et nens 201

7. Variable Length Character Functionscccciiiiiieincnnnnnnnnnnnas 205

L0 1Y = 205
LENV: Returning the Length of an Alphanumeric Field i ... 206
LOCASV: Creating a Variable Length Lowercase Stringttt 207

6 Information Builders

Contents I

POSITV: Finding the Beginning of a Variable Length Substringo .. 208
SUBSTV: Extracting a Variable Length Substring i i 210
TRIMV: Removing Characters From a Stringot e 212
UPCASV: Creating a Variable Length Uppercase Stringcoiiii it i 214

8. Character Functions for DBCS Code Pagesccvcvvrvirnnnnrnnnnsnnnnnnnsa217

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another 217
DEDIT: Extracting or Adding Characterst e e ea et 218
DSTRIP: Removing a Single-Byte or Double-Byte Character Froma String 220
DSUBSTR: Extracting @ SUbSTIiNg oot e e e et e e 221
JPTRANS: Converting Japanese Specific Charactersccoiiiii ittt 222
KKFCUT: Truncating @ StriNg .. oo vt i e it e e ettt e ettt e s 227
SFTDEL: Deleting the Shift Code From DBCS Data ...ttt iie e 228
SFTINS: Inserting the Shift Code IntoDBCS Datattt ii e 230
9. Maintain-specific Character Functionscccciiveiiiinnnnnsnnnnnnnnnna 233
CHAR2INT: Translating a Character Into an IntegerValue i, 234
INT2CHAR: Translating an Integer Value Intoa Character 234
LCWORD and LCWORDZ2: Converting a Character String to Mixed-Case 235
LENGTH: Determining the Length of a Character Stringot 236
LJUST: Left-Justifying a Character String (Maintain) it 237
LOWER: Converting a Character String to Lowercaset 237
MASK: Extracting or Adding Charactersttt et e e 238
MNTGETTOK: Extracting Tokens From a String Function 239
NLSCHR: Converting Characters From the Native English Code Page 242
OVRLAY: Overlaying a Character String (Maintain)oviti it e e aeaens 243
POSIT: Finding the Beginning of a Substring (Maintain) i, 244
RJUST: Right-Justifying a Character String (Maintain)c.c i, 245
SELECTS: Decoding a Value From @ Stack . ..o it i it e e e 246
STRAN: Substituting One Substring for Another i e 247
STRCMP: Comparing Character Strings v vttt i e ettt e et i 249
STRICMP: Comparing Character Strings and Ignoring Casecviiiii i, 250
STRNCMP: Comparing Character SUbSringscoi i i e e e 251
STRTOKEN: Extracting a Substring Based on Delimiters i, 251

Using Functions 7

Contents

SUBSTR: Extracting a Substring (Maintain)ttt i e e e 253
TRIM: Removing Trailing Occurrences (Maintain)ouiiii it i iea e 254
TRIMLEN: Determining the Length of a String Excluding Trailing Spaces 254
UPCASE: Converting Text to Uppercase (Maintain) ..o iiiinnenn 255
10. Data Source and Decoding Functionscccviieinnnncnnnnnnnnnnnnnnns 257
CHECKMDb5: Computing an MD5 Hash Check Valueo 257
CHECKSUM: Computing @a Hash Sum i i e e e i c et 259
DB_EXPR: Inserting an SQL Expression Intoa Request i, 260
DB_INFILE: Testing Values Against a File or an SQL Subquery o it 262
DB_LOOKUP: Retrieving Data Source Valuesttt i e e aeaens 268
DECODE: Decoding Valuesottt et e et et e ettt e e et 271
FIND: Verifying the Existence of a Value ina Data Source, 275
LAST: Retrieving the Preceding Valuet et e et 277
LOOKUP: Retrieving a Value From a Cross-referenced Data Sourceccuon.. 278
Using the Extended LOOKUP FUNCLioN.ot e 282

11. Simplified Date and Date-Time Functionsccciiievnnnrnnnnnnsnnnnneea 285

DT_CURRENT_DATE: Returning the Current Datettt eee e 286
DT_CURRENT_DATETIME: Returning the Current Date and Timeccivivnnan.. 286
DT_CURRENT_TIME: Returning the Current Timet e 287
DTADD: Incrementing a Date or Date-Time Componentccoitiiiiininiiinnennnn. 288
DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values . 291
DTIME: Extracting Time Components From a Date-Time Value 292
DTPART: Returning a Date or Date-Time Component in Integer Format 294
DTRUNC: Returning the Start of a Date Period fora GivenDate 296
12. Date FUNCLIONSuiuiiiuinsaranananasnsasasannnnsnsnsnsnnnnnsnnnsnnnns 301
Overview of Date FUNCLIONS oo e e e e 302
Using Standard Date FUNCLIONS oot i e e et et et e 303
SPECITYING WOIK Days. . . ot i e it it e e e e e e e e e 303
Specifying BUuSINESS Days. . . . oottt e e e 303

Specifying Holidays. oo i e e e e e 304

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager. 309
DATEADD: Adding or Subtracting a Date Unittoor FromaDate 311

8 Information Builders

Contents I

DATECVT: Convertingthe Format of aDateot e e it e e 314
DATEDIF: Finding the Difference Between Two Dates it i 316
DATEMOV: Moving a Date to a Significant Point i 319
DATETRAN: Formatting Dates in International Formats it 326
DPART: Extracting a Component Froma Datettt ee e 342
FIQTR: Obtaining the Financial Quarterc. i i e ittt e e e 344
FIYR: Obtaining the Financial Year i e e et e et 346
FIYYQ: Converting a Calendar Date toa Financial Date 348
TODAY: Returning the Current Date i i e e et eaens 351
Using Legacy Date FUNCHIONSot e e et e e et e e e 352

Using Old Versions of Legacy Date Functions. ...ttt i, 353

Using Dates With Two- and Four-Digit Years. e 353
AYM: Adding or Subtracting MoNths it e e et e e et e 355
AYMD: Adding or SUBLracting Days oo it e e e e e 356
CHGDAT: Changing How a Date String Displayso e e 358
DA Functions: Converting a Legacy Datetoan Integer i, 361
DMY, MDY, YMD: Calculating the Difference Between Two Dates 362
DOWK and DOWKL: Finding the Day of the Week i 364
DT Functions: Converting an IntegertoaDate ...t i et 365
GREGDT: Converting From Julian to Gregorian Format i .. 366
JULDAT: Converting From Gregorian to Julian Format i .. 368
YM: Calculating Elapsed MoNnths i i e e e et e 369

13. Date-Time Functionsccceeunussnnnnnnsnannnsnnnnnnsnnnnnsnnannnsnnns 311

Using Date-Time FUNCHIONS i e e ettt ettt 372
Date-Time Parameters. o e e e 372
Specifying the Order of Date Components.oviiiiii ittt 372

Specifying the First Day of the Week for Use in Date-Time Functions............. 373

Controlling Processing of Date-Time Values., 375

Supplying Arguments for Date-Time FUNCtions.t e eae s 375
Using Date-Time FOrmats.ot e e e e et e e 377
Numeric String Format. o e 377
Formatted-string Format.t e e e 378

Using Functions 9

Contents

Translated-string Format.ottt e e e e 378
TIMeE FOrmat. . . oo e 378
Assigning Date-Time Values.ot e ettt 379
CVTSTIME: Converting the System Date and Time (OpenVMS Only) ..., 382
GETSTIME: Extracting the System Date and Time (OpenVMS Only)o, 384
HADD: Incrementing a Date-Time Value i e e e 385
HCNVRT: Converting a Date-Time Value to Alphanumeric Formatt 387
HDATE: Converting the Date Portion of a Date-Time Value to a Date Format 389
HDIFF: Finding the Number of Units Between Two Date-Time Values 390
HDTTM: Converting a Date Value to a Date-Time Valueo, 392
HEXTR: Extracting Components of a Date-Time Value and Setting Remaining Components to
4= o T 393
HGETC: Storing the Current Local Date and Time in a Date-Time Field 395
HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field 397
HHMMSS: Retrieving the Current Timeo et e s 398
HHMS: Converting a Date-Time ValuetoaTime Value ot 399
HINPUT: Converting an Alphanumeric String to a Date-Time Value 400
HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight 402
HMASK: Extracting Date-Time Components and Preserving Remaining Components 404
HNAME: Retrieving a Date-Time Component in Alphanumeric Format 406
HPART: Retrieving a Date-Time Component as a Numeric Value 408
HSETPT: Inserting a Component Into a Date-Time Value i, 410
HTIME: Converting the Time Portion of a Date-Time Valuetoa Number 412
HTMTOTS or TIMETOTS: Converting a Time toa Timestamp, 413
HYYWD: Returning the Year and Week Number From a Date-Time Value 415
WRTSTIME: Converting Dates to 64-Bit DEC Date/Time Format (OpenVMS Only) 417
14. Maintain-specific Date and Time Functionsccccviennennnnannnnnnns 419
Maintain-specific Standard Date and Time Functions 419
HHMMSS: Retrieving the Current Time (Maintain).ottt 419
Initial_HHMMSS: Returning the Time the Application Was Started. 420
Initial_TODAY: Returning the Date the Application Was Started. 420
TODAY: Retrieving the Current Date (Maintain).co it i i i 420

10 Information Builders

Contents I

TODAY2: Returning the Current Date.ttt i e e e e et 421
ADD: Adding Days to @ Date. oottt e 422
DAY: Extracting the Day of the Month FromaDate. i .. 423
JULIAN: Determining How Many Days Have Elapsed inthe Year...................... 423
MONTH: Extracting the Month FromaDate............ i 424
QUARTER: Determining the Quarter.ttt e ettt e et iaaas 425
SETMDY: Settingthe ValuetoaDate.ttt e et i 425
SUB: Subtracting a Value Froma Date. ... it e e 426
WEEKDAY: Determining the Day of the Week foraDate............. 427
YEAR: Extracting the Year Froma Date.t et e e 428

15. Simplified Conversion FUNctionsccccvvernnsnnnnnnnsnnnsnnnnnnnnnnsssd29

CHAR: Returning a Character Based ona NumericCodeco i iinnennnnnn.. 429
CTRLCHAR: Returning a Non-Printable Control Character iiiii.... 430
EDIT2: Converting a Numeric, Date, or Date-Time Value to a Character String 433
HEXTYPE: Returning the Hexadecimal View of anlnputValueo, 435
PHONETIC: Returning a Phonetic Key fora String e 437
TO_INTEGER: Converting a Character Stringto an IntegerValue 439
TO_NUMBER: Converting a Character Stringto a NumericValueccooo.... 440
16. Format Conversion Functionscciciiiiuincncnnnnnnnnnnnnnnnnnns 441
ATODBL: Converting an Alphanumeric String to Double-Precision Format 441
EDIT: Converting the Format of a Field oo it e e et 443
FPRINT: Converting Fields to Alphanumeric Format i i 444
FTOA: Converting a Number to Alphanumeric Format 449
HEXBYT: Converting a Decimal Integerto a Character ..., 450
ITONUM: Converting a Large Binary Integer to Double-Precision Format 452
ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format 453
ITOZ: Converting a Number to Zoned Formatot e it 455
PCKOUT: Writing a Packed Number of Variable Length i i, 456
PTOA: Converting a Packed-Decimal Number to Alphanumeric Format 457
TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal 459
UFMT: Converting an Alphanumeric String to Hexadecimal, 461
XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File 462

Using Functions 11

Contents

17. Maintain-specific Light Update Support Functionsccicivineinnnss 465
IWC.FindAppCGlIValue: Retrieving a WebFOCUS Parameter or Variable Value 465
IWC.GetAppCGlIValue: Importing a WebFOCUS Parameter or Variable 466

18. Simplified Numeric FUnctionsccccevernnsnnnsnnnssnsnnnnnnnsnnnnnnnss 469

CEILING: Returning the Smallest Integer Value Greater Than or Equaltoa Value 469
EXPONENT: Raising € 10 @ POWETot e ettt 471
FLOOR: Returning the Largest Integer Less Than or EqualtoaValue 472
MOD: Calculating the Remainder From a DivisSiont i e 474
POWER: Raising a Value to @ Power e e e 475

19. NumericFunctionscccceeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 377

12

ABS: Calculating Absolute Valueo i e e et e e et s 478
ASIS: Distinguishing Between a Blank and @ Zerocou ittt i et 478
BAR: Producing @ Bar Chart i e e 479
CHKPCK: Validating a Packed Fieldo e e 481
DMOD, FMOD, and IMOD: Calculating the Remainder From a Division 483
EXP: Raising € to the Nth POwWer o e et e 485
EXPN: Evaluating a Number in Scientific Notationo 486
FMLCAP: Retrieving FML Hierarchy Captionsoiii i i i e e 487
FMLFOR: Retrieving FML Tag Values e e e e e 488
FMLINFO: Returning FOR ValUes oot e e et et ettt e et 489
FMLLIST: Returning an FML Tag Listo oi it e et eeeeeiaeaes 491
INT: Finding the Greatest Integer it e e 492
LOG: Calculating the Natural Logarithmt i e e et 492
MAX and MIN: Finding the Maximum or Minimum Value 493
MIRR: Calculating the Modified Internal Return Rate 494
NORMSDST and NORMSINV: Calculating Normal Distributions oot 498

NORMSDST: Calculating Standard Cumulative Normal Distribution. 498

NORMSINV: Calculating Inverse Cumulative Normal Distribution...................... 501
PRDNOR and PRDUNI: Generating Reproducible Random Numberst 502
RDNORM and RDUNIF: Generating Random NUmbers, 505
SQRT: Calculating the Square ROOto i i i e e et e e 506
XIRR: Calculating the Modified Internal Return Rate (Periodic or Non-Periodic) 507

Information Builders

Contents I

20. Maintain-specific Script Functionsccciiiiinecnnnnnsannsnnnnnnnns 511
IWCLink: Displaying a URL in @ Browser or Frame ia e 511
IWCSwitchToSecure and IWCSwitchToUnsecure: Turning the Secure Sockets Layer On and

5 513
IWCTrigger: Calling a Maintain Function From a Script Handler, 514
IWC.FindAppCGlIValue: Finding a WebFOCUS Parameter or Variable Value 515
IWC.GetAppCGlValue: Retrieving a WebFOCUS Parameter or Variable 517

21. Simplified Statistical Functionsccciiiisnnnrnnnnnssnnsnnssnnnnnneas319

Specify the Partition Size for Simplified Statistical Functions 519
CORRELATION: Calculating the Degree of Correlation Between Two Setsof Data 520
KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean
ValUE . . e e 521
MULTIREGRESS: Creating a Multivariate Linear Regression Column 523
RSERVE: Running an R SCript oot e e e e e et 525
STDDEV: Calculating the Standard Deviation fora Set of DataValues 530
22. Simplified System Functionsccoiveinennnnsnsnasnsannsnnnnsnnnnnns 533
EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File 533
ENCRYPT: Encrypting @ Passwordttt ettt st et e et e e e 534
GETENV: Retrieving the Value of an Environment Variable 535
PUTENV: Assigning a Value to an Environment Variable 535
23.SystemFunctionsccciiiieinecnnnnsnnnnsnnnnsnnsnsnnsnnnnnnnnnnnns 37
CHECKPRIVS: Retrieving the Privilege State for the Connected User 538
CLSDDREC: Closing All Files Opened by the PUTDDREC Functiont 538
FEXERR: Retrieving an Error MeSSage . .. oot v ittt et ettt ettt et 539
FGETENV: Retrieving the Value of an Environment Variable, 540
FINDMEM: Finding a Member of a Partitioned Data Set 541
FPUTENV: Assigning a Value to an Environment Variable i, 542
GETCOOKI: Retrieving a Browser Cookie Valuettt ee e 544
GETHEADR: Retrieving an HTTP Header Variable i 545
GETPDS: Determining If a Member of a Partitioned Data Set Exists 546
GETUSER: Retrieving @ USer ID ottt et ettt e ettt e s 548
GRPLIST: Retrieving the Group List of the Connected User, 549

Using Functions 13

Contents

JOBNAME: Retrieving the Current Process Identification String oot 550
MVSDYNAM: Passing a DYNAM Command to the Command Processor 551
PUTCOOKI: Submitting a Value to a Browser COOKie viiiiiii it i iieeen e 552
PUTDDREC: Writing a Character String as a Record in a Sequential File 553
SLEEP: Suspending Execution for a Given Number of Secondsiiiian.. 556
SPAWN: Creating a Subprocess From a Procedureco ittt 557
SYSTEM: Calling @ System Programvuiti ettt ettt et i e eaens 558
SYSVAR: Retrieving the Value of a z/0S System Variable i, 560
24, Simplified Geography Functionscccctirnrnannnnnssnannsnnnnnnnnnnns 563
Sample Geography Fileso e 564
GIS_DISTANCE: Calculating the Distance Between Geometry Points 568
GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points 570
GIS_GEOCODE_ADDR: Geocoding a Complete Address ..., 574
GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City,and State 575
GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code 577
GIS_GEOMETRY: Building a JSON Geometry Objectt 578
GIS_IN_POLYGON: Determining if a Point is in a Complex Polygont 582
GIS_LINE: BUilding @ JSON Line . ..ottt ittt et e e e e et et e e e 583
GIS_POINT: Building a Geometry Point i e et 587
GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point 590
GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate 594
A.Creating aSubroutineccicieinncnnnnnnanasnannsnasnsnannannnnnnnnns 599
Wrting @ SUDIOULINEo e e e e e 599
Naming @ SUBIOULINE. oo e ettt e e e et e 601
Creating ArgUMENTS. . .ot e e e 601
Language Considerations.ottt e e e 602
Programming @ SUBroUtine. oot e e 605
Executing a Subroutine atan Entry Point. 606

Including More Than 200 Arguments in a Subroutine Call...................... 607

Compiling and Storing @ SUBIOULINEottt e e e e et e e 610
Compiling and Storing a Subroutine on z/0S. i e 611
Compiling and Storing a Subroutine on UNIX. i e 611

14

Information Builders

Contents I

Compiling and Storing a Subroutine on WindOWS. oottt e e 611
Testing the SUDIOULINE i i e e et e e ettt 611
Using a Custom Subroutine: The MTHNAM Subroutinettt 612

Writing the MTHNAM Subroutine.ot e e e e et 612

Calling the MTHNAM Subroutine Froma Request.o i, 618
Subroutines Written in REXX o e e 619

Formats and REXX Subroutines. ot e e e 624

Using Functions 15

Contents

16 Information Builders

Preface

This content describes how to use Information Builders-supplied functions to perform complex
calculations and manipulate data in procedures. It is intended for application developers and
end users.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix

Contents

How to Use This Manual

Describes how to use the information in the
WebFOCUS Using Functions manual.

Introducing Functions

Introduces functions and explains the different
types of available functions.

Accessing and Calling a
Function

Describes the considerations for supplying
arguments in a function, and explains how to use a
function in a command and access functions stored
externally.

Simplified Analytic Functions

Describes analytic functions that have streamlined
parameter lists, similar to those used by SQL
functions.

Simplified Character
Functions

Describes character functions that have
streamlined parameter lists, similar to those used
by SQL functions.

Character Functions

Describes character functions that manipulate
alphanumeric fields and character strings.

Variable Length Character
Functions

Describes variable-length character functions which
manipulate alphanumeric fields and character
strings.

Character Functions for DBCS
Code Pages

Describes functions that manipulate strings of
DBCS and SBCS characters when the configuration
uses a DBCS code page.

Maintain-specific Character
Functions

Describes Maintain-specific character functions that
manipulate alphanumeric fields and character
strings.

Using Functions

17

18

Chapter/Appendix

Contents

10 Data Source and Decoding Describes data source and decoding functions that
Functions search for data source records, retrieve data source
records or values, and assign values based on the
value of an input field.

11 Simplified Date and Date- Describes date and date-time functions that have

Time Functions streamlined parameter lists, similar to those used
by SQL functions.

12 Date Functions Describes date functions that manipulate date
values.

13 Date-Time Functions Describes date-time functions that manipulate date-
time values.

14 Maintain-specific Date and Describes Maintain-specific date and time functions

Time Functions that manipulate date and time values.
15 Simplified Conversion Describes conversion functions that have
Functions streamlined parameter lists, similar to those used
by SQL functions.

16 Format Conversion Functions | Describes format conversion functions that convert
fields from one format to another.

17 Maintain-specific Light Describes light update support functions that

Update Support Functions retrieve WebFOCUS parameter or variable data
implicitly from within a Maintain Data procedure.

18 Simplified Numeric Functions | Describes numeric functions that have streamlined
parameter lists, similar to those used by SQL
functions.

19 Numeric Functions Describes numeric functions that perform
calculations on numeric constants and fields.

20 Maintain-specific Script Describes script functions that enable you to

Functions

integrate JavaScript and VBScripts into your
Maintain Data applications and to perform client-
side execution without returning to the WebFOCUS
Server.

Information Builders

Preface I

Chapter/Appendix Contents

21 Simplified Statistical

Functions

22 Simplified System Functions Describes system functions that have streamlined
parameter lists, similar to those used by SQL
functions.

23 System Functions Describes system functions that call the operating
system to obtain information about the operating
environment or to use a system service.

24 Simplified Geography Describes geography functions that have

Functions streamlined parameter lists, similar to those used
by SQL functions.

A Creating a Subroutine Describes how to create custom subroutines in
addition to the functions provided by Information
Builders.

Conventions

The following table describes the conventions that are used in this manual.

Convention Description
THI'S TYPEFACE Denotes syntax that you must enter exactly as shown.
or

this typeface

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

under score Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or
dialog box option that you can click or select.

Key + Key Indicates keys that you must press simultaneously.

Using Functions 19

Related Publications

Convention Description
{ 1} Indicates two or three choices. Type one of them, not the braces.
[] Indicates a group of optional parameters. None are required, but

you may select one of them. Type only the parameter in the
brackets, not the brackets.

Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis (...).

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

Visit our Technical Content Library at http;//documentation.informationbuilders.com. You can
also contact the Publications Order Department at (800) 969-4636.

Customer Support

20

Do you have questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
http://www.informationbuilders.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

Information Builders

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com
http://www.informationbuilders.com

Preface I

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities. Please be ready to provide your
six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have

To help our consultants answer your questions effectively, be prepared to provide the following
information when you call:

4 Your six-digit site code (xxxx.xx).
4 Your WebFOCUS configuration:
d The front-end software you are using, including vendor and release.

.d The communications protocol (for example, TCP/IP or HLLAPI), including vendor and
release.

4 The software release.

.4 Your server version and release. You can find this information using the Version option
in the Web Console.

.4 The stored procedure (preferably with line numbers) or SQL statements being used in
Server access.

4 The Master File and Access File.
4 The exact nature of the problem:

4 Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

.4 Provide the error message and return code, if applicable.
. Is this related to any other problem?

-l Has the procedure or query ever worked in its present form? Has it been changed recently?
How often does the problem occur?

d What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

Using Functions 21

User Feedback

- Is this problem reproducible? If so, how?

.4 Have you tried to reproduce your problem in the simplest form possible? For example, if you
are having problems joining two data sources, have you tried executing a query containing
just the code to access the data source?

.4 Do you have a trace file?

-1 How is the problem affecting your business? Is it halting development or production? Do
you just have questions about functionality or documentation?

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. You can contact us through our website
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http;//education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

22 Information Builders

http://documentation.informationbuilders.com/connections.asp
http://education.informationbuilders.com

Chapter

How to Use This Manual

This manual describes the functions supplied with your Information Builders product. It is
intended for application developers who call these functions from their programs to
perform calculations or manipulate data. Other users who access corporate data to
produce reports can call these functions.

This manual also explains how to create functions tailored to individual needs (called
subroutines) for use with your Information Builders product.

In this chapter:
4 Available Languages

.d Operating Systems

Available Languages
A function is available in the reporting language, the Maintain language, or both:

4 The reporting language includes all commands used to create a report. It is available to
users of any Information Builders product.

.4 The Maintain language includes all commands used to maintain data sources with the
Maintain product. It is available only to those who purchased Maintain.

Look in the description of an individual function for the available language, or in the
categorized list of functions in Introducing Functions on page 25.

Operating Systems

Except in cases noted specifically, all functions run on all server-supported operating systems.

Using Functions 23

Operating Systems

24 Information Builders

Chapter

Introducing Functions

The following topics offer an introduction to functions and explain the different types of
functions available.

In this chapter:
- Using Functions
.4 Types of Functions

.d Character Chart for ASCIl and EBCDIC

Using Functions

Functions operate on one or more arguments and return a single value. The returned value can
be stored in a field, assigned to a Dialogue Manager variable, used in a calculation or other
processing, or used in a selection or validation test. Functions provide a convenient way to
perform certain calculations and manipulations.

There are three types of functions:

. Internal functions. Built into the WebFOCUS language, requiring no extra work to access or
use. The following reporting and Maintain functions are internal functions. You cannot
replace any of these internal functions with your own functions of the same name. All other
functions are external.

L

ABS

ASIS

DMY, MDY, and YMD
DECODE

EDIT

FIND

LAST

LOG

L o U oJ o o doud

LOOKUP

Using Functions 25

Types of Functions

4 MAX and MIN
4 SQRT
.4 All Maintain-specific functions

4 External functions. Stored in an external library that must be accessed. When invoking
these functions, an argument specifying the output field or format of the result is required.
External functions are distributed with WebFOCUS. You can replace these functions with
your own functions of the same name. However, in this case, you must set
USERFNS=LOCAL.

.d Subroutines. Written by the user and stored externally. For details, see Creating a
Subroutine on page 599.

For information on how to use an internal or external function, see Accessing and Calling a
Function on page 61.
Types of Functions

You can access any of the following types of functions:

- Simplified analytic functions. Perform calculations using multiple rows in the internal
matrix. For details, see Simplified Analytic Functions on page 28.

4 Simplified character functions. Character functions with streamlined parameter lists and
no output arguments, similar to those used by SQL functions. For details, see Simplified
Character Functions on page 28.

-1 Character functions. Manipulate alphanumeric fields or character strings. For details, see
Character Functions on page 30.

. Variable length character functions. Manipulate AnV fields or character strings. For details,
see Variable Length Character Functions on page 33.

.d Character functions for DBCS code pages. Manipulate alphanumeric fields or character
strings on DBCS code pages. For details, see Character Functions for DBCS Code Pages on
page 34.

4 Maintain-specific character functions. Manipulate alphanumeric fields or character strings.
These functions are available only in Maintain Data. For details, see Maintain-specific
Character Functions on page 35.

d Data source and decoding functions. Search for or retrieve data source records or values,
and assign values. For details, see Data Source and Decoding Functions on page 36.

26 Information Builders

2. Introducing Functions I

Simplified date and date-time functions. Date and date-time functions with streamlined
parameter lists and no output arguments, similar to those used by SQL functions. For
details, see Simplified Date and Date-Time Functions on page 37.

d Date functions. Manipulate dates. For details, see Date Functions on page 38.

d Date-time functions. Manipulate date-time values. For details, see Date-Time Functions on

Using Functions

page 41.

Maintain-specific date and time functions. Manipulate dates and times. These functions
are available only in Maintain Data. For details, see Maintain-specific Date and Time
Functions on page 43.

Simplified conversion functions. Convert fields from one format to another using
streamlined parameter lists. For details, see Simplified Conversion Functions on page 44.

Format conversion functions. Convert fields from one format to another. For details, see
Format Conversion Functions on page 45.

Maintain-specific Light Update Support functions. Retrieve WebFOCUS variable or
parameter data implicitly from within a Maintain procedure. These functions are available
only in Maintain Data. For details, see Maintain-specific Light Update Support Functions on
page 46.

Simplified numeric functions. Perform calculations on numeric constants and fields using
streamlined parameter lists. For details, see Simplified Numeric Functions on page 46.

Numeric functions. Perform calculations on numeric constants and fields. For details, see
Numeric Functions on page 47.

Maintain-specific Script functions. Integrate JavaScript and VBScripts into your Maintain
Data application and perform client-side execution without returning to the WebFOCUS
Server. These functions are available only in Maintain Data. For details, see Maintain-
specific Script Functions on page 49.

Simplified statistical functions. Perform statistical calculations. For details, see Simplified
Statistical Functions on page 49.

Simplified system functions. Call the operating system to obtain information about the
operating environment or to use a system service, using streamlined parameter lists. For
details, see Simplified System Functions on page 50.

System functions. Call the operating system to obtain information about the operating
environment or to use a system service. For details, see System Functions on page 50.

27

Types of Functions

- Simplified Geography Functions. Perform location-based calculations and retrieve
geocoded points for various types of location data. For details, see Simplified Geography
Functions on page 52

WebFOCUS-specific Functions

Most Information Builders-supplied functions are available in both WebFOCUS and FOCUS.
However, some functions are available only in WebFOCUS. They are:

-4 SPAWN
-4 SYSTEM

For details on these functions, see the individual topics.

Simplified Analytic Functions
The following functions perform calculations based on multiple rows in the internal matrix. For
details, see Simplified Analytic Functions on page 83.

FORECAST_MOVAVE
Calculates a simple moving average column.

FORECAST_EXPAVE
Calculates a single exponential smoothing column.

FORECAST_DOUBLEXP
Calculates a double exponential smoothing column.

FORECAST_SEASONAL
Calculates a triple exponential smoothing column.

FORECAST_LINEAR
Calculates a linear regression column.

PARTITION_AGGR
Creates rolling calculations.

PARTITION_REF
Creates calculations using prior field values.

Simplified Character Functions

The following functions manipulate alphanumeric fields or character strings and have simplified
parameter lists. For details, see Simplified Character Functions on page 117.

CHAR_LENGTH

Returns the length, in characters, of a string.

28 Information Builders

2. Introducing Functions I

Available Languages: reporting

DIGITS
Converts a number to a character string of the specified length.

Available Languages: reporting

LAST_NONBLANK
retrieves the last field value that is neither blank nor missing. If all previous values are
either blank or missing, returns a missing value.

LOWER
Translates a string to lowercase.

Available Languages: reporting
LPAD
Left-pads a string with a given character.
Available Languages: reporting
LTRIM
Removes all blanks from the left end of a string.
Available Languages: reporting
PATTERNS
Returns a pattern that represents the structure of the source string.
Available Languages: reporting
POSITION
Returns the first position (in characters) of a substring in a source string.
Available Languages: reporting

REGEX
Matches a string to a regular expression and returns true (1) or false (0).

RPAD
Right-pads a string with a given character.
Available Languages: reporting

RTRIM
Removes all blanks from the right end of a string.

Available Languages: reporting

Using Functions 29

Types of Functions

SUBSTRING
Extracts a substring from a source string.
Available Languages: reporting
TOKEN
Extracts a token (substring) based on a token number and a delimiter character.
Available Languages: reporting
TRIM_

Removes all occurrences of a single character from either the beginning or end of a string,
or both.

Available Languages: reporting
UPPER
Translates a string to uppercase.

Available Languages: reporting

Character Functions

The following functions manipulate alphanumeric fields or character strings. For details, see
Character Functions on page 149.

ARGLEN
Measures the length of a character string within a field, excluding trailing blanks.
Available Languages: reporting, Maintain
ASIS
Distinguishes between a blank and a zero in Dialogue Manager.
Available Languages: reporting
BITSON
Evaluates an individual bit within a character string to determine whether it is on or off.
Available Languages: reporting, Maintain
BITVAL
Evaluates a string of bits within a character string and returns its value.

Available Languages: reporting, Maintain

30 Information Builders

2. Introducing Functions I

BYTVAL
Translates a character to its corresponding ASCII or EBCDIC decimal value.
Available Languages: reporting, Maintain

CHKFMT
Checks a character string for incorrect characters or character types.
Available Languages: reporting, Maintain

CTRAN

Translates a character within a character string to another character based on its decimal
value.

Available Languages: reporting, Maintain
CTRFLD
Centers a character string within a field.
Available Languages: reporting, Maintain
EDIT
Extracts characters from or adds characters to a character string.
Available Languages: reporting
GETTOK

Divides a character string into substrings, called tokens, where a specific character, called
a delimiter, occurs in the string.

Available Languages: reporting, Maintain

LCWORD
Converts the letters in a character string to mixed case.
Available Languages: reporting, Maintain

LCWORD2
Converts the letters in a character string to mixed case.
Available Languages: reporting, Maintain

LCWORD3
Converts the letters in a character string to mixed case.

Available Languages: reporting, Maintain

Using Functions 31

Types of Functions

LJUST
Leftjustifies a character string within a field.
Available Languages: reporting
LOCASE
Converts alphanumeric text to lowercase.
Available Languages: reporting, Maintain
OVRLAY
Overlays a base character string with a substring.
Available Languages: reporting
PARAG
Divides a line of text into smaller lines by marking them with a delimiter.
Available Languages: reporting, Maintain
POSIT
Finds the starting position of a substring within a larger string.
Available Languages: reporting
REVERSE
Reverses the characters in a character string.
Available Languages: reporting, Maintain
RJUST
Right-justifies a character string.
Available Languages: reporting
SOUNDEX
Searches for a character string phonetically without regard to spelling.
Available Languages: reporting, Maintain
SPELLNM

Takes an alphanumeric string or a numeric value with two decimal places and spells it out
with dollars and cents. This function is available only for WebFOCUS.

Available Languages: reporting, Maintain

32 Information Builders

2. Introducing Functions I

SQUEEZ
Reduces multiple contiguous spaces within a character string to a single space.
Available Languages: reporting, Maintain
STRIP
Removes all occurrences of a specific character from a string.
Available Languages: reporting, Maintain
STRREP
Replaces all occurrences of a specific character string.
Available Languages: reporting, Maintain
SUBSTR
Extracts a substring based on where it begins and its length in the parent string.
Available Languages: reporting
TRIM
Removes leading and/or trailing occurrences of a pattern within a character string.
Available Languages: reporting
UPCASE
Converts a character string to uppercase.

Available Languages: reporting

Variable Length Character Functions

The following functions manipulate variable length alphanumeric fields or character strings. For
details, see Variable Length Character Functions on page 205.

LENV
Returns the actual length of an AnV field or the size of an An field.

Available Languages: reporting

LOCASV
Converts alphanumeric text to lowercase in an AnV field.

Available Languages: reporting

POSITV

Finds the starting position of a substring in an AnV field.

Using Functions 33

Types of Functions

Available Languages: reporting

SUBSTV

Extracts a substring based on where it begins and its length in the parent string in an AnV
field.

Available Languages: reporting
TRIMV

Removes leading and/or trailing occurrences of a pattern within a character string in an
AnV field.

Available Languages: reporting
UPCASV
Converts a character string to uppercase in an AnV field.

Available Languages: reporting

Character Functions for DBCS Code Pages

The following functions manipulate character strings for DBCS code pages. For details, see
Character Functions for DBCS Code Pages on page 217.

DCTRAN

Translates a single-byte or double-byte character to another character.
DEDIT

Extracts characters from or adds characters to a string.
DSTRIP

Removes a single-byte or double-byte character from a string.
DSUBSTR

Extracts a substring based on its length and position in the source string.
JPTRANS

Converts Japanese specific characters.

34 Information Builders

2. Introducing Functions I

Maintain-specific Character Functions

The following functions manipulate alphanumeric fields or character strings. They are available
only in the Maintain language. For details, see Maintain-specific Character Functions on page
233.

CHAR2INT

Translates an ASCII or EBCDIC character to the integer value it represents, depending on
the operating system.

INT2CHAR

Translates an integer into the equivalent ASCIl or EBCDIC character, depending on the
operating system.

LCWORD and LCWORD2

Converts the letters in a character string to mixed case.
LENGTH

Measures the length of a character string, including trailing blanks.
LJUST

Left-justifies a character string within a field.
LOWER

Converts a character string to lowercase.
MASK

Extracts characters from or adds characters to a character string.
MNTGETTOK

Divides a character string into substrings, called tokens.
NLSCHR

Converts a character from the native English code page to the running code page.
OVRLAY

Overlays a base character string with a substring.
POSIT

Finds the starting position of a substring within a larger string.
RJUST

Right-justifies a character string.

Using Functions 35

Types of Functions

SELECTS
Decodes a value from a stack.
STRAN
Substitutes a substring for another substring in a character string.
STRCMP
Compares two alphanumeric strings using the ASCIl or EBCDIC collating sequence.
STRICMP

Compares two alphanumeric strings using the ASCII or EBCDIC collating sequence, but
ignoring case differences.

STRNCMP

Compares a specified number of characters in two character strings starting at the
beginning of the strings using the EBCDIC or ASCII collating sequence.

SUBSTR
Extracts a substring based on where it begins and its length in the parent string.
TRIM
Removes trailing occurrences of a pattern within a character string.
TRIMLEN
Determines the length of a character string excluding trailing spaces.
UPCASE

Converts a character string to uppercase.

Data Source and Decoding Functions

The following functions search for data source records, retrieve data source records or values,
and assign values. For details, see Data Source and Decoding Functions on page 257.

DB_EXPR

Inserts an SQL expression into the SQL generated for a request against a relational data
source.

Available Languages: reporting, MODIFY
DB_INFILE

Compares values in a source file to values in a target file, or if the source file is a
relational data source, to values retrieved by a subquery.

36 Information Builders

2. Introducing Functions I

Available Languages: reporting, MODIFY
DB_LOOKUP
Retrieves a data value from a lookup data source.
Available Languages: reporting, MODIFY
DECODE
Assigns values based on the coded value of an input field.
Available Languages: reporting, Maintain
FIND
Determines if an incoming data value is in an indexed FOCUS data source field.
Available Languages: reporting
LAST
Retrieves the preceding value for a field.
Available Languages: reporting
LOOKUP
Retrieves a data value from a cross-referenced FOCUS data source in a MODIFY request.

Available Languages: MODIFY, Maintain

Simplified Date and Date-Time Functions

The following functions manipulate date and date- time values. For details see Simplified Date
and Date-Time Functions on page 285.

DT_CURRENT_DATE
Returns the current date.

DT_CURRENT_DATETIME
Returns the current date and time.

DT_CURRENT_TIME
Returns the current time.

DTADD
Returns a new date after adding the specified number of a supported component

Available Languages: reporting, Maintain

DTDIFF

Returns the number of given component boundaries between the two dates.

Using Functions 37

Types of Functions

Available Languages: reporting, Maintain

DTIME
Extracts time components from a date-time value.

DTPART
Returns a component value in integer format.
Available Languages: reporting, Maintain
DTRUNC

Returns the first date within a period

Available Languages: reporting, Maintain

Date Functions

38

The following functions manipulate dates. For details see Date Functions on page 301.

Standard Date Functions
DATEADD

Adds a unit to or subtracts a unit from a date format.

Available Languages: reporting, Maintain
DATECVT

Converts date formats.
Available Languages: reporting, Maintain
DATEDIF

Returns the difference between two dates in units.

Available Languages: reporting, Maintain
DATEMOV

Moves a date to a significant point on the calendar.
Available Languages: reporting, Maintain
DATETRAN

Formats dates in international formats.

Available Languages: reporting, Maintain
DPART

Extracts a component from a date field and returns it in numeric format.

Information Builders

2. Introducing Functions I

Available Languages: reporting, Maintain
FIYR

Returns the financial year, also known as the fiscal year, corresponding to a given calendar
date based on the financial year starting date and the financial year numbering convention.

Available Languages: reporting, Maintain
FIQTR

Returns the financial quarter corresponding to a given calendar date based on the financial
year starting date and the financial year numbering convention.

Available Languages: reporting, Maintain
FIYYQ

Returns a financial date containing both the financial year and quarter that corresponds to
a given calendar date.

Available Languages: reporting, Maintain
HMASK

Extracts components from a date-time value and moves them to a target date-time field
with all other components of the target field preserved.

Available Languages: reporting, Maintain
TODAY
Retrieves the current date from the system.

Available Languages: reporting, Maintain

Legacy Date Functions

AYM
Adds or subtracts months from dates that are in year-month format.
Available Languages: reporting, Maintain

AYMD
Adds or subtracts days from dates that are in year-month-day format.
Available Languages: reporting, Maintain

CHGDAT

Rearranges the year, month, and day portions of alphanumeric dates, and converts dates
between long and short date formats.

Using Functions 39

Types of Functions

Available Languages: reporting, Maintain

DA
Convert dates to the corresponding number of days elapsed since December 31, 1899.
DADMY converts dates in day-month-year format.
DADYM converts dates in day-year-month format.
DAMDY converts dates in month-day-year format.
DAMYD converts dates in month-year-day format.
DAYDM converts dates in year-day-month format.
DAYMD converts dates in year-month-day format.
Available Languages: reporting, Maintain

DMY, MDY, and YMD

Calculate the difference between two dates.

Available Languages: reporting, Maintain
DOWK and DOWKL

Find the day of the week that corresponds to a date.

Available Languages: reporting, Maintain

DT
Converts the number of days elapsed since December 31, 1899 to the corresponding

date.
DTDMY converts numbers to day-month-year dates.
DTDYM converts numbers to day-year-month dates.
DTMDY converts numbers to month-day-year dates.
DTMYD converts numbers to month-year-day dates.
DTYDM converts numbers to year-day-month dates.
DTYMD converts numbers to year-month-day dates.
Available Languages: reporting, Maintain

GREGDT
Converts dates in Julian format to year-month-day format.

Available Languages: reporting, Maintain

40 Information Builders

2. Introducing Functions I

JULDAT
Converts dates from year-month-day format to Julian (year-day format).

Available Languages: reporting, Maintain
YM

Calculates the number of months that elapse between two dates. The dates must be in
year-month format.

Available Languages: reporting, Maintain

Date-Time Functions

The following functions manipulate date-time values. For details see Date-Time Functions on
page 371.

CVTSTIME (OpenVMS Only)

Converts the retrieved 64-bit DEC Date/Time formatted field to a printable character string
or internal natural date value offset.

GETSTIME (OpenVMS Only)

Extracts the current 64-bit DEC Date/Time value from the system.

HADD
Increments a date-time field by a given number of units.

Available Languages: reporting, Maintain
HCNVRT

Converts a date-time field to a character string.

Available Languages: reporting, Maintain
HDATE

Extracts the date portion of a date-time field, converts it to a date format, and returns the
result in the format YYMD.

Available Languages: reporting, Maintain
HDIFF

Calculates the number of units between two date-time values.

Available Languages: reporting, Maintain
HDTTM

Converts a date field to a date-time field. The time portion is set to midnight.

Using Functions 41

Types of Functions

Available Languages: reporting, Maintain

HEXTR

Extracts components from a date-time value and moves them to a target date-time field
with all other components set to zero.

Available Languages: reporting, Maintain

HGETC
Stores the current date and time in a date-time field.

Available Languages: reporting, Maintain

HMASK

Extracts components from a date-time value and moves them to a target date-time field
with all other components of the target field preserved.

Available Languages: reporting, Maintain

HHMMSS
Retrieves the current time from the system.
Available Languages: reporting
HINPUT
Converts an alphanumeric string to a date-time value.

Available Languages: reporting, Maintain
HMIDNT

Changes the time portion of a date-time field to midnight (all zeros).

Available Languages: reporting, Maintain

HNAME

Extracts a specified component from a date-time field and returns it in alphanumeric
format.

Available Languages: reporting, Maintain

HPART
Extracts a specified component from a date-time field and returns it in numeric format.

Available Languages: reporting, Maintain

HSETPT

Inserts the numeric value of a specified component into a date-time field.

42 Information Builders

2. Introducing Functions I

Available Languages: reporting, Maintain
HTIME

Converts the time portion of a date-time field to the number of milliseconds or
microseconds.

Available Languages: reporting, Maintain
HTMTOTS/TIMETOTS
Converts a time to a timestamp.
Available Languages: reporting, Maintain
WRTSTIME (OpenVMS Only)
Accepts a date and time in one of five formats and converts the value to native OpenVMS
64-bit DEC Date/Time format.
Maintain-specific Date and Time Functions
The following functions manipulate dates and times. They are available only in the Maintain
language. For details, see Maintain-specific Date and Time Functions on page 419.
Maintain-specific Standard Date and Time Functions
HHMMSS
Retrieves the current time from the system.
Initial_HHMMSS
Retrieves the time that the Maintain module was started.
Initial_TODAY
Retrieves the date that the Maintain module was started.
TODAY
Retrieves the current date from the system.
TODAY2

Retrieves the current date from the system.

Maintain-specific Legacy Date Functions
ADD

Adds a given number of days to a date.

Using Functions 43

Types of Functions

DAY
Extracts the day of the month from a date.
JULIAN
Determines the number of days that have elapsed so far in the year up to a given date.
MONTH
Extracts the month from a date.
QUARTER
Determines the quarter of the year in which a date resides.
SETMDY
Sets a value to a date.
SUB
Subtracts a given number of days from a date.
WEEKDAY
Determines the day of the week for a date.
YEAR

Extracts the year from a date.

Simplified Conversion Functions

44

The following functions convert fields from one format to another, using streamlined parameter
lists. For details, see Simplified Conversion Functions on page 429.

CHAR
Returns a character based on a numeric code.

CTRLCHAR
Returns a non-printable control character.

EDIT2
Converts a numeric, date, or date-time value to a character string.

HEXTYPE
Returns the hexadecimal view of an input value.

PHONETIC
Returns a phonetic key.

Information Builders

2. Introducing Functions I

Format Conversion Functions

The following functions convert fields from one format to another. For details, see Format
Conversion Functions on page 441.

ATODBL
Converts a number in alphanumeric format to double-precision format.
Available Languages: reporting, Maintain

EDIT

Converts an alphanumeric field that contains numeric characters to humeric format or
converts a numeric field to alphanumeric format.

Available Languages: reporting
FPRINT
Converts a field to alphanumeric format.
Available Languages: reporting
FTOA
Converts a number in a numeric format to alphanumeric format.
Available Languages: reporting, Maintain
HEXBYT
Obtains the ASCII or EBCDIC character equivalent of a decimal integer value.
Available Languages: reporting, Maintain
ITONUM
Converts a large binary integer in a non-FOCUS data source to double-precision format.
Available Languages: reporting, Maintain
ITOPACK
Converts a large binary integer in a non-FOCUS data source to packed-decimal format.
Available Languages: reporting, Maintain
ITOZ
Converts a number in numeric format to zoned format.

Available Languages: reporting, Maintain

Using Functions 45

Types of Functions

PCKOUT
Writes a packed number of variable length to an extract file.

Available Languages: reporting, Maintain
PTOA

Converts a packed decimal number from numeric format to alphanumeric format.

Available Languages: reporting, Maintain
TSTOPACK

Converts a Microsoft SQL Server or Sybase TIMESTAMP column (which contains an
incremented counter) to packed decimal.

Available Languages: reporting
UFMT

Converts characters in alphanumeric field values to hexadecimal representation.

Available Languages: reporting, Maintain
XTPACK

Stores a packed number with up to 31 significant digits in an alphanumeric field, retaining
decimal data.

Maintain-specific Light Update Support Functions

The following functions retrieve WebFOCUS variable or parameter data implicitly from within a
Maintain procedure. These functions are available only in Maintain Data. For details, see
Maintain-specific Light Update Support Functions on page 465.

IWC.GetAppCGlValue

Imports the value of a WebFOCUS parameter or variable into a Maintain Data variable.
IWC.FindAppCGIValue

Retrieves WebFOCUS parameter or variable values.

Simplified Numeric Functions

46

The following functions perform calculations on numeric constants or fields, using streamlined
parameter lists. For details, see Simplified Numeric Functions on page 469

CEILING
Returns the smallest integer value greater than or equal to a value.

EXPONENT
Raises e to a power.

Information Builders

2. Introducing Functions I

FLOOR
Returns the largest integer value less than or equal to a value.

MOD
Calculates the remainder from a division.

POWER
Raises a value to a power.

Numeric Functions

The following functions perform calculations on numeric constants or fields. For details, see
Numeric Functions on page 477

ABS
Returns the absolute value of a number.
Available Languages: reporting, Maintain
ASIS
Distinguishes between a blank and a zero in Dialogue Manager.
Available Languages: reporting
BAR
Produces a horizontal bar chart.
Available Languages: reporting, Maintain
CHKPCK
Validates the data in a field described as packed format.
Available Languages: reporting, Maintain
DMOD, FMOD, and IMOD
Calculate the remainder from a division.
Available Languages: reporting, Maintain
EXP
Raises the number "e" to a specified power.
Available Languages: reporting, Maintain

EXPN
Is an operator that evaluates a number expressed in scientific notation. For information,
see Using Expressions in the Creating Reports With WebFOCUS Language manual.

Using Functions 47

Types of Functions

FMLINFO
Returns the FOR value associated with each row in an FML report.
Available Languages: reporting

FMLLIST

Returns a string containing the complete tag list for each row in an FML request.

Available Languages: reporting
FMLFOR
Retrieves the tag value associated with each row in an FML request.
Available Languages: reporting
FMLCAP
Returns the caption value for each row in an FML hierarchy request.
Available Languages: reporting
INT
Returns the integer component of a number.
Available Languages: reporting, Maintain
LOG

Returns the natural logarithm of a number.

Available Languages: reporting, Maintain
MAX and MIN
Return the maximum or minimum value, respectively, from a list of values.

Available Languages: reporting, Maintain

MIRR
Calculates the modified internal rate of return for a series of periodic cash flows.
Available Languages: reporting

NORMSDST and NORMSINV

Perform calculations on a standard normal distribution curve.

Available Languages: reporting
PRDNOR and PRDUNI

Generate reproducible random numbers.

48 Information Builders

2. Introducing Functions I

Available Languages: reporting, Maintain
RDNORM and RDUNIF

Generate random numbers.

Available Languages: reporting, Maintain
SQRT

Calculates the square root of a number.

Available Languages: reporting, Maintain
XIRR

Calculates the internal rate of return for a series of cash flows that can be periodic or non-
periodic.

Available Languages: reporting

Maintain-specific Script Functions

Script functions integrate JavaScript and VBScripts into your Maintain Data applications and
perform client-side execution without returning to the WebFOCUS Server. These functions are
available only in Maintain Data. For details, see Maintain-specific Script Functions on page 511

IWCLink

Executes external procedures.
IWCSwitchToSecure and IWCSwitchToUnsecure

Turns the Secure Sockets layer on and off, respectively.
IWCTrigger

Returns control from the script to your application.

Simplified Statistical Functions
The following functions perform statistical calculations. For details, see Simplified Statistical

Functions on page 519.

CORRELATION
Calculates the degree of correlation between two independent sets of data.

KMEANS_CLUSTER
Partitions observations into clusters based on the nearest mean value.

MULTIREGRESS
Calculates a linear regression column based on multiple fields.

Using Functions 49

Types of Functions

RSERVE
Runs an R script.

STDDEV
Calculates the standard deviation in a set of data values.

Simplified System Functions

The following functions call the operating system to obtain information about the operating
environment or to use a system service, using streamlined parameter lists. For details, see
Simplified System Functions on page 533

EDAPRINT
Inserts a custom message in the EDAPRINT log file.

ENCRYPT
Encrypts a password.

GETENV
Retrieves the value of an environment variable.

PUTENV
Assigns a value to an environment variable.

System Functions

50

The following functions call the operating system to obtain information about the operating
environment or to use a system service. For details, see System Functions on page 537

CLSDDREC
Closes a file and frees the memory used to store information about open files.

Available Languages: reporting, Maintain
FEXERR

Retrieves an Information Builders error message.

Available Languages: reporting, Maintain
FINDMEM

Determines if a specific member of a partitioned data set (PDS) exists in batch processing.
Available Operating Systems: z/0S

Available Languages: reporting, Maintain
GETCOOKI

Retrieves the value of a browser cookie.

Available Languages: reporting, Maintain

Information Builders

2. Introducing Functions I

GETHEADR
Retrieves the value of an HTTP Header variable.

Available Languages: reporting, Maintain
GETPDS

Determines if a specific member of a partitioned data set (PDS) exists, and if it does,
returns the PDS name.

Available Operating Systems: z/0S

Available Languages: reporting, Maintain
GETUSER

Retrieves the ID of the connected user.
Available Languages: reporting, Maintain
MVSDYNAM
Transfers a FOCUS DYNAM command to the DYNAM command processor.
Available Operating Systems: z/0S

Available Languages: reporting, Maintain
PUTCOOKI

Submits a value to a browser cookie.

Available Languages: reporting, Maintain
PUTDDREC

Writes a character string as a record in a sequential file. Opens the file if it is closed.

Available Languages: reporting, Maintain
SLEEP

Suspends execution for a specified number of seconds.

Available Languages: reporting
SPAWN

Spawns a child process to execute system commands without terminating the current
procedure. After the child process terminates, control returns to the parent process. This
function is available only for WebFOCUS.

Available Operating Systems: UNIX

Available Languages: reporting

Using Functions 51

Types of Functions

SYSTEM

Calls a DOS program, a DOS batch program, or a Windows application. This function is
available only for WebFOCUS.

Available Operating Systems: Windows
Available Languages: reporting

SYSVAR
Retrieves the value of a z/0S system variable.
Available Operating Systems: z/0S

Available Languages: reporting

Simplified Geography Functions

These functions perform location-based calculations and retrieve geocoded points for various
types of location data. For details, see Simplified Geography Functions on page 563.

GIS_DISTANCE
Calculates the distance between geography points.

GIS_DRIVE_ROUTE
Calculates the driving directions between geography points.

GIS_POINT
Builds a geometry point.

GIS_GEOCODE_ADDR
Geocodes a complete address.

GIS_GEOCODE_ADDR_CITY
Geocodes an address line, city, and state.

GIS_GEOCODE_ADDR_POSTAL
Geocodes an address line and postal code.

GIS_GEOMETRY
Builds a JSON geometry object.

GIS_IN_POLYGON
Determines whether a point is in a complex polygon.

GIS_LINE
Builds a JSON line.

GIS_SERVICE_AREA
Calculates a geometry area around a given point.

52 Information Builders

2. Introducing Functions I

GIS_SERV_AREA_XY
Calculates a geometry area around a given coordinate.

Character Chart for ASCll and EBCDIC

This chart shows the primary printable characters in the ASCIl and EBCDIC character sets and
their decimal equivalents. Extended ASCII codes (above 127) are not included

Decimal ASCII EBCDIC
33 ! exclamation point
34 " quotation mark
35 # number sign

36 $ | dollar sign

37 % percent

38 & ampersand

39 ! apostrophe

40 (left parenthesis
41) right parenthesis
42 * asterisk

43 + plus sign

44 , comma

45 - hyphen

46 . period

47 / slash

48 0 0

49 1 1

50 2 2

Using Functions 53

Character Chart for ASCIl and EBCDIC

Decimal ASCII EBCDIC
51 3 3

52 4 4

53 5 5

54 6 6

55 7 7

56 8 8

57 9 9

58 : colon

59 ; semicolon

60 < less-than sign
61 = equal sign

62 > greater-than sign
63 ? question mark
64 @ at sign

65 A A

66 B B

67 C C

68 D D

69 E E

70 F F

71 G G

72 H H

54 Information Builders

2. Introducing Functions I

Decimal ASCII EBCDIC

73 | |

74 J J ¢ cent sign

75 K K period

76 L L < less-than sign
77 M M (left parenthesis
78 N N + plus sign

79 O |0 | logical or

80 P P & ampersand

81 Q |Q

82 R R

83 S S

84 T T

85 u u

86 % %

87 W | W

88 X X

89 Y Y

90 Z Z ! exclamation point
91 [opening bracket $ dollar sign

92 \ back slant * asterisk

93] closing bracket) right parenthesis
94 A caret ; semicolon

Using Functions

55

Character Chart for ASCIl and EBCDIC

56

Decimal ASCII EBCDIC

95 _ underscore - logical not
96) grave accent hyphen

97 a a / slash

98 b b

99 c c

100 d d

101 e e

102 f f

103 g g

104 h h

105 i i

106 j j

107 k k , comma
108 | | % percent
109 m m _ underscore
110 n n > greater-than sign
111 o] o] ? question mark
112 p p

113 o} q

114 r r

115 s s

116 t t

Information Builders

2. Introducing Functions I

Decimal ASCII EBCDIC

117 u u

118 v v

119 w w

120 X X

121 y y

122 z z colon

123 { opening brace # number sign
124 | vertical line @ | atsign
125 } closing brace ! apostrophe
126 ~ tilde = equal sign
127 " quotation mark
129 a a

130 b b

131 c c

132 d d

133 e e

134 f f

135 g g

136 h h

137 i i

145 i J

146 k k

Using Functions

57

Character Chart for ASCIl and EBCDIC

58

Decimal ASCII EBCDIC
147 I I
148 m m
149 n n
150 (o] (o}
151 p p
152 q q
153 r r
162 s s
163 t t
164 u u
165 v v
166 w w
167 X X
168 y y
169 z z
185) grave accent
193 A A
194 B B
195 C C
196 D D
197 E E
198 F F

Information Builders

2. Introducing Functions I

Decimal ASCII EBCDIC
199 G G
200 H H
201 I I
209 J J
210 K K
211 L L
212 M M
213 N N
214 0 0
215 P P
216 Q |Q
217 R R
226 S S
227 T T
228 U U
229 % Y
230 W | W
231 X X
232 Y Y
233 z z
240 0 0
241 1 1

Using Functions 59

Character Chart for ASCIl and EBCDIC

Decimal ASCII EBCDIC
242 2 2
243 3 3
244 4 4
245 5 5
246 6 6
247 7 7
248 8 8
249 9 9

60 Information Builders

Chapter

Accessing and Calling a Function

The following topics describe the considerations for supplying arguments in a function,
and explain how to use a function in a command and access functions stored externally.

In this chapter:

- Calling a Function

Supplying an Argument in a Function

Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command
Calling a Function From a Dialogue Manager Command

Calling a Function From Another Function

Calling a Function in WHERE or IF Criteria

Calling a Function in WHEN Criteria

Calling a Function From a RECAP Command

L U U o U U

Storing and Accessing an External Function

Calling a Function

You can call a function from a COMPUTE, DEFINE, or VALIDATE command. You can also call
functions from a Dialogue Manager command, a Financial Modeling Language (FML) command,
or a Maintain command. A function is called with the function name, arguments, and, for
external functions, an output field.

For more information on external functions, see Types of Functions on page 26.

Some Maintain-specific functions require that the MNTUWS function library be retrieved when
calling the function. For functions that require this, it is specified in the detailed information for
that function. For more information on retrieving the MNTUWS library, see How to Access the
Maintain MNTUWS Function Library on page 63.

Using Functions 61

Calling a Function

Syntax:

Syntax:

62

How to Call a Function
function(argl, arg2, ... [outfield))

where:
function

Is the name of the function.
argl, argz,

Are the arguments.

outfield
Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This argument is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the
name of the field.

How to Store Outputin a Field
COVWPUTE field fnt = function(inputl, input2 ... [outfield));
or

DEFINE FILE file

field fnt = function(inputl, input2 ... [outfield));
or

-SET &var = function(inputl, input2, ... [outfield);
where:

DEFI NE

Creates a virtual field that may be used in a request as though it is a real data source
field.

COVPUTE

Calculates one or more temporary fields in a request. The field is calculated after all
records have been selected, sorted, and summed.

field

Is the field that contains the result.

Information Builders

3. Accessing and Calling a Function I

file

Is the file in which the virtual field is created.
var

Is the variable that contains the result.
fmt

Is the format of the field that contains the result.
function

Is the name of the function, up to eight characters long.
Inputl, input?2, ...

Are the input arguments, which are data values or fields used in function processing. For
more information about arguments, see Supplying an Argument in a Function on page
63.

outfield
Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This argument is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the
name of the field.

Syntax: How to Access the Maintain MNTUWS Function Library

Place the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE | MPORT (MNTUWS) ;

Supplying an Argument in a Function

When supplying an argument in a function, you must understand which types of arguments are
acceptable, the formats and lengths for these arguments, and the number and order of these
arguments.

Argument Types
The following are acceptable arguments for a function:
-1 Numeric constant, such as 6 or 15.

. Date constant, such as 022802.

Using Functions 63

Supplying an Argument in a Function

- Date in alphanumeric, numeric, date, or AnV format.

.4 Alphanumeric literal, such as STEVENS or NEW YORK NY. A literal must be enclosed in
single quotation marks.

d Number in alphanumeric format.

.4 Field name, such as FIRST_NAME or HIRE_DATE. A field can be a data source field or
temporary field. The field name can be up to 66 characters long or a qualified field name,
unique truncation, or alias.

. Expression, such as a numeric, date, or alphanumeric expression. An expression can use
arithmetic operators and the concatenation sign (|). For example, the following are valid
expressions:

CURR SAL * 1.03

and

FN || LN

Dialogue Manager variable, such as &CODE or &DDNAME.
Format of the output value enclosed in single quotation marks.

Another function.

L U o U

Label or other row or column reference (such as R or E), or name of another RECAP
calculation, when the function is called in an FML RECAP command.

Argument Formats

Depending on the function, an argument can be in alphanumeric, numeric, or date format. If
you supply an argument in the wrong format, you will cause an error or the function will not
return correct data. The following are the types of argument formats:

.d Alphanumeric argument. An alphanumeric argument is stored internally as one character
per byte. An alphanumeric argument can be a literal, an alphanumeric field, a number or
date stored in alphanumeric format, an alphanumeric expression, or the format of an
alphanumeric field. A literal is enclosed in single quotation marks, except when specified in
operating systems that support Dialogue Manager RUN commands (for example, -MVS
RUN).

64 Information Builders

3. Accessing and Calling a Function I

-1 Numeric argument. A numeric argument is stored internally as a binary or packed number.
A numeric argument includes integer (1), floating-point single-precision (F), floating-point
double-precision (D), and packed decimal (P) formats. A numeric argument can be a
numeric constant, field, or expression, or the format of a numeric field.

All numeric arguments are converted to floating-point double-precision format when used
with a function, but results are returned in the format specified for the output field.

Note: With CDN ON, numeric arguments must be delimited by a comma followed by a
space.

d Date argument. A date argument can be in either alphanumeric, numeric, or date format.
The list of arguments for the individual function will specify what type of format the function
accepts. A date argument can be a date in alphanumeric, numeric, or date format; a date
field or expression; or the format of a date field.

If you supply an argument with a two-digit year, the function assigns a century based on the
DATEFNS, YRTHRESH, and DEFCENT parameter settings.

Argument Length

An argument is passed to a function by reference, meaning that the memory location of the
argument is passed. No indication of the length of the argument is given.

You must supply the argument length for alphanumeric strings. Some functions require a
length for the input and output arguments (for example, SUBSTR), and others use one length
for both arguments (for example, UPCASE).

Be careful to ensure that all lengths are correct. Providing an incorrect length can cause
incorrect results:

. If the specified length is shorter than the actual length, a subset of the string is used. For
example, passing the argument 'ABCDEF' and specifying a length of 3 causes the function
to process a string of 'ABC'.

d If the specified length is too long, whatever is in memory up to that length is included. For
example, passing an argument of 'ABC' and specifying a length of 6 causes the function to
process a string beginning with 'ABC' plus the three characters in the next three positions
of memory. Depending on memory utilization, the extra three characters could be anything.

Some operating system routines are very sensitive to incorrectly specified lengths and read
them into incorrectly formatted memory areas.

Using Functions 65

Supplying an Argument in a Function

Number and Order of Arguments

The number of arguments required varies according to each function. Functions supplied by
Information Builders may require up to six arguments. User-written subroutines may require a
maximum of 200 arguments including the output argument. If a function requires more than
200 arguments, you must use two or more calls to pass the arguments to the function.

Arguments must be specified in the order shown in the syntax of each function. The required
order varies according to the function.

Verifying Function Parameters

Syntax:

66

The USERFCHK setting controls the level of verification applied to DEFINE FUNCTION and
Information Builders-supplied function arguments. It does not affect verification of the number
of parameters; the correct number must always be supplied.

USERFCHK is not supported from Maintain Data.

Functions typically expect parameters to be a specific type or have a length that depends on
the value of another parameter. It is possible in some situations to enforce these rules by
truncating the length of a parameter and, therefore, avoid generating an error at run time.

The level of verification and possible conversion to a valid format performed depends on the
specific function. The following two situations can usually be converted satisfactorily:

. If a numeric parameter specifies a maximum size for an alphanumeric parameter, but the
alphanumeric string supplied is longer than the specified size, the string can be truncated.

. If a parameter supplied as a numeric literal specifies a value larger than the maximum size
for a parameter, it can be reduced to the proper value.

How to Enable Parameter Verification

Parameter verification can be enabled only for DEFINE FUNCTIONs and functions supplied by
Information Builders. If your site has a locally written function with the same name as an
Information Builders-supplied function, the USERFNS setting determines which function is
used.

SET USERFNS= { SYSTEM LOCAL}

where:
SYSTEM

Gives precedence to functions supplied by Information Builders. SYSTEM is the default
value. This setting is required in order to enable parameter verification.

Information Builders

3. Accessing and Calling a Function I

LOCAL

Gives precedence to locally written functions. Parameter verification is not performed with
this setting in effect.

Note: When USERFNS is set to LOCAL, DT functions only display a six-digit date.

Syntax: How to Control Function Parameter Verification

Issue the following command in FOCPARM, FOCPROF, on the command line, in a FOCEXEC, or
in an ON TABLE command. Note that the USERFNS=SYSTEM setting must be in effect.

SET USERFCHK = setting

where:

setting
Can be one of the following:

.d ON is the default value. Verifies parameters in requests, but does not verify parameters
for functions used in Master File DEFINEs. If a parameter has an incorrect length, an
attempt is made to fix the problem. If such a problem cannot be fixed, an error
message is generated and the evaluation of the affected expression is terminated.

Because parameters are not verified for functions specified in a Master File, no errors
are reported for those functions until the DEFINE field is used in a subsequent request
when, if a problem occurs, the following message is generated:

(FOC003) THE FI ELDNAME |'S NOT RECOGNI ZED

. OFF does not verify parameters except in the following cases:

- If a parameter that is too long would overwrite the memory area in which the
computational code is stored, the size is automatically reduced without issuing a
message.

. If an alphanumeric parameter is too short, it is padded with blanks to the correct
length.

Note: The OFF setting will be deprecated in a future release.

4 FULL is the same as ON, but also verifies parameters for functions used in Master File
DEFINEs.

Using Functions 67

Supplying an Argument in a Function

Example:

68

-1 ALERT verifies parameters in a request without halting execution when a problem is
detected. It does not verify parameters for functions used in Master File DEFINEs. If a
parameter has an incorrect length and an attempt is made to fix the problem behind
the scenes, the problem is corrected with no message. If such a problem cannot be
fixed, a warning message is generated. Execution then continues as though the setting
were OFF, but the results may be incorrect.

Note:

-l If a parameter provided is the incorrect type, verification fails and processing
terminates.

.4 Errors encountered during subroutine processing, unless fatal at the system level,
are communicated to the calling routine through the return of an unchanged return
parameter, which is the last parameter in the subroutine call. This is always
communicated as spaces for alphanumeric outputs.

Verifying Parameters With Correctable Errors

The following request uses SUBSTR to extract the substring that starts in position 6 and ends
in position 14 of the TITLE field. The fifth argument specifies a substring length (500) that is
too long (it should be no longer than 9).

SET USERFCHK = ON
TABLE FI LE MOVl ES
PRI NT TITLE
COVWPUTE
NEWIl TLE/ A9 = SUBSTR(39, TITLE, 6 ,14, 500, NEWI TLE);
VWHERE CATEGORY EQ ' CH LDREN
END

When the request is executed with USERFCHK=ON or OFF, the incorrect length is corrected and
the request continues processing:

TI TLE NEWTl TLE
SMURFS, THE S, THE
SHAGGY DOG, THE Y DOG, TH
SCOOBY- DOO- A DOG | N THE RUFF Y-DOO-A D
ALI CE | N WONDERLAND I N VWONDE
SESAME STREET- BEDTI ME STORI ES AND SONGS E STREET-
ROVPER ROOM ASK M SS MOLLY R ROOM AS
SLEEPI NG BEAUTY I NG BEAUT
BAMBI

Information Builders

3. Accessing and Calling a Function I

Example:

Verifying Parameters With Uncorrectable Errors

The following request has an incorrect data type in the last argument to SUBSTR. This
parameter should specify an alphanumeric field or format for the extracted substring:

SET USERFCHK = ON
TABLE FI LE MOVI ES
PRINT TITLE
COVWPUTE
NEWM TLE/ F9 = SUBSTR(39, TITLE, 6 ,14, 500, 'F9');
VWHERE CATEGORY EQ ' CHI LDREN
END

4 When the request is executed with USERFCHK=0N, a message is produced and the
request terminates:

ERROR AT CR NEAR LI NE 5 | N PROCEDURE USERFC3 FOCEXEC
(FOC279) NUMERI C ARGUMENTS | N PLACE WHERE ALPHA ARE CALLED FOR
(FOC009) | NCOVPLETE REQUEST STATEMENT

UNKNOWN FOCUS COMVAND VWHERE

BYPASSI NG TO END OF COMVAND

4 When the request is executed with USERFCHK=OFF, no verification is done and no
message is produced. The request executes and produces incorrect results. In some
environments, this type of error may cause abnormal termination of the application:

DI RECTOR TITLE NEWTT TLE
"""" SWURFS, THE -
BARTON C. SHAGGY DOG, THE FoRK A A KKK
SCOOBY- DOO- A DOG I N THE RUFF FHREA KA A
GEROM NI ALI CE | N WONDERLAND 1
SESAMVE STREET- BEDTI ME STORI ES AND SONGS -265774
ROVPER ROOM ASK M SS MOLLY FoRK A A KKK
DI SNEY W SLEEPI NG BEAUTY FHREA KA A KK
DI SNEY W BAMBI 0

Calling a Function From a DEFINE, COMPUTE, or VALIDATE Command

Syntax:

You can call a function from a DEFINE command or Master File attribute, a COMPUTE
command, or a VALIDATE command.

How to Call a Function From a COMPUTE, DEFINE, or VALIDATE Command

DEFI NE [FI LE f//enane]

tenpfield | format] = function(inputl, input2, input3, ... [outfield);
COVPUTE

tenpfield | format] = function(inputl, input2, input3, ... [outfield));
VALI DATE

tenpfield | format] = function(inputl, input2, [nput3 ... [outfield]));

Using Functions 69

Calling a Function From a Dialogue Manager Command

where:
filename

Is the data source being used.
tenpfield

Is the temporary field created by the DEFINE or COMPUTE command. This is the same field
specified in outfield. If the function call supplies the format of the output value in outfield,
the format of the temporary field must match the outfield argument.

fornat

Is the format of the temporary field. The format is required if it is the first time the field is
created; otherwise, it is optional. The default value is D12.2.

function
Is the name of the function.
i nput 1, input2, [nput3. ..
Are the arguments.

outfield
Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This is required only for external functions.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the
name of the field.

Calling a Function From a Dialogue Manager Command

70

You can call a function with Dialogue Manager in the following ways:

.4 From a -SET command, storing the result of a function in a variable. For more information,
see Assigning the Result of a Function to a Variable on page 71.

.4 From an -IF command. For more information, see Calling a Function in WHERE or IF Criteria
on page 75.

.4 From an operating system -RUN command. For more information, see Calling a Function
From an Operating System RUN Command on page 74.

Dialogue Manager converts a numeric argument to double-precision format. This occurs when
the value of the argument is numeric; this is not affected by the format expected by the
function. This means you must be careful when supplying arguments for a function in Dialogue
Manager.

Information Builders

3. Accessing and Calling a Function I

If the function expects an alphanumeric string and the input is a numeric string, incorrect
results will occur because of conversion to floating-point double-precision. To resolve this
problem, append a non-numeric character to the end of the string, but do not count this extra
character in the length of the argument.

Dialogue Manager date variables such as &YYMD return alphanumeric legacy dates, not a date
format (an offset from a base date). If a function requires a date offset rather than a legacy
date, you must convert any date variable to a date offset (using the DATECVT function) before
using it as an argument. You can then convert the result back to a legacy date, again with the
DATECVT function. For example:

- SET &BEG CUR_YR-DATEMOV(&TODAY_COFFSET. EVAL ,)

- SET &TODAY_OFFSET=DATECVT(&YYMD , 'I8YYMD , 'YYMD);
'BOY');
- SET &CLOSE_DTBOY=DATECVT(&BEG CUR_YR. EVAL , 'YYMD ,

"I8YYMD) ;

Assigning the Result of a Function to a Variable

Syntax:

You can store the result of a function in a variable with the -SET command.

A Dialogue Manager variable contains only alphanumeric data. If a function returns a numeric
value to a Dialogue Manager variable, the value is truncated to an integer and converted to
alphanumeric format before being stored in the variable.

How to Assign the Result of a Function to a Variable
-SET &variable = function(argl, argZl.LENGIH,..., 'fornat');

where:
vari abl e
Is the variable to which the result will be assigned.
function
Is the function.
argl, arg2?
Are the function's arguments.
. LENGTH

Returns the length of the variable. If a function requires the length of a character string as
an input argument, you can prompt for the character string and determine the length with
the .LENGTH suffix.

Using Functions 71

Calling a Function From a Dialogue Manager Command

Example:

fornat

Is the format of the result enclosed in single quotation marks. You cannot specify a
Dialogue Manager variable for the output argument unless you use the .EVAL suffix;
however, you can specify a variable for an input argument.

Calling a Function From a -SET Command

AYMD adds 14 days to the value of &INDATE. The &INDATE variable is previously set in the
procedure in the six-digit year-month-day format.

- SET &OUTDATE = AYMD(& NDATE, 14, '16');

The format of the output date is a six-digit integer (16). Although the format indicates that the
output is an integer, it is stored in the &OUTDATE variable as a character string. For this
reason, if you display the value of &OUTDATE, you will not see slashes separating the year,
month, and day.

Branching Based on the Result of a Function

Syntax:

72

You can branch based on the result of a function by calling a function from a Dialogue Manager
-IF command.

If a branching command spans more than one line, continue it on the next line by placing a
dash (-) in the first column.
How to Branch Based on the Result of a Function

-1 F function(args) relation expression GOTO /abel 1 [ELSE GOTO / abel 2] ;

where:
function

Is the function.
args

Are the arguments.
relation

Is an operator that determines the relationship between the function and expression, for
example, EQ or LE.

expressi on

Is a value, logical expression, or function. Do not enclose a literal in single quotation
marks unless it contains a comma or embedded blank.

Information Builders

3. Accessing and Calling a Function I

Example:

/abel 1, [abel 2
Are user-defined names up to 12 characters long. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use a word
that can be confused with a function, or an arithmetic or logical operation.

The label text can precede or follow the -IF criteria in the procedure.
ELSE GOTO

Passes control to label2 when the -IF test fails.

Branching Based on the Function’s Result

The result of the AYMD function provides a condition for a -IF test. One of two requests is
executed, depending on the function's result:

-LOoP
. -1 F & NDATE EQ 0 GOTO EXIT;
. - SET &EEKDAY = DOWK(& NDATE, 'A4');
. - TYPE START DATE | S &WEEKDAY &I NDATE
-1 F AYMD(& NDATE, &DAYS, 'I6YMD) LT 960101 GOTO EARLY;
. - TYPE LONG PRQJIECT
-*EX LONGPRQJ
- RUN
-GOTO EXIT
6. -EARLY
- TYPE SHORT PRQIECT
- *EX SHRTPRQJ
- RUN
-EXIT

uPkbwWNR

The procedure processes as follows:

If you enter a O, it passes control to -EXIT which terminates execution.
The DOWK function obtains the day of the week for the start date.
The -TYPE command displays the day of the week and start date of the project.

P w0 bh e

The AYMD function calculates the date that the project will finish. If this date is before
January 1, 1996, the -IF command branches to the label EARLY.

5. If the project will finish on or after January 1, 1996, the TYPE command displays the words
LONG PROJECT and exits.

6. If the procedure branches to the label EARLY, the TYPE command displays the words
SHORT PROJECT and exits.

Using Functions 73

Calling a Function From a Dialogue Manager Command

Calling a Function From an Operating System RUN Command

Syntax:

74

You can call a function that contains only alphanumeric arguments from a Dialogue Manager -
TSO RUN or -MVS RUN command. This type of function performs a specific task but typically
does not return a value.

If a function requires an argument in numeric format, you must first convert it to floating-point
double-precision format using the ATODBL function because, unlike the -SET command, an
operating system RUN command does not automatically convert a numeric argument to double-
precision.

How to Call a Function From an Operating System -RUN Command

{-TSQ - WS} RUN function, inputl, i[nput2 ... [,&output]
where:
-TSQ - WS

Is the operating system.
function

Is the name of the function.
inputl, input?2, ...

Are the arguments. Separate the function name and each argument with a comma. Do not
enclose an alphanumeric literal in single quotation marks. If a function requires the length
of a character string as an argument, you can prompt for the character string, then use
the .LENGTH suffix to test the length.

&Lout put
Is a Dialogue Manager variable. Include this argument if the function returns a value;
otherwise, omit it. If you specify an output variable, you must pre-define its length using a -
SET command.

For example, if the function returns a value that is eight bytes long, define the variable with
eight characters enclosed in single quotation marks before the function call:

- SET &out put = ' 12345678 ;

Information Builders

3. Accessing and Calling a Function I

Example: Calling a Function From an Operating System -RUN Command

The following example calls the CHGDAT function from a -MVS RUN command:

-SET &RESULT = '12345678901234567"
-MWS RUN CHGDAT, YYMD., MXDYY, &YYMD, &RESULT
- TYPE &RESULT

Calling a Function From Another Function

A function can be an argument for another function.
Syntax: How to Call a Function From Another Function
field = function(| argunents,] functionZl arguments2,] argunments);

where:
field

Is the field that contains the result of the function.
function

Is a function.
argunent s

Are arguments for function.
function2

Is the function that is an argument for function.
argunent s2

Are arguments for function2.

Example: Calling a Function From Another Function

In the following example, the AYMD function is an argument for the YMD function:

-SET &DI FF = YMD(&YYMD, AYMX(&YYMD, 4, '18'));
Calling a Function in WHERE or IF Criteria

You can call a function in WHERE or IF criteria. When you do this, the output value of the
function is compared against a test value.

Using Functions 75

Calling a Function in WHERE or IF Criteria

Syntax: How to Call a Function in WHERE Criteria
WHERE function rel ation expression

where:
function

Is a function.
relation

Is an operator that determines the relationship between the function and expression, for
example, EQ or LE.

expressi on

Is a constant, field, or function. A literal must be enclosed in single quotation marks.
Syntax: How to Call a Function in IF Criteria
| F function relation val ue

where:
function

Is a function.
rel ation

Is an operator that determines the relationship between the function and expression, for
example, EQ or LE.

val ue

Is a constant. In a DEFINE or COMPUTE command, the value must be enclosed in single
quotation marks.

Example: Calling a Function in WHERE Criteria

The SUBSTR function extracts the first two characters of LAST_NAME as a substring, and the

request prints an employee's name and salary if the substring is MC.
TABLE FI LE EMPLOYEE
PRI NT FI RST_NAME LAST_NAME CURR_SAL

VWHERE SUBSTR(15, LAST_NAME, 1, 2, 2, "A2') IS 'M;
END

76 Information Builders

3. Accessing and Calling a Function I

The output is:

FI RST_NAME LAST NAMVE CURR SAL
JOHN MCCOY $18, 480. 00
ROGER MCKNI GHT $16, 100. 00

Using a Calculation or Compound IF Command

You must specify the format of the output value in a calculation or compound IF command.

There are two ways to do this:

.4 Pre-define the format within a separate command. In the following example, the AMOUNT
field is pre-defined with the format D8.2 and the function returns a value to the output field
AMOUNT. The IF command tests the value of AMOUNT and stores the result in the

calculated value, AMOUNT_FLAG.

COVWPUTE
AMOUNT/ D8. 2 =;

AMOUNT_FLAG A5 = | F function(inputl, [nputZ2 AMOUNT) GE 500

THEN ' LARGE' ELSE ' SVALL';

. Supply the format as the last argument in the function call. In the following example, the
command tests the returned value directly. This is possible because the function defines

the format of the returned value (D8.2).

DEFI NE

AMOUNT_FLAG A5 = | F function(inputl, [nputZ2 'D8.2') GE 500

THEN ' LARGE' ELSE ' SVALL';

Calling a Function in WHEN Criteria

Syntax:

You can call a function in WHEN criteria as part of a Boolean expression.

How to Call a Function in WHEN Criteria

WHEN({ function| val ue} rel ation {function| val ue});

or
WHEN NOT(functi on)
where:

function

Is a function.

Using Functions

77

Calling a Function From a RECAP Command

Example:

val ue
Is a value or logical expression.

rel ation

Is an operator that determines the relationship between the value and function, for

example, LE or GT.

Calling a Function in WHEN Criteria

This request checks the values in LAST_NAME against the result of the CHKFMT function.

When a match occurs, the request prints a sort footing.

TABLE FI LE EMPLOYEE

PRI NT DEPARTMENT BY LAST_NAME

ON LAST_NAME SUBFOOT

"*xx LAST NAMVE <LAST_NAME DOES MATCH MASK"

WHEN NOT CHKFMT(15, LAST_NAME, 'SM TH ,N16Y);
END

The output is:

LAST_NAME DEPARTMENT

BANNI NG PRCDUCTI ON

BLACKWOOD M S

CROSS M S

GREENSPAN M S

I RVI NG PRCDUCTI ON

JONES M S

MCCOY M S

MCKNI GHT PRODUCTI ON

ROVANS PRCDUCTI ON

SM TH M S
PRCDUCTI ON

*** | AST NAVE SM TH DOES MATCH NMASK

STEVENS PRCDUCTI ON

Calling a Function From a RECAP Command

Syntax:

78

You can call a function from an FML RECAP command.
How to Call a Function From a RECAP Command

RECAP name[(n)| (n,my| (n, mi)][/ format1] =
function(inputl,...,[' format2]);

where:
nane

Is the name of the calculation.

Information Builders

3. Accessing and Calling a Function I

Example:

n
Displays the value in the column number specified by n. If you omit the column number,
the value appears in all columns.

n,m
Displays the value in all columns beginning with the column number specified by n and
ending with the column number specified by m.

nmi
Displays the value in the columns beginning with the column number specified by n and
ending with the column number specified by m by the interval specified by i. For example, if
nis 1, mis 5, andiis 2, the value displays in columns 1, 3, and 5.

format 1
Is the format of the calculation. The default value is the format of the report column.

function
Is the function.

inputl, ...

Are the input arguments, which can include numeric constants, alphanumeric literals, row
and column references (R notation, E notation, or labels), and names of other RECAP
calculations.

format2

Is the format of the output value enclosed in single quotation marks. If the calculation's
format is larger than the column width, the value appears in that column as asterisks.

Calling a Function in a RECAP Command

This request sums the AMOUNT field for account 1010 using the label CASH, account 1020
using the label DEMAND, and account 1030 using the label TIME. The MAX function displays
the maximum value of these accounts.

TABLE FI LE LEDCGER
SUM AMOUNT FOR ACCOUNT

1010 AS ' CASH ON HAND LABEL CASH OVER

1020 AS ' DENVAND DEPCSI TS LABEL DEMAND OVER

1030 AS ' TI ME DEPCSI TS LABEL TIME OVER

BAR OVER

RECAP MAXCASH = NMAX(CASH, DEMAND, TIME); AS ' MAX CASH
END

Using Functions 79

Storing and Accessing an External Function

The output is:

AMOUNT
CASH ON HAND 8,784
DEMAND DEPCSI TS 4, 494
TI ME DEPCSI TS 7,961
MAX CASH 8,784

Storing and Accessing an External Function

Internal functions are built in and do not require additional work to access. External functions
are stored in load libraries from which they must be retrieved. The way these external functions
are accessed is determined by your platform. These techniques may not have to be used every
time a function is accessed. Access to a load library may be set only once at the time of
installation.

You can also access private user-written subroutines. If you have a private collection of
subroutines (that is, you created your own or use customized subroutines), do not store them
in the function library. Store them separately to avoid overwriting them whenever your site
installs a new release. For more information on creating a subroutine, see Creating a
Subroutine on page 599.

Storing and Accessing a Function on z/OS

Procedure:

Example:

80

On z/0S, load libraries are partitioned data sets containing link-edited modules. These
libraries are stored as EDALIB.LOAD or FUSELIB.LOAD. In addition, your site may have private
subroutine collections stored in separate load libraries. If so, you must allocate those libraries.

How to Allocate a Load Library in z/OS Batch

To use a function stored as a load library, allocate the load library to ddname USERLIB in your
JCL or CLIST.

The search order is USERLIB, STEPLIB, JOBLIB, link pack area, and linklist.

The Server also adds the TASKLIB keyword to the search for non-APF authorized libraries. For
more information, see the Server Installation, Configuration and Operations for MVS manual.

Allocating the Load Library BIGLIB.LOAD in z/OS Batch (JCL)
// USERLI B DD DI SP=SHR, DSN=BI GL| B. LOAD

Information Builders

3. Accessing and Calling a Function I

Syntax:

Example:

Example:

Example:

How to Allocate a Load Library
DYNAM ALLOC FI LE USERLIB DA |ib SHR

where:
USERLI B

Is the ddname to which you allocate a load library.
libl 1ib2 1ib3. ..

Are the names of the load libraries, concatenated to ddname USERLIB.

Allocating the FUSELIB.LOAD Load Library
DYNAM ALLOC FI LE USERLI B DA MS. FUSELI B. LOAD SHR

Concatenating a Load Library to USERLIB In TSO

Suppose a report request calls two functions: BENEFIT stored in library SUBLIB.LOAD, and
EXCHANGE stored in library BIGLIB.LOAD. To concatenate the BIGLIB and SUBLIB load libraries
in the allocation for ddname USERLIB, issue the following commands:

DYNAM ALLOC FI LE USERLI B DA SUBLI B. LOAD SHR

DYNAM ALLCC FILE BIGLI B DA BIGLI B. LOAD SHR
DYNAM CONCAT FI LE USERLIB BI GLI B

The load libraries are searched in the order in which they are specified in the ALLOCATE
command.

Concatenating a Load Library to STEPLIB in Batch (JCL)
Concatenate the load library to the ddname STEPLIB in your JCL:
/| FOCUS EXEC PGQGVFFOCUS

/| STEPLI B DD DSN=FOCUS. FOCLI B. LOAD, DI SP=SHR
I DD DSN=FOCUS. FUSELI B. LOAD, DI SP=SHR

Storing and Accessing a Function on UNIX

No extra work is required.

Storing and Accessing a Function on Windows

No extra work is required.

Using Functions 81

Storing and Accessing an External Function

82 Information Builders

Chapter

Simplified Analytic Functions

The analytic functions enable you do perform calculations and retrievals using multiple
rows in the internal matrix.

In this chapter:

-

_I

L U oo oo u

FORECAST_MOVAVE: Using a Simple Moving Average
FORECAST_EXPAVE: Using Single Exponential Smoothing
FORECAST_DOUBLEXP: Using Double Exponential Smoothing
FORECAST_SEASONAL: Using Triple Exponential Smoothing
FORECAST_LINEAR: Using a Linear Regression Equation
PARTITION_AGGR: Creating Rolling Calculations

PARTITION_REF: Using Prior Field Values in Calculations

FORECAST_MOVAVE: Using a Simple Moving Average

A simple moving average is a series of arithmetic means calculated with a specified number of
values from a field. Each new mean in the series is calculated by dropping the first value used
in the prior calculation, and adding the next data value to the calculation.

Simple moving averages are sometimes used to analyze trends in stock prices over time. In

this scenario, the average is calculated using a specified number of periods of stock prices. A

disadvantage to this indicator is that because it drops the oldest values from the calculation
as it moves on, it loses its memory over time. Also, mean values are distorted by extreme

highs and lows, since this method gives equal weight to each point.

Predicted values beyond the range of the data values are calculated using a moving average

that treats the calculated trend values as new data points.

Using Functions

83

FORECAST_MOVAVE: Using a Simple Moving Average

Syntax:

84

The first complete moving average occurs at the nth data point because the calculation
requires n values. This is called the lag. The moving average values for the lag rows are
calculated as follows: the first value in the moving average column is equal to the first data
value, the second value in the moving average column is the average of the first two data
values, and so on until the n'" row, at which point there are enough values to calculate the
moving average with the number of values specified.

How to Calculate a Simple Moving Average Column

FORECAST_MOVAVE(di spl ay, infield, interval,
npredi ct, npoi nt1)
where:
di spl ay
Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

4 INPUT_FIELD. This displays the original field values for rows that represent existing
data.

- MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

/i nfield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

i nterval

Is the increment to add to each sort field value (after the last data point) to create the

next value. This must be a positive integer. To sort in descending order, use the BY

HIGHEST phrase. The result of adding this number to the sort field values is converted

to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is

interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredi ct
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only

Information Builders

4. Simplified Analytic Functions I

supported with a non-recursive FORECAST. For the SEASONAL method, npredict is the
number of periods to calculate. The number of points generated is:

nperiod * npredict

npoi nt 1
Is the number of values to average for the MOVAVE method.

Example: Calculating a New Simple Moving Average Column

This request defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of the retrieved data.
The MOVAVE column on the report output shows the calculated moving average numbers for
existing data points.

DEFI NE FI LE GGSALES

SDATE/ YYM = DATE;

SYEAR'Y = SDATE;

SMONTH M = SDATE;

PERI OD/ | 2 = SMONTH;

END

TABLE FI LE GGSALES

SUM UNI TS DOLLARS

COWUTE MOVAVE/ D10. 1= FORECAST_MOVAVE(MODEL_DATA, DOLLARS, 1, 3, 3);
BY CATEGORY BY PERI CD

VWHERE SYEAR EQ 97 AND CATEGORY NE "G fts'
ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

Using Functions 85

FORECAST_MOVAVE: Using a Simple Moving Average

86

The output is:

Category PERIOD Unit Sales Dollar Sales MOVAVE
Coffee l 61666 801123 B801,123.0
2 54870 GR2340 T41.731.5
3 61608 765078 7495137
4 57050 691274 T12,897.3
5 59229 T20444 7255087
6 SR466 742457 TI1R058.3
7 60771 747253 736.718.0
8 54633 655896 T15.202.0
9 57820 730317 T711,155.3
10 57012 724412 T03.541.7
11 ST 620264 6910643
12 SRR T62328 TO2.334.7
13 0 0 6940754
14 0 0 T19.879.4
15 0 0 7057299
Food 1 54304 672727 672.727.0
2 54894 GOO073 685.900.0
3 52713 642802 671.534.0
4 SR026 TI8514 686.706.3
5 53280 a60740 674.018.7
6 58742 734705 T04,653.0
7 60127 760586 TIR6TT.0
8 55622 605235 T30,175.3
9 55787 GR3140 TI2987.0
10 57340 713768 697.381.0
11 57459 TIO138 7023487
12 57290 T05315 T09.740.3
13 0 O T08.397.8
14 0 0 T07.817.7
15 0 0 TOR651.9

In the report, the number of values to use in the average is 3 and there are no UNITS or
DOLLARS values for the generated PERIOD values.

Each average (MOVAVE value) is computed using DOLLARS values where they exist. The
calculation of the moving average begins in the following way:

. The first MOVAVE value (801,123.0) is equal to the first DOLLARS value.

4 The second MOVAVE value (741,731.5) is the mean of DOLLARS values one and two:

(801,123 + 682,340) /2.

Information Builders

4. Simplified Analytic Functions I

Example:

- The third MOVAVE value (749,513.7) is the mean of DOLLARS values one through three:
(801,123 + 682,340 + 765,078) / 3.

. The fourth MOVAVE value (712,897.3) is the mean of DOLLARS values two through four:
(682,340 + 765,078 + 691,274) /3.

For predicted values beyond the supplied values, the calculated MOVAVE values are used as
new data points to continue the moving average. The predicted MOVAVE values (starting with
694,975.6 for PERIOD 13) are calculated using the previous MOVAVE values as new data
points. For example, the first predicted value (694,975.6) is the average of the data points
from periods 11 and 12 (620,264 and 762,328) and the moving average for period 12
(702,334.7). The calculation is: 694,975 = (620,264 + 762,328 + 702,334.7)/3.

Displaying Original Field Values in a Simple Moving Average Column

This request defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of the retrieved data.
It uses the keyword INPUT_FIELD as the first argument in the FORECAST parameter list. The
trend values do not display in the report. The actual data values for DOLLARS are followed by
the predicted values in the report column.

DEFI NE FI LE GGSALES

SDATE/ YYM = DATE;

SYEAR/'Y = SDATE;

SMONTH M = SDATE;

PERI OD/ | 2 = SMONTH,

END

TABLE FI LE GGSALES

SUM UNI TS DOLLARS

COVWPUTE MOVAVE/ D10. 1 = FORECAST_MOVAVE(| NPUT_FI ELD, DOLLARS, 1, 3, 3) ;
BY CATEGORY BY PERI CD

VWHERE SYEAR EQ 97 AND CATEGORY NE "G fts'
ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

Using Functions 87

FORECAST_MOVAVE: Using a Simple Moving Average

88

The output is shown in the following image:

Category PERIOD Unit Sales Dollar Sales MOVAVE
Coffee 1 61666 801123 8011230
2 54870 682340 6823400
3 61608 765078 765,078.0
4 57050 691274 6912740
5 59229 720444 7204440
6 58466 742457 7424570
7 60771 747253 7472530
8 54633 655896 655.896.0
9 57829 730317 7303170
10 57012 724412 7244120
11 51110 620264 6202640
12 58981 762328 7623280
13 0 0 6949756
14 0 0 7198794
15 0 0 7057299
Food 1 54394 672727 6727270
2 54894 699073 699.073.0
3 52713 642802 642.802.0
4 58026 718514 7185140
5 53289 660740 660.740.0
6 58742 734705 734.705.0
7 60127 760586 760,586.0
8 55622 695235 6952350
9 55787 683140 6831400
10 57340 713768 713.768.0
11 57459 710138 710.138.0
12 57290 705315 7053150
13 0 0 7083978
14 0 0 7078177
15 0 0 708.6519

Information Builders

4. Simplified Analytic Functions I

FORECAST_EXPAVE: Using Single Exponential Smoothing

Syntax:

The single exponential smoothing method calculates an average that allows you to choose
weights to apply to newer and older values.

The following formula determines the weight given to the newest value.

k = 2/ (1+n)
where:
k

Is the newest value.

Is an integer greater than one. Increasing n increases the weight assigned to the earlier
observations (or data instances), as compared to the later ones.

The next calculation of the exponential moving average (EMA) value is derived by the following
formula:

EMA = (EMA * (1-k)) + (datavalue * k)
This means that the newest value from the data source is multiplied by the factor k and the

current moving average is multiplied by the factor (1-k). These quantities are then summed to
generate the new EMA.

Note: When the data values are exhausted, the last data value in the sort group is used as the
next data value.

How to Calculate a Single Exponential Smoothing Column

FORECAST_EXPAVE(di spl ay, infield, interval,
npredi ct, npoi nt 1)

where:

di spl ay
Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

. INPUT_FIELD. This displays the original field values for rows that represent existing
data.

4 MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Using Functions 89

FORECAST_EXPAVE: Using Single Exponential Smoothing

Example:

90

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

i nterval
Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredi ct
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST.

npoi nt 1
For EXPAVE, this number is used to calculate the weights for each component in the
average. This value must be a positive whole number. The weight, k, is calculated by
the following formula:

k=2/ (1+npoi nt 1)

Calculating a Single Exponential Smoothing Column

The following defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of retrieved data.

DEFI NE FI LE GGSALES

SDATE/ YYM = DATE;

SYEAR/'Y = SDATE;

SMONTH M = SDATE;

PERI OD/ | 2 = SMONTH,

END

TABLE FI LE GGSALES

SUM UNI TS DOLLARS

COVPUTE EXPAVE/ D10. 1= FORECAST_EXPAVE(MODEL_DATA, DOLLARS, 1, 3, 3) ;
BY CATEGORY BY PERI CD

WHERE SYEAR EQ 97 AND CATEGORY NE 'G fts'
ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

Information Builders

4. Simplified Analytic Functions I

The output is shown in the following image:

Cat egory PERIOD Unit Sales Dollar Sales EXPAVE
Cof f ee 1 61666 801123 801, 123.0
2 54870 682340 741,731.5
3 61608 765078 753, 404.8
4 57050 691274 722,339.4
5 59229 720444 721,391.7
6 58466 742457 731,924.3
7 60771 747253 739, 588. 7
8 54633 655896 697, 742. 3
9 57829 730317 714,029.7
10 57012 724412 719, 220. 8
11 51110 620264 669, 742. 4
12 58981 762328 716, 035. 2
13 0 0 739, 181. 6
14 0 0 750, 754. 8
15 0 0 756, 541. 4
Food 1 54394 672727 672,727.0
2 54894 699073 685, 900. 0
3 52713 642802 664, 351. 0
4 58026 718514 691, 432.5
5 53289 660740 676, 086. 3
6 58742 734705 705, 395. 6
7 60127 760586 732,990.8
8 55622 695235 714,112.9
9 55787 683140 698, 626. 5
10 57340 713768 706, 197. 2
11 57459 710138 708, 167. 6
12 57290 705315 706, 741. 3
13 0 0 706, 028. 2
14 0 0 705, 671. 6
15 0 0 705, 493. 3

In the report, three predicted values of EXPAVE are calculated within each value of CATEGORY.
For values outside the range of the data, new PERIOD values are generated by adding the
interval value (1) to the prior PERIOD value.

Each average (EXPAVE value) is computed using DOLLARS values where they exist. The
calculation of the moving average begins in the following way:

.4 The first EXPAVE value (801,123.0) is the same as the first DOLLARS value.

4 The second EXPAVE value (741,731.5) is calculated as follows. Note that because of
rounding and the number of decimal places used, the value derived in this sample
calculation varies slightly from the one displayed in the report output:

n=3 (nunber used to cal cul ate wei ghts)

k =2/ (1+n) = 2/4 = 0.5

EXPAVE = (EXPAVE* (1-k))+(new DOLLARS*k) = (801123*0.5) + (682340*0.50) =
400561.5 + 341170 = 741731.5

Using Functions 91

FORECAST _DOUBLEXP: Using Double Exponential Smoothing

- The third EXPAVE value (753,404.8) is calculated as follows:

EXPAVE = (EXPAVE*(1-k))+(new DOLLARS*k) = (741731.5*%0.5)+(765078*0.50) =
370865. 75 + 382539 = 753404. 75

FORECAST_DOUBLEXP: Using Double Exponential Smoothing

Syntax:

92

Double exponential smoothing produces an exponential moving average that takes into
account the tendency of data to either increase or decrease over time without repeating. This
is accomplished by using two equations with two constants.

.4 The first equation accounts for the current time period and is a weighted average of the
current data value and the prior average, with an added component (b) that represents the
trend for the previous period. The weight constant is k:

DOUBLEXP(t) = k * dataval ue(t) + (1-k) * ((DOUBLEXP(f-1) + b(¢-1))

d The second equation is the calculated trend value, and is a weighted average of the
difference between the current and previous average and the trend for the previous time
period. b(t) represents the average trend. The weight constant is g:

b(¢t) = g * (DOUBLEXP(t)-DOUBLEXP(f-1)) + (1 - g) * (b(t-1))

These two equations are solved to derive the smoothed average. The first smoothed average is
set to the first data value. The first trend component is set to zero. For choosing the two
constants, the best results are usually obtained by minimizing the mean-squared error (MSE)
between the data values and the calculated averages. You may need to use nonlinear
optimization techniques to find the optimal constants.

The equation used for forecasting beyond the data points with double exponential smoothing is
forecast (t+m = DOUBLEXP(t) + m* b(t)

where:

m
Is the number of time periods ahead for the forecast.

How to Calculate a Double Exponential Smoothing Column

FORECAST_DOUBLEXP(di spl ay, infield,
interval, npredict, npointl, npoint?Z2)

Information Builders

4. Simplified Analytic Functions I

where:

di spl ay

Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

. INPUT_FIELD. This displays the original field values for rows that represent existing
data.

.4 MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield

Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

i nterval

Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredi ct

Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST.

nperi od

For the SEASONAL method, it is a positive whole number that specifies the number of
data points in a period.

npoi nt 1

Using Functions

For DOUBLEXP, this number is used to calculate the weights for each component in
the average. This value must be a positive whole number. The weight, k, is calculated
by the following formula:

k=2/ (1+npoi nt 1)

93

FORECAST_SEASONAL: Using Triple Exponential Smoothing

Example:

npoi nt 2
For DOUBLEXP, this positive whole number is used to calculate the weights for each
term in the trend. The weight, g, is calculated by the following formula:

g=2/ (1+npoi nt 2)

Calculating a Double Exponential Smoothing Column

The following sums the ACTUAL_YTD field of the CENTSTMT data source by period, and
calculates a single exponential and double exponential moving average. The report columns
show the calculated values for existing data points.

TABLE FI LE CENTSTMI

SUM ACTUAL_YTD

COVPUTE EXP/ D15.1 = FORECAST EXPAVE(MODEL_DATA, ACTUAL_YTD, 1, 0, 3) ;
DOUBLEXP/ D15. 1 = FORECAST DOUBLEXP(MODEL_DATA, ACTUAL_YTD, 1, 0, 3, 3) ;
BY PERI OD

WHERE GL_ACCOUNT LI KE ' 39886

ON TABLE SET STYLE *

GRI D=OFF, $

END

The output is shown in the following image:

YTD
PERIOD Actual EXP DOUBLEXP
2002401 12,957.681. 12,957681.0 12,957.651.0
2002402 25441971, 19,199,826.0 22,439.246.3
2002403 39,164,321, 29,182,073.5 34,791.885.1
2002404 52.733,326. 40,957.600.8 48,845.816.0
2002405 66.765,920. 53,861.800.9 63,860.955.9
2002/060 80952492, 674071509 79,188,052.9

FORECAST_SEASONAL: Using Triple Exponential Smoothing

94

Triple exponential smoothing produces an exponential moving average that takes into account
the tendency of data to repeat itself in intervals over time. For example, sales data that is
growing and in which 25% of sales always occur during December contains both trend and
seasonality. Triple exponential smoothing takes both the trend and seasonality into account by
using three equations with three constants.

Information Builders

4. Simplified Analytic Functions I

For triple exponential smoothing you, need to know the number of data points in each time
period (designated as L in the following equations). To account for the seasonality, a seasonal
index is calculated. The data is divided by the prior season index and then used in calculating
the smoothed average.

4 The first equation accounts for the current time period, and is a weighted average of the
current data value divided by the seasonal factor and the prior average adjusted for the
trend for the previous period. The weight constant is k:

SEASONAL(?) = k * (datavalue(t)/1(t-L)) + (1-k) * (SEASONAL(Z-1) +
b(t-1))

.4 The second equation is the calculated trend value, and is a weighted average of the
difference between the current and previous average and the trend for the previous time
period. b(t) represents the average trend. The weight constant is g:

b(t) = g* (SEASONAL(?)-SEASONAL(Z7-1)) + (1-9) * (b(f-1))

- The third equation is the calculated seasonal index, and is a weighted average of the
current data value divided by the current average and the seasonal index for the previous
season. I(t) represents the average seasonal coefficient. The weight constant is p:

1(t) = p* (dataval ue(t)/SEASONAL(Z)) + (1 - p) * 1(t-L)

These equations are solved to derive the triple smoothed average. The first smoothed average
is set to the first data value. Initial values for the seasonality factors are calculated based on
the maximum number of full periods of data in the data source, while the initial trend is
calculated based on two periods of data. These values are calculated with the following steps:

1. The initial trend factor is calculated by the following formula:

b(0) = (1 L) ((y(L+1)-y(1))/L + (y(L+2)-y(2))/ L + ... + (y(2L) -
y(L)/L)

2. The calculation of the initial seasonality factor is based on the average of the data values
within each period, A(j) (1<=j<=N):

A(J) = (y((J-1) L+1) + y((j-1)L+2) + ... +y(jL)) [L
3. Then, the initial periodicity factor is given by the following formula, where N is the number
of full periods available in the data, L is the number of points per period and n is a point

within the period (1<=n <= L):

LCn) = Cy(m /AL + y(L+n)IA(2) + ... + y((MLLtM)IAN) | N

Using Functions 95

FORECAST_SEASONAL: Using Triple Exponential Smoothing

Syntax:

96

The three constants must be chosen carefully. The best results are usually obtained by
choosing the constants to minimize the mean-squared error (MSE) between the data values
and the calculated averages. Varying the values of npointl and npoint2 affect the results, and
some values may produce a better approximation. To search for a better approximation, you
may want to find values that minimize the MSE.

The equation used to forecast beyond the last data point with triple exponential smoothing is:

forecast (f+m = (SEASONAL(Z) + m* b(t)) / |(t-L+NOD(i L))

where:

m
Is the number of periods ahead for the forecast.

How to Calculate a Triple Exponential Smoothing Column

FORECAST_SEASONAL(d7 spl ay, infield,
interval, npredict, nperiod, npointl, npointZ2 npoint3)

where:

di spl ay
Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

. INPUT_FIELD. This displays the original field values for rows that represent existing
data.

.4 MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

i nterval
Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

Information Builders

4. Simplified Analytic Functions I

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredi ct
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST. For the SEASONAL method, npredict is the
number of periods to calculate. The number of points generated is:

nperiod * npredict
nperi od

For the SEASONAL method, is a positive whole number that specifies the number of
data points in a period.

npoi nt 1
For SEASONAL, this number is used to calculate the weights for each component in
the average. This value must be a positive whole number. The weight, k, is calculated
by the following formula:

k=2/ (1+npoi nt 1)
npoi nt 2

For SEASONAL, this positive whole number is used to calculate the weights for each
term in the trend. The weight, g, is calculated by the following formula:

g=2/ (1+npoi nt 2)
npoi nt 3

For SEASONAL, this positive whole number is used to calculate the weights for each
term in the seasonal adjustment. The weight, p, is calculated by the following formula:

p=2/ (1+npoi nt 3)

Using Functions 97

FORECAST_LINEAR: Using a Linear Regression Equation

Example: Calculating a Triple Exponential Smoothing Column

In the following, the data has seasonality but no trend. Therefore, npoint2 is set high (1000) to
make the trend factor negligible in the calculation:

TABLE FI LE VI DEOTRK
SUM TRANSTOT

COVPUTE SEASONAL/ D10. 1 = FORECAST SEASONAL(MODEL_DATA, TRANSTOT,
1, 3,3, 3, 1000, 1) ;

BY TRANSDATE

WHERE TRANSDATE NE ' 19910617

ON TABLE SET STYLE *

GRI D=OFF, $

ENDSTYLE

END

In the output, npredict is 3. Therefore, three periods (nine points, nperiod * npredict) are
generated.

TRANSDATE TRANSTOT SEASONAL

91/06/18 21.25 21.3
91/06/19 38.17 31.0
91/06/20 14.23 34.6
91/06/21 44.72 53.2
91/06/24 126.28 753
91/06/25 47.74 82.7
91/06/26 40.97 137
91/06/27 60.24 629
91/06/28 31.00 66.3
91/06/29 457
91/06/30 94.1
91/07/01 534
91/07/02 2.3
91/07/03 140.0
91/07/04 75.8
91/07/05 989
91/07/06 185.8
91/07/07 98.2

FORECAST_LINEAR: Using a Linear Regression Equation

The linear regression equation estimates values by assuming that the dependent variable (the
new calculated values) and the independent variable (the sort field values) are related by a
function that represents a straight line:

y=nm+b
where:
4

Is the dependent variable.

98 Information Builders

4. Simplified Analytic Functions I

X

Is the independent variable.
m

Is the slope of the line.
b

Is the y-intercept.

FORECAST_LINEAR uses a technique called Ordinary Least Squares to calculate values for m
and b that minimize the sum of the squared differences between the data and the resulting
line.

The following formulas show how m and b are calculated.

o I;Z.J:y _WI;ZI . Zyilx"n:|
I;Z.J;' —I;Z.J:]'x"n]

b= (Yy)/n—(me(Sx)/n

where:

n
Is the number of data points.

Y
Is the data values (dependent variables).

Is the sort field values (independent variables).

Trend values, as well as predicted values, are calculated using the regression line equation.

Using Functions 99

FORECAST_LINEAR: Using a Linear Regression Equation

Syntax:

100

How to Calculate a Linear Regression Column

FORECAST LI NEAR(di spl ay, infield, interval,
npredi ct)

where:

di spl ay

Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

4 INPUT_FIELD. This displays the original field values for rows that represent existing
data.

.4 MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield

Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

i nterval

Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredi ct

Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST.

Information Builders

4. Simplified Analytic Functions I

Example: Calculating a New Linear Regression Field

The following request calculates a regression line using the VIDEOTRK data source of
QUANTITY by TRANSDATE. The interval is one day, and three predicted values are calculated.

TABLE FI LE VI DEOTRK
SUM QUANTI TY

COVPUTE FORTOT=FORECAST LI NEAR(MODEL_DATA, QUANTI TY, 1, 3) ;
BY TRANSDATE

ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *
GRI D=CFF, $

ENDSTYLE

END

The output is shown in the following image:

TREANSDATE QUANTITY FORTOT

06/17/91
06/18/91
06/19/91
06/20/91
06/21/91
06/24/91
06/25/91
06/26/91
06/27/91
06/28/91
06/29/91
06/30/91
07/01/91

Note:

A

Using Functions

12

o [N S W U (N

1

]

ba MO ka2 o0

6.63
6.57
6.51
6.45
6.39
6.21
6.15
6.09
6.03
5.97
591
5.85
5.79

Three predicted values of FORTOT are calculated. For values outside the range of the data,
new TRANSDATE values are generated by adding the interval value (1) to the prior

TRANSDATE value.

There are no QUANTITY values for the generated FORTOT values.

Each FORTOT value is computed using a regression line, calculated using all of the actual

data values for QUANTITY.

101

PARTITION_AGGR: Creating Rolling Calculations

TRANSDATE is the independent variable (x) and QUANTITY is the dependent variable (y).
The equation is used to calculate QUANTITY FORECAST trend and predicted values.

The following version of the request charts the data values and the regression line.

GRAPH FI LE VI DEOTRK

SUM QUANTI TY

COVPUTE FORTOT=FORECAST LI NEAR(MODEL_DATA, QUANTI TY, 1, 3) ;
BY TRANSDATE

ON GRAPH PCHOLD FORMAT JSCHART

ON GRAPH SET LOOKGRAPH VLI NE

END

The output is shown in the following image.

LE/Z1/90
LE/81/90
LE/GL/90
LG/0Z/90 4
LE/LE2/90
LE/FZ/90 1
LB/SZ/90
LG/9Z/90
LE/4Z/90
LG/BZ/90
LE/GZ/90
LE/0EM0 4
LE/L0/L0 4

TRANSDATE

QUANTITY ~ FORTOT

PARTITION_AGGR: Creating Rolling Calculations

Using the PARTITION_AGGR function, you can generate rolling calculations based on a block of
rows from the internal matrix of a TABLE request. In order to determine the limits of the rolling
calculations, you specify a partition of the data based on either a sort field or the entire TABLE.
Within either type of break, you can start calculating from the beginning of the break or a
number of rows prior to the current row. You can stop the rolling calculation at the current row
or the end of the partition.

102 Information Builders

4. Simplified Analytic Functions I

By default, the field values used in the calculations are the summed values of a measure in
the request. Certain prefix operators can be used to add a column to the internal matrix and
use that column in the rolling calculations. The rolling calculation can be SUM, AVE, CNT, MIN,
MAX, FST, or LST.

Syntax: How to Generate Rolling Calculations Using PARTITION_AGGR
PARTI TI ON_AGCR([prefi x.]| neasure,{sortfielad TABLE}, fromto, operati on)

where:

prefix.
Defines an aggregation operator to apply to the measure before using it in the rolling
calculation. Valid operators are:

4 SUM. which calculates the sum of the measure field values. SUM is the default
operator.

CNT. which calculates a count of the measure field values.

AVE. which calculates the average of the measure field values.
MIN. which calculates the minimum of the measure field values.
MAX. which calculates the maximum of the measure field values.

FST. which retrieves the first value of the measure field.

L U o o o U

LST. which retrieves the last value of the measure field.

Note: The operators PCT., RPCT., TOT., MDN., and DST. are not supported. COMPUTEs
that reference those unsupported operators are also not supported.

neasure

Is the measure field to be aggregated. It can be a real field in the request or a calculated
value generated with the COMPUTE command, as long as the COMPUTE does not
reference an unsupported prefix operator.

sortfield

Is a BY or ACROSS field that defines the boundary of the partition. Operations will not
cross a boundary. In the request the BY HIGHEST phrase to sort high-to-low is supported.
ACROSS COLUMNS AND is also supported, but BY ROWS OVER and FOR are not
supported.

Specifying TABLE as the boundary makes the partition boundary the entire internal matrix.

Using Functions 103

PARTITION_AGGR: Creating Rolling Calculations

For example, if the sort is BY YEAR BY MONTH, with data from both 2014 and 2015,
specifying the boundary as YEAR means that January 2015 - 2 will be valued as zero (0) or
MISSING, as two months prior to January 2015 would cross the YEAR boundary. However,
specifying TABLE as the boundary and requesting - 2 months would return the data for
November 2014.

from
Identifies the starting point for the rolling calculation. Valid values are:

4 -n, which starts the calculation n rows back from the current row.

. B, which starts the calculation at the beginning of the current sort break (the first line
with the same sort field value as the current line).

to
Identifies the ending point of the rolling calculation. Valid values are:

4 C, which ends the rolling calculation at the current row in the internal matrix.

.4 E, which ends the rolling calculation at the end of the sort break (the last line with the
same sort value as the current row.)

operation
Specifies the rolling calculation used on the values in the internal matrix. Supported
operations are:

SUM. which calculates a rolling sum.

AVE. which calculates a rolling average.

CNT. which counts the rows in the partition.

MIN. which returns the minimum value in the partition.

MAX, which returns the maximum value in the partition.

L U o o U u

FST. which returns the first value in the partition.

.4 LST. which returns the last value in the partition.

The calculation is performed prior to any WHERE TOTAL tests, but after any WHERE_GROUPED
tests.

104 Information Builders

4. Simplified Analytic Functions I

Example: Calculating a Rolling Average

The following request calculates a rolling average of the current line and the previous line in
the internal matrix within the quarter.

TABLE FI LE WF_RETAIL_LITE

SUM COGS_US

COVPUTE AVE1/ D12. 2M = PARTI TI ON_AGGR(COGS_US, TIME_QIR, -1, C, AVE);
BY BUSI NESS_REG ON

BY TI ME_QTR

BY TI ME_MIH

WHERE BUSI NESS_ REG ON EQ 'North Anerica' OR ' South Anerica'

ON TABLE SET PAGE NOLEAD

END

Using Functions 105

PARTITION_AGGR: Creating Rolling Calculations

106

The output is shown in the following image. Within each quarter, the first average is just the
value from Q1, as going back 1 would cross a boundary. The second average is calculated
using the first two rows within that quarter, and the third average is calculated using rows 2

and 3 within the quarter.

Customer
Eusiness
Eegon

Sale
Cuarter

Sale
Mlonth [Caost of Goods AVE]

‘North America

1| $131,745.00 §131,745.00

2| $138,150.00($134,947 50

3| $166,097.00[$152,123 50

2

4| $147,770.00[$147.770.00

5| $143.461.00[8145,615 50

6| $144,101.00($143,781.00

3

7| $140,641.00(8140,641 00

3| $13875600($139,698 50

9| $131,858.00($135,307 00

4

10| $172,837.00 [$172,837.00

11| $1,604.00] $87,22050

South Ammerica

1

1| $33,895.00| $33,895.00

2| $35753.00($34,824 00

3| $13.753.00| $24,753.00

2

4| $24.339.00| $24,339.00

5| $29,076.00| $26,707 50

6| $22,726.00($25,901.00

3

7| $1647500| §$16.475 00

3| $12,504 00| $14,489 50

9| $19753.00($16,128 50

4

10| $27,526.00| $27,526.00

The following changes the rolling average to start from the beginning of the sort break.

COVPUTE AVE1/ D12. 2M = PARTI TI ON_AGGR(COGS_US, TIME QTR ,B, C, AVE);

Information Builders

4. Simplified Analytic Functions I

The output is shown in the following image. Within each quarter, the first average is just the

value from Q1, as going back would cross a boundary. The second average is calculated using
the first two rows within that quarter, and the third average is calculated using rows 1 through
3 within the quarter.

Customer
Busmess
Eegion

sale
Chuarter

wale
Ionth | Cost of Goods AWE]

|Nor|:h America

1| $131,745.00/[§131,745.00

2| $138,150.00 $134,947.50

3| $166,097 00 §145,330 67

2

4| $147,770.00($147,770.00

5| $143.461.00 $145,615.50

6| $144,101.00($145,110.67

3

7| $140,641.00 [$140,641 00

8| $138,756.00 $139,698 50

9| $131,858.00 $137,085.00

4

10/ $172,237.00$172,837.00

11 $1,604.00| $87,22050

South America

1

1| $33,395.00 $33,295.00

2| $35753.00| $34,324.00

3| $13,753.00| $27,300.33

2

4| $24339.00| $24,339.00

5| $29,076.00| $26,707.50

6| $22,726.00| $25,380.33

3

7| $16475.00| $16475.00

8| £12,504 00| $14,489 50

9| $19,753.00| $16,244 00

4

10| $27,526.00| $27,526.00

The following command uses the partition boundary TABLE.

COVPUTE AVE1l/ D12. 2M = PARTI TI ON_AGCR(COGS_US, TABLE, B, C, AVE);

Using Functions

107

PARTITION_AGGR: Creating Rolling Calculations

The output is shown in the following image. The rolling average keeps adding the next row to
the average until a break in the business region sort field.

Customer

Sale
Cuarter

Business
Eegion

Sale
Ilonth

Cost of Goods AVE]

|North America

1| $131,745.00($131,745.00

2| $132,150.00(§134,947.50

3| $166,097.00/(5145,330.67

2

4| $147,770.00/$145,940.50

5| $143.461.00($145 444 60

6| $144,101.00(§145,220 67

3

7| $140,641.00[5144,566 43

3| $132.756.00($143,340 13

9| $131,858 00 ($142,508 73

4

10/ $172,837.00$145,541.60

11| $1,604.00($132,456 36

1| $33,295.00/|$124,242 92

2| $35753.00($117,436.00

3| $13,753.00($110,030.07

2

4| $24.339.00(8104,317.33

5| $29,076.00| $99,614 75

6| $22726.00| $95,09188

3

7| $16475.00| £90,724.28

2| $12,504.00| $36,607.42

9| $19.753.00| $33,264 70

|
|
|
|
|
|
|
|
|
|
1]
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|South America
|
|
|
|
|
|
|
|
|

4

$27,526.00 | $30,610.48

108

Information Builders

4. Simplified Analytic Functions I

Reference: Usage Notes for PARTITION_AGGR

- Fields referenced in the PARTITION_AGGR parameters but not previously mentioned in the
request will not be counted in column notation or propagated to HOLD files.

. Using the WITHIN phrase for a sum is the same as computing PARTITION_AGGR on the
WITHIN sort field from B (beginning of sort break) to E (end of sort break) using SUM, as in
the following example.

TABLE FI LE WF_RETAIL_LITE

SUM COGS US WTHIN TIME_QTR AS "WTHI N Qr'

COVPUTE PART_W THI N_QTR/ D12. 2M = PARTI TI ON_AGGR(COGS_US, TIME_QIR, B, E,
SUM ;

BY BUSI NESS_REG ON AS Regi on

BY TI ME_QIR

BY TI ME_MIH

VWHERE BUSI NESS_REG ON EQ 'North Anerica’ OR 'South Anerica'

ON TABLE SET PAGE NOPACE

END

Using Functions 109

PARTITION_AGGR: Creating Rolling Calculations

The output is shown in the following image.

110

sale | Sale
Eegion Chatter| (Ionth |'WITHIT Otr||PARET WITHIN OQTE.
Morth America| 1| 1[$435,992.00) $435,992.00
| | | 2|$435992.00) $435,992.00
| | | 3|$435,992.00) £435,992 00
| | 2| 4843533200 $435,332.00
| | | 5|$435332.00) $435,332.00
| | | 6843533200 $435,332.00
| | 3] 7[$411,255.00| $411,255.00
| | | 8| $411,255.00] $411,255 00
| | | 9] $411,255.00] $411,255 00
| | 4| 10[$174441.00] $174,441.00
| | | 11|$174,441.00) £174,441.00
South America| 1| 1| $83401.00) $33,401.00
| | | 2| $23401.00) £83.401.00
| | | 3| $33401.00) £33.401.00
| | 2| 4| §76,141.00| £76,141.00
| | | 5| $76,141.00) £76.141.00
| | | 6| $76,141.00) £76.141.00
| | 3] 7| s4873200] $42,732.00
| | | 8| $48732.00) £48 732,00
| | | 9| $48732.00) $48 732.00
| | 4] 10| $27.526.00| $27,526.00

Information Builders

4. Simplified Analytic Functions I

With other types of calculations, the results are not the same. For example, the following
request calculates the average within quarter using the WITHIN phrase and the average
with quarter using PARTITION_AGGR.

TABLE FI LE WF_RETAIL_LITE

SUM COGS_US AS Cost

CNT. COGS_US AS Count AVE.COGS_US WITHIN TIME_QTR AS 'Ave Wthin'
COVPUTE PART WITHIN_ QTR/D12.2M = PARTITION_AGGR (COGS_US, TIME_QTR, B, E,
AVE) ;

BY BUSI NESS REG ON AS Regi on

BY TI ME_QIR

ON TI ME_QTR SUBTOTAL COGS_US CNT. COGS_US

BY TI ME_MIH

WHERE BUSI NESS_REG ON EQ ' North Anerica'

ON TABLE SET PAGE NOPAGE

END

The output is shown in the following image. The average using the WITHIN phrase divides
the total cost for the quarter by the total count of instances for the quarter (for example,
$435,992.00/1514 =$287.97), while PARTITION_AGGR divides the total cost for the
quarter by the number of report rows in the quarter (for example, $435,992.00/3 =
$145,330.67).

Using Functions

Sele| Sale ‘
Eegion Cuarter [IMonth Cost|Count | Ave Within |PART WITHIN QTE
Morth dmerica| 1| 1| $131,745.00(483| $287.97) £145,330.67
| | [2] s133.150.00] 485 $287.97] £145,330 67
| | [3] s166,007.00] 546[$287.97] £145,330 67
FTOTAL TIME_QTR. 1 | $43599200] 1514 |
| | 2| 4] s147,77000(497| 29879 £145,110.67
| | [5| s143.461.00] s02[$20879] £145,110.67
| | [6| $144.101.00] 458 $29879] £145,110 67
*TOTAL TIME_QTR. 2 | $435332.00] 1457 |
| | 3] 7| 14064100 451 $29997] $137,085.00
| | [8| s138756.00 451 29997 $137,085.00
| | [o] s131,852.00] 469 $209.97] £137,085.00
*TOTAL TIME_QTR 3 | $411,25500 1371 |
| |4 10| $172837.00] ses| $30232] $87.220 50
| | | 11| $i60400] 8| $30232 $87,220 50
FTOTAL TIME_QTR 4 | $174441.00] 577 |
[TOTAL [81,457,020.00 | 4919 |

111

PARTITION_REF: Using Prior Field Values in Calculations

-1 If you use PARTITION_AGGR to perform operations for specific time periods using an offset,

for example, an operation on the quarters for different years, you must make sure that
every quarter is represented. If some quarters are missing for some years, the offset will
not access the correct data. In this case, generate a HOLD file that has every quarter
represented for every year (you can use BY QUARTER ROWS OVER 1 OVER 2 OVER 3 OVER
4) and use PARTITION_AGGR on the HOLD file.

PARTITION_REF: Using Prior Field Values in Calculations

Syntax:

112

Use of LAST in a calculation retrieves the LAST value of the specified field the last time this
calculation was performed. The PARTITION_REF function enables you to specify both how many
rows back to go in order to retrieve a prior value, and a sort break within which the prior value
calculation will be contained.

How to Retrieve Prior Field Values for Use in a Calculation
PARTI TION_REF([prefix.] field, {sortfieldad TABLE}, -offset)

where:

prefix

Is optional. If used, it can be one of the following aggregation operators:
-1 AVE. Average

4 MAX. Maximum

.4 MIN. Minimum

4 CNT. Count

4 SUM. Sum

field

Is the field whose prior value is to be retrieved.

{srtfield TABLE}

Is the sort break within which to go back to retrieve the value. TABLE means retrieve the
value without regard to sort breaks. Operations will not cross a partition boundary.

The Sort field may use BY HIGHEST to indicate a HIGH-TO-LOW sort. ACROSS COLUMNS
AND is supported. BY ROWS OVER and FOR are not supported.

- offset

Is the integer number of records back to go to retrieve the value.

Information Builders

4. Simplified Analytic Functions I

If the offset is prior to the partition boundary sort value, the return will be the default value
for the field. The calculation is performed prior to any WHERE TOTAL tests, but after
WHERE_GROUPED tests.

Example: Retrieving a Previous Record With PARTITION_REF

The following request retrieves the previous record within the sort field PRODUCT_CATEGORY.

TABLE FI LE WF_RETAIL_LITE

SUM DAYSDELAYED

COVPUTE NEWDAYS/ | 5=PARTI TI ON_REF(DAYSDELAYED, PRODUCT_CATECCRY, -1);
BY PRODUCT_CATEGORY

BY PRODUCT_SUBCATEG

ON TABLE SET PAGE NOPAGE

END

Using Functions 113

PARTITION_REF: Using Prior Field Values in Calculations

114

The output is shown in the following image. The first value within each sort break is zero

because there is no prior record to retrieve.

Product Product Days

Category subcategory Delayed [NEWDAYS
|ﬂccessoﬂes |Charger | 164| 0
| [Headphones | 335 164
| |Universal Eemaote Controls | 264 | 335
Camcorder |[Handheld | 430| 0
| [Professional | 21 430
| |Standard | 324| 21
|Computers |Smartphone | =42 | 0
Media Player Bl Ray | 1,102 0
| [DVI Players | 31 1102
| |Streaming | as| 31
|Stereo mysterns |Home Theater Systems | 652 | 0
| [Receivers | 220| 652
| |Spealer Kits | 404 220
| Pod Docking Station || 520 404
ITelevisions [Flat Panel TV | 144| 0
[Video Production [Video Editing | 317| 0

The following request retrieves the average cost of goods from two records prior to the current

record within the PRODUCT_CATEGORY sort field.

TABLE FI LE WF_RETAIL_LITE
SUM COGS_US AVE. COGS_US AS Aver age

COVPUTE PartitionAve/ D12. 2M=PARTI TI ON_REF(AVE. COGS_US, PRODUCT_CATEGORY,

-2);

BY PRODUCT_CATEGORY

BY PRODUCT_SUBCATEG

ON TABLE SET PAGE NOPAGE
END

Information Builders

4. Simplified Analytic Functions I

The output is shown in the following image.

Product Product
Category Subrcategory Cost of Goods|| Average||Partition byve
lhccessories |Charger | $8573.00| $26.96] £.00
| [Headphones | $199325.00| $29269] £.00
| [Universal Remote Controls| $134,979.00| $278.31| $26.96
|Camcorder [Handheld | $90,607.00| $114.11] $.00
| [Professional | £159,042.00($3,614.73] £.00
| |Standard | $203550.00| $35155| $114.11
|Computers |Smartphone | $109,281.00| $18213] £.00
Media Plaver [Blu Ray | $754,249.00| $374.32] $.00
| [DVD Players | $15,096.00| $21566] £.00
| |Strearning | $10,248.00 $6249| §374.32
|Stereo Systems |HomeTheaterS§.rstems | $245,581.DU| $199.98| F.o0
| [Receivers | $159790.00 $369 88 $.00
| |Speaker Kits | $343,113.00| $45809| $199.93
| iPod Docking Station | $108,558.00] $116.85| $369.88
ITelevisions [Flat Panel TV | $227,320.00| $853.26] £.00
[Video Production [Video Editing | $180,540.00| $279.91] $.00
Using Functions 115

PARTITION_REF: Using Prior Field Values in Calculations

Replacing the function call with the following syntax changes the partition boundary to TABLE.

COWUTE PartitionAve/ D12. 2M=PARTI TI ON_REF(AVE. COGS_US, TABLE, -2);

The output is shown in the following image.

Product Product

Categoty subcategory Cost of Goods| Average [Partitionfve
|ﬂccessoﬂes |Charger | 338,573.DD| $25.96| £.00
| [Headphones | $199,325.00| $29269| £.00
| Universal Remote Controls| $134,979.00] $27831| $26.96
Camcorder [Handheld | $90,607.00| $114.11| $292 69
| [Professional | $159,048.00(83,614.73| $278.31
| |Standard | $203,550.00| $351.55| $114.11
(Computers | Smartphone | $109,281.00| $18213| $3,614.73
Media Player [Bhu Ray | $754,249.00| $37432| $35153
| [DVD Players | $15,096.00| $21566| $182.13
| |Streaming | $10,24800| $6249| $374.32
|Stereo Systerms |Home Theater Systermns | $245,581.DU| $199.98| 215 66
| Receivers | $159790.00| $369.88| §52.49
| |Spealer Kits | $343,113.00| $458.09| $199.92
| Pod Docking Station || $108,558.00 $116.85| $369.88
I Televisions [Flat Panel TV | $227,82000| $85326| $458.09
[Video Production Video Editing | $180,540.00| $27991| $116.85

Reference: Usage Notes for PARTITION_REF

116

- Fields referenced in the PARTITION_REF parameters but not previously mentioned in the
request, will not be counted in column notation or propagated to HOLD files.

Information Builders

Chapter

Simplified Character Functions

Simplified character functions have streamlined parameter lists, similar to those used by
SQL functions. In some cases, these simplified functions provide slightly different
functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

Note: The simplified character functions are not supported in Maintain Data.

In this chapter:

|

|

Using Functions

CHAR_LENGTH: Returning the Length in
Characters of a String

CONCAT: Concatenating Strings After
Removing Trailing Blanks From the First

DIGITS: Converting a Number to a
Character String

LAST_NONBLANK: Retrieving the Last
Field Value That is Neither Blank nor
Missing

LOWER: Returning a String With All
Letters Lowercase

LPAD: Left-Padding a Character String

LTRIM: Removing Blanks From the Left
End of a String

PATTERNS: Returning a Pattern That
Represents the Structure of the Input
String

POSITION: Returning the First Position of
a Substring in a Source String

REGEX: Matching a String to a Regular
Expression

REPLACE: Replacing a String
RPAD: Right-Padding a Character String

RTRIM: Removing Blanks From the Right
End of a String

SPLIT: Extracting an Element From a
String

SUBSTRING: Extracting a Substring From
a Source String

TOKEN: Extracting a Token From a String

TRIM_: Removing a Leading Character,
Trailing Character, or Both From a String

UPPER: Returning a String With All
Letters Uppercase

117

CHAR_LENGTH: Returning the Length in Characters of a String

CHAR_LENGTH: Returning the Length in Characters of a String

Syntax:

Example:

118

The CHAR_LENGTH function returns the length, in characters, of a string. In Unicode
environments, this function uses character semantics, so that the length in characters may not
be the same as the length in bytes. If the string includes trailing blanks, these are counted in
the returned length. Therefore, if the format source string is type An, the returned value will
always be n.

How to Return the Length of a String in Characters
CHAR_LENGTH(st ri ng)

where:

string
Alphanumeric

Is the string whose length is returned.

The data type of the returned length value is Integer.

Returning the Length of a String

The following request against the EMPLOYEE data source creates a virtual field named
LASTNAME of type A15V that contains the LAST_NAME with the trailing blanks removed. It then
uses CHAR_LENGTH to return the number of characters.

DEFI NE FI LE EMPLOYEE

LASTNAVE/ A15V = RTRI M LAST_NAME) ;
END

TABLE FI LE EMPLOYEE

SUM LAST_NAME NOPRI NT AND CONVPUTE
NAVE LEN | 3 = CHAR LENGTH(LASTNANE) ;
BY LAST NAME

ON TABLE SET PAGE NOPAGE

END

Information Builders

5. Simplified Character Functions I

The output is:
LAST NAME NAVE LEN

BANNI NG
BLACKWOCD
CRCSS
GREENSPAN
I RVI NG
JONES
MCCOY
MCKNI GHT
ROVANS
SM TH
STEVENS

~NOIToOOoUIoIo oo

CONCAT: Concatenating Strings After Removing Trailing Blanks From the First

CONCAT removes trailing blanks from a string and then concatenates another string to it. The
output is returned as variable length alphanumeric.

Syntax: How to Concatenate Strings After Removing Trailing Blanks From the First
CONCAT(st ringl, string2

where:

string2
Alphanumeric

Is a string whose trailing blanks will be removed.

stringl
Alphanumeric

Is a string whose leading and trailing blanks will be preserved.

Using Functions 119

CONCAT: Concatenating Strings After Removing Trailing Blanks From the First

Example: Concatenating Strings After Removing Blanks From the First

The following request concatenates city names with state names. Note that the city and state
names are converted to fixed length alphanumeric fields before concatenation.

DEFI NE FI LE WE_RETAIL_LITE
CI TY/ A50 = CI TY_NAME

STATE/ A50 = STATE_PROV_NAME;
CONCAT_CS/ A100 = CONCAT(CI TY, STATE) ;
END

TABLE FI LE WF_RETAIL_LITE

SUM CITY AS City STATE AS State CONCAT_CS AS Concatenati on
BY STATE_PROV_NAME NOPRI NT

WHERE COUNTRY_NAME EQ ' United States'

WHERE STATE LE ' Loui si ana'

ON TABLE SET PAGE NOLEAD

END

120 Information Builders

5. Simplified Character Functions I

The output is shown in the following image.

|Cit5r |State |Concatenation
|Montgomer3r |Jl'-.labama |Montgomeryﬁ.labama
|ﬁmchorage |ﬁ.laska |ﬁnchorageﬁ.laska

|Pho BT |Jl'-.riz-::lna |Pho etz A rirona

|Little Eock |4-'1'-.r1cansas |Little Eockirkansas
|Saratoga |Ca]jf|::-mia |SaratogaCa]jforIﬁa
|C010rado Springs |C010rado |C010rado springsColorads
|Dld Lytme |Conneu::ti|::ut |Dld LymeConnecticut
|Lewes |Delaware |LewesDelaware
Washington ~[District of Columbia [WashingtonDistrict of C'olumbia
Miami [Flotida MiamiFlorida

|Atlanta |Georgia |Aﬂanta@reargia

|Hon-::-1ulu |Hawaji |Hon-::-1uluHawaji

[Boise [Tdaho [Boiseldaho

|Chi|::ago |]]]jn-::-is |Chicago]]]ﬂ10is
|It1dianapo]is |Indiana |It1dianapo]islt1diana

|Des Iloines |Iowa |Des Ilocineslowa

|W’1t:hita |Kansas |W'1|:hitaKansas

|Lex:ington |Kenmck§.r |Lex:ingtonK entucky

|NEW Otleans |L-:}uisiana |NEW OtleansLowsiana

DIGITS: Converting a Number to a Character String

Given a number, DIGITS converts it to a character string of the specified length. The format of
the field that contains the number must be Integer.

Using Functions 121

DIGITS: Converting a Number to a Character String

Syntax: How to Convert a Number to a Character String
DI G TS(nunber, | engt h)

where:

nunber
Integer

Is the number to be converted, stored in a field with data type Integer.

[engt h
Integer between 1 and 10

Is the length of the returned character string. If length is longer than the number of digits
in the number being converted, the returned value is padded on the left with zeros. If
length is shorter than the number of digits in the number being converted, the returned
value is truncated on the left.

Example: ~ Converting a Number to a Character String

The following request against the WF_RETAIL_LITE data source converts -123.45 and
ID_PRODUCT to character strings:

DEFI NE FI LE WE_RETAIL_LITE
MEAS1/ | 8=- 123. 45;

DI GL/ A6=DI Gl TS(MEASL, 6) ;

DI G2/ A6=DI Gl TS(1 D_PRODUCT, 6) ;

END

TABLE FILE W _RETAIL_LITE

PRI NT MEAS1 DI GL

| D_PRODUCT DI G2

BY PRODUCT SUBCATEG

WHERE PRODUCT SUBCATEG EQ ' Fl at Panel TV
ON TABLE SET PAGE NOPAGE

END

122 Information Builders

5. Simplified Character Functions I

The output is:

Product

Subcategory | MEAS] DIGI

Flat Panel TV | -123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123
-123

-123

Using Functions

000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123
000123

ID Product DIG2

4012 /004012
4017004017
4018 |004018
4017 004017
4017 |004017
4018 |004018
4018 |004018
4017 |004017
4014 (004014
4016 (004016
4016 (004016
4018 |004018
4017004017
4018 |004018
4018 |004018
4017 |004017
4016 (004016
4018 |004018
4016 (004016
4018 (004018
4017 004017
4018 |004018
4017004017
4017004017
4014 |004014
4018 |004018

123

LAST _NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing

Reference:

Usage Notes for DIGITS

- Only | format numbers will be converted. D, P, and F formats generate error messages and
should be converted to | before using the DIGITS function. The limit for the number that can
be converted is 2 GB.

d Negative integers are turned into positive integers.
- Integer formats with decimal places are truncated.

- DIGITS is not supported in Dialogue Manager.

LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing

Syntax:

Example:

124

LAST_NONBLANK retrieves the last field value that is neither blank nor missing. If all previous
values are either blank or missing, LAST_NONBLANK returns a missing value.

How to Return the Last Value That is Neither Blank nor Missing
LAST_NONBLANK(7/ e/ d)

where:

field
Is the field name whose last non-blank value is to be retrieved. If the current value is not
blank or missing, the current value is returned.

Note: LAST_NONBLANK cannot be used in a compound expression, for example, as part of an
IF condition.

Retrieving the Last Non-Blank Value

Consider the following delimited file named inputl.csv that has two fields named FIELD_1 and
FIELD_2.

A

Information Builders

5. Simplified Character Functions I

The inputl Master File follows.

FI LENAME=I NPUT1, SUFFI X=DFI X ,
DATASET=baseapp/ i nput 1. csv(LRECL 15 RECFM V, BV_NAMESPACE=CFF, $
SEGMVENT=I NPUT1, SEGTYPE=S0, $
FI ELDNAME=FI ELD 1, ALI AS=E01, USAGE=A1V, ACTUAL=AlV,
M SSI NG=ON, $
FI ELDNAME=FI ELD 2, ALI AS=E02, USAGE=A1V, ACTUAL=AlV,
M SSI NG=ON, $

The inputl Access File follows.

SEGNAME=] NPUT1,
DELIM TER=", ',
HEADER=NQO,
PRESERVESPACE=NO,
CDN=COMVAS_ DO,
CONNECTI ON=<I ocal >, $

The following request displays the FIELD_1 values and computes the last non-blank value for
each FIELD_1 value.

TABLE FI LE baseapp/ | NPUT1

PRI NT FI ELD 1 AS I nput

COVPUTE

Last _NonBl ank/ A1 M SSI NG ON = LAST_NONBLANK(FI ELD 1);
ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

The output is shown in the following image.

Input Last NonBlank

A A
A
A
B B
C C

LOWER: Returning a String With All Letters Lowercase

The LOWER function takes a source string and returns a string of the same data type with all
letters translated to lowercase.

Using Functions 125

LPAD: Left-Padding a Character String

Syntax: How to Return a String With All Letters Lowercase
LOVER(st ri ng)

where:
string
Alphanumeric
Is the string to convert to lowercase.

The returned string is the same data type and length as the source string.

Example: Converting a String to Lowercase

In the following request against the EMPLOYEE data source, LOWER converts the LAST_NAME
field to lowercase and stores the result in LOWER_NAME:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAMVE AND COVPUTE

LOWER NAVE/ A15 = LOWER(LAST NAME);
ON TABLE SET PAGE NOPAGE

END

The output is:

LAST_NAME LOVER_NAME
STEVENS st evens
SM TH smth
JONES j ones

SM TH smth
BANNI NG banni ng

I RVI NG i rving
ROVANS romans
MCCOY nccoy
BLACKWOCD bl ackwood
MCKNI GHT ntkni ght
GREENSPAN gr eenspan
CROSS Cross

LPAD: Left-Padding a Character String

LPAD uses a specified character and output length to return a character string padded on the
left with that character.

Syntax: How to Pad a Character String on the Left

LPAD(st ring, out_Ilength, pad_character)

126 Information Builders

5. Simplified Character Functions I

where:

string
Fixed length alphanumeric

Is a string to pad on the left side.

out_[ength
Integer

Is the length of the output string after padding.

pad_charact er
Fixed length alphanumeric

Is a single character to use for padding.

Example: Left-Padding a String

In the following request against the WF_RETAIL data source, LPAD left-pads the
PRODUCT_CATEGORY column with @ symbols:

DEFI NE FI LE WF_RETAI L
LPADL/ A25 = LPAD(PRODUCT CATEGCRY, 25,' @) ;
DI GL/ A4 = DI G TS(| D_PRODUCT, 4) ;

END

TABLE FI LE W_RETAI L

SUM DI GL LPADL

BY PRODUCT CATEGORY

ON TABLE SET PAGE NOPAGE

ON TABLE SET STYLE *

TYPE=DATA, FONT=COUR! ER, S| ZE=11, COLOR=BLUE, $
END

Using Functions 127

LTRIM: Removing Blanks From the Left End of a String

Reference:

The output is:

Product
Categorv

Usage Notes for LPAD

DIG1
5005 |@EEEEEEEEEEEEEACCassoTie

r
3006 |GECEEEAREEELCEEARECamcorde
5016 ERAGRRRRERRERRERCOmMpUutear

LPADI

[
|]]
o

|]]
[

0]

1003 |@EREERECRERREMadia

Flayer

bt

1]

e e R e S fer far e e Af R e

4018 |AEARARARARARGARARATalevision
]

System

0]

n

d To use the single quotation mark (') as the padding character, you must double it and
enclose the two single quotation marks within single quotation marks (LPAD(COUNTRY,
20,"""). You can use an amper variable in quotation marks for this parameter, but you
cannot use a field, virtual or real.

. Input can be fixed or variable length alphanumeric.

4 Output, when optimized to SQL, will always be data type VARCHAR.

d If the output is specified as shorter than the original input, the original data will be
truncated, leaving only the padding characters. The output length can be specified as a
positive integer or an unquoted &variable (indicating a numeric).

LTRIM: Removing Blanks From the Left End of a String

The LTRIM function removes all blanks from the left end of a string.

128

Information Builders

5. Simplified Character Functions I

Syntax: How to Remove Blanks From the Left End of a String
LTRI M St ring)

where:
string
Alphanumeric
Is the string to trim on the left.
The data type of the returned string is AnV, with the same maximum length as the source
string.
Example: Removing Blanks From the Left End of a String

In the following request against the MOVIES data source, the DIRECTOR field is rightjustified
and stored in the RDIRECTOR virtual field. Then LTRIM removes leading blanks from the
RDIRECTOR field:

DEFI NE FI LE MOVI ES

RDI RECTOR/ A17 = RJUST(17, DI RECTOR, 'Al7');
END

TABLE FI LE MOVI ES

PRI NT RDI RECTOR AND

COVPUTE

TRI MDI R/ Al7 = LTRI M RDI RECTOR) ;

VWHERE DI RECTOR CONTAINS ' BR

ON TABLE SET PAGE NOPAGE

END

The output is:

RDI RECTOR TRI MDI R

PATTERNS: Returning a Pattern That Represents the Structure of the Input String

PATTERNS returns a string that represents the structure of the input argument. The returned
pattern includes the following characters:

d A is returned for any position in the input string that has an uppercase letter.
4 ais returned for any position in the input string that has a lowercase letter.

.4 9 is returned for any position in the input string that has a digit.

Using Functions 129

PATTERNS: Returning a Pattern That Represents the Structure of the Input String

Note that special characters (for example, +/=%) are returned exactly as they were in the input
string.

The output is returned as variable length alphanumeric.
Syntax: How to Return a String That Represents the Pattern Profile of the Input Argument
PATTERNS(st ri ng)

where:

string
Alphanumeric

Is a string whose pattern will be returned.

Example: Returning a Pattern Representing an Input String

The following request returns patterns that represent customer addresses.

DEFI NE FI LE WF_RETAI L_LITE
Addr ess_Patt er n/ A4V = PATTERNS(ADDRESS LI NE_1);
END

TABLE FILE WF_RETAIL_LITE

PRI NT FST. ADDRESS LI NE_1 OVER
Address_Pattern

BY ADDRESS LI NE_1 NOPRI NT SKI P-LI NE
WHERE COUNTRY_NAME EQ ' United States'
WHERE ClI TY_NAME EQ ' Houston' OR 'Indianapolis' OR 'Chapel HIl'" OR 'Bronx'
ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

130 Information Builders

5. Simplified Character Functions I

The partial output is shown in the following image. Note that the special characters (#-,) in an
address are represented in the pattern as is.

FST Customer Address Line 1
Address Pattern

FST Customer Address Line 1
Address Pattern

FST Customer Address Line 1
Address Pattern

FST Customer Address Line 1
Address Pattern

FST Customer Address Line 1
Address Pattern

FST Customer Address Line 1
Address Pattern

FST Customer Address Line 1
Address Pattern

1010 Milam St # Ifp-2352
9900 Aaaaa Aa# Aaa-9999

10700 Fichmond Ave
00099 Aaaaaaaa Aaa

10777 North Fwy
99900 Aaaaa Aaa

11 E Greenwayv Plz Ste 100
00 A Aaaaaaaa Aaa Aaa 999

111 Monument Cir
990 Aaaaaaaa Aaa

111 Monument Circle - Ste 2100
990 Aaasaaaa Aaaaaa - Aaa 9999

1205 Dart 5t, Rm 219
9099 Aaaa Aa. Aa 999

POSITION: Returning the First Position of a Substring in a Source String

The POSITION function returns the first position (in characters) of a substring in a source

string.

Using Functions

131

REGEX: Matching a String to a Regular Expression

Syntax: How to Return the First Position of a Substring in a Source String
PCSI TI ON(pat t ern, string)
where:
pattern
Alphanumeric

Is the substring whose position you want to locate. The string can be as short as a single
character, including a single blank.
string

Alphanumeric
Is the string in which to find the pattern.

The data type of the returned value is Integer.

Example: Returning the First Position of a Substring

In the following request against the EMPLOYEE data source, POSITION determines the position
of the first capital letter | in LAST_NAME and stores the result in I_IN_NAME:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

I _IN_NAVE/ 12 = POSITION(' I', LAST_NAME);
ON TABLE SET PAGE NOPAGE

END

The output is:
LAST_NAVE I I N_NAVE

2
&
OQOUIO0OOORFR,UITWO WO

CRCSS

REGEX: Matching a String to a Regular Expression

The REGEX function matches a string to a regular expression and returns true (1) if it matches
and false (0) if it does not match.

132 Information Builders

5. Simplified Character Functions I

Syntax:

A regular expression is a sequence of special characters and literal characters that you can
combine to form a search pattern.

Many references for regular expressions exist on the web.

For a basic summary, see the section Summary of Regular Expressions in Chapter 2, Security,
of the Server Administration manual.

How to Match a String to a Regular Expression
RECGEX(string, regular_expressi on)

where:

string
Alphanumeric

Is the character string to match.

regul ar_expressi on
Alphanumeric

Is a regular expression enclosed in single quotation marks constructed using literals and
metacharacters. The following metacharacters are supported

. represents any single character

* represents zero or more occurrences
+ represents one or more occurrences
? represents zero or one occurrence

A represents beginning of line

1

1

1

1

d

d $ represents end of line
. [] represents any one character in the set listed within the brackets

d [*] represents any one character not in the set listed within the brackets
4 | represents the Or operator

. \ is the Escape Special Character

1

() contains a character sequence

For example, the regular expression 'ASte(v|ph)en$' matches values starting with Ste
followed by either ph or v, and ending with en.

Using Functions 133

REPLACE: Replacing a String

Example:

Note: The output value is numeric.

Matching a String Against a Regular Expression

The following request matches the FIRSTNAME field against the regular expression '*Sara(h?)

$', which matches Sara or Sarah:

TABLE FILE W _RETAIL_LITE
PRI NT FI RSTNAME AND COVPUTE

REGL/ | 1=REGEX(FI RSTNAME, ' ~Sara(h?)$') ;
BY LASTNAME/ A10

WHERE LASTNAME EQ ' Al l en'

END

The output is

LASTNAME Nane REGL
Al l en Penny
Rosemary
Anber
Julie
Sar ah
Leo
Mar gr et
Donna
Dam an
Al exander
Di ego
Anber
Susan
Anber
Sara
Sara

PRPOOOOO0OO0OO0OO0OO0OFrR,ROO0OO0OO0O

REPLACE: Replacing a String

REPLACE replaces all instances of a search string in an input string with the given replacement
string. The output is always variable length alphanumeric with a length determined by the input

Syntax:

134

parameters.
How to Replace all Instances of a String

REPLACE(/ nput_string , search_string ,

repl acenent)

Information Builders

5. Simplified Character Functions I

Example:

where:

I nput_string
Alphanumeric or text (An, AnV, TX)

Is the input string.

search_string
Alphanumeric or text (An, AnV, TX)

Is the string to search for within the input string.

repl acenent
Alphanumeric or text (An, AnV, TX)

Is the replacement string to be substituted for the search string. It can be a null string ("').

Replacing a String
REPLACE replaces the string 'South' in the Country Name with the string 'S.'

SET TRACEUSER = ON

SET TRACEON = STMTRACE/ / CLI ENT
SET TRACESTAMP=OFF

DEFI NE FI LE WE_RETAIL_LITE
NEWNAVE/ A20 = REPLACE (COUNTRY_NAME, 'SOUTH', 'S.');
END

TABLE FILE WF_RETAIL_LITE

SUM COUNTRY_NANE

BY NEWNAME AS ' New, Nane'

WHERE COUNTRY_NAME LI KE ' S%
ON TABLE SET PAGE NOLEAD

END

The generated SQL passes the REPLACE function to the DBMS REPLACE function.

SELECT

REPLACE(T3. "COUNTRY_NAME", ' SOUTH ,'S. "),
MAX(T3. " COUNTRY_NAME")

FROM

wd wf_retail _geography T3

VWHERE

(T3." COUNTRY_NAME" LIKE ' S%)

GROUP BY

REPLACE(T3. " COUNTRY_NAME", ' SOUTH , ' S. ")
ORDER BY

REPLACE(T3. " COUNTRY_NAME", ' SOUTH , ' S.");

The output is shown in the following image.

Using Functions 135

RPAD: Right-Padding a Character String

Example:

Customer

Country
|S. Aftica |Sc::-uth Aftica
|S. Eorea |Sc::-uth Eorea

Mew
Mame

|Singap ore |Singap ore
Spain [Spain

|SWE den |SWE den

|Switzerland |Switzerland

Replacing All Instances of a String

In the following request, the virtual field DAYNAMEZ1 is the string DAY1 with all instances of the
string 'DAY’ replaced with the string 'day’. The virtual field DAYNAME2 has all instances of the

string 'DAY’ removed.

DEFI NE FI LE WF_RETAI L

DAY1/ A30 = ' SUNDAY MONDAY TUESDAY' ;

DAYNAMEL1/ A30 = REPLACE(DAY1, 'DAY',
DAYNAMVE2/ A30 = REPLACE(DAY1, 'DAY',
END

TABLE FI LE WF_RETAI L

PRI NT DAY1 OVER

DAYNAMEL OVER

DAYNAME2

VWHERE EMPLOYEE_NUMBER EQ ' AH118'
ON TABLE SET PAGE NOPAGCE

END

The output is:

DAY1 SUNDAY MONDAY TUESDAY
DAYNAMEL SUNday MONday TUESday
DAYNAME2 SUN MON TUES

RPAD: Right-Padding a Character String

RPAD uses a specified character and output length to return a character string padded on the

136

right with that character.

“day');

Information Builders

5. Simplified Character Functions I

Syntax:

Example:

How to Pad a Character String on the Right
RPAD(st ring, out_length, pad_character)

where:

string
Alphanumeric

Is a string to pad on the right side.

out_[ength
Integer

Is the length of the output string after padding.

pad_charact er
Alphanumeric

Is a single character to use for padding.

Right-Padding a String

In the following request against the WF_RETAIL data source, RPAD right-pads the
PRODUCT_CATEGORY column with @ symbols:

DEFI NE FI LE WF_RETAI L
RPADL/ A25 = RPAD(PRODUCT CATEGCRY, 25,' @) ;
DI GL/ A4 = DI G TS(| D_PRODUCT, 4) ;

END

TABLE FI LE W_RETAI L

SUM DI GL RPADL

BY PRODUCT CATEGORY

ON TABLE SET PAGE NOPAGE

ON TABLE SET STYLE *

TYPE=DATA, FONT=COURI ER, S| ZE=11, COLOR=BLUE, $
END

Using Functions

137

RTRIM: Removing Blanks From the Right End of a String

Reference:

The output is:

Product

Category DIG1 EPADI

Accessories 5005 |Accessories@EARRARAGERRAEA
Camcorder 3006 |Camcorder@@@@EEAEAMEEARERAE
Computers 6016 |Computers@@@EEEEEAEAAGERERA
Media Player 1003 Media Player(@@EGEEREREREM
Stereo Systems (2155 |Stereoc Systems@ERAREAREREAERER
Televizions 4018 Televisions@EEEAEEAMEEEAEERAE
Video Production|7005 |Video Production@@EEEEEEE
Usage Notes for RPAD

- The input string can be data type AnV, VARCHAR, TX, and An.
.4 Output can only be AnV or An.

4 When working with relational VARCHAR columns, there is no need to trim trailing spaces
from the field if they are not desired. However, with An and AnV fields derived from An
fields, the trailing spaces are part of the data and will be included in the output, with the
padding being placed to the right of these positions. You can use TRIM or TRIMV to remove
these trailing spaces prior to applying the RPAD function.

RTRIM: Removing Blanks From the Right End of a String

Syntax:

138

The RTRIM function removes all blanks from the right end of a string.
How to Remove Blanks From the Right End of a String
RTRI M st ri ng)

where:
string

Alphanumeric

Is the string to trim on the right.

Information Builders

5. Simplified Character Functions I

Example:

The data type of the returned string is AnV, with the same maximum length as the source
string.

Removing Blanks From the Right End of a String

The following request against the MOVIES data source creates the field DIRSLASH, that
contains a slash at the end of the DIRECTOR field. Then it creates the TRIMDIR field, which
trims the trailing blanks from the DIRECTOR field and places a slash at the end of that field:

TABLE FI LE MOVI ES
PRI NT DI RECTOR NOPRI NT AND

COVPUTE
DI RSLASH A18 = DI RECTOR| ' /" ;
TRI MDI RFA17V = RTRIM DI RECTOR) | ' /" ;

VHERE DI RECTOR CONTAINS ' BR
ON TABLE SET PAGE NOPAGE
END

On the output, the slashes show that the trailing blanks in the DIRECTOR field were removed in
the TRIMDIR field:

DI RSLASH TRI MDI R
ABRAHANMS J. / ABRAHAMS J./
BROOKS R /' BROOKS R/
BROOKS J. L. /' BROOKS J.L./

SPLIT: Extracting an Element From a String

Syntax:

The SPLIT function returns a specific type of element from a string. The output is returned as
variable length alphanumeric.

How to Extract an Element From a String
SPLI T(e/ enrent, String)

where:

el enent
Can be one of the following keywords:

.4 EMAIL_DOMAIN. Is the domain name portion of an email address in the string.
4 EMAIL_USERID. Is the user ID portion of an email address in the string.
'd URL_PROTOCOL. Is the URL protocol in the string.

.4 URL_HOST. Is the host name of the URL in the string.

Using Functions 139

SUBSTRING: Extracting a Substring From a Source String

Example:

-1 URL_PORT. Is the port number of the URL in the string.
. URL_PATH. Is the URL path in the string.

.4 NAME_FIRST. Is the first token (group of characters) in the string. Tokens are delimited
by blanks.

4 NAME_LAST. Is the last token (group of characters) in the string. Tokens are delimited
by blanks.

string
Alphanumeric

Is the string from which the element will be extracted.

Extracting an Element From a String

The following request defines strings and extracts elements from them.

DEFI NE FI LE W-_RETAIL_LITE

STRI NGL/ A50 W TH COUNTRY_NAME= ' http://ww. i nf or mati onbui | ders. coni ;
STRI N&2/ A20 "userl@bi.coni;

STRI NG3/ A20 'Loui sa May Al cott';

Protocol / A20 = SPLI T(URL_PROTOCOL, STRI NGL);
Pat h/ A50 = SPLI T(URL_PATH, STRI NGL);

Donmi n/ A20 = SPLI T(EMAI L_DOVAI N, STRI N&);
User/ A20 = SPLI T(EMAI L_USERI D, STRI N&);
First/A10 = SPLI T(NAME_FI RST, STRI N&3);
Last/A10 = SPLI T(NAME_LAST, STRI N&);

END

TABLE FILE WF_RETAIL_LITE

SUM Protocol Path User Domain First Last

ON TABLE SET PAGE NOLEAD

END

The output is shown in the following image.

|Prc::-ton:01 |Path |User |Domajn |First |Last
|http |http:ffww.mf0ﬂnationbuﬂders. com |user1 |i1::-i. Cotn |L-::-uisa |J-‘-.l|:ott

SUBSTRING: Extracting a Substring From a Source String

140

The SUBSTRING function extracts a substring from a source string. If the ending position you
specify for the substring is past the end of the source string, the position of the last character
of the source string becomes the ending position of the substring.

Information Builders

5. Simplified Character Functions I

Syntax:

Example:

How to Extract a Substring From a Source String
SUBSTRI NG(st ring, position, [ength)

where:

string
Alphanumeric

Is the string from which to extract the substring. It can be a field, a literal in single
quotation marks (‘), or a variable.

posi tion
Positive Integer

Is the starting position of the substring in string.

/ engt h
Integer

Is the limit for the length of the substring. The ending position of the substring is
calculated as position + length - 1. If the calculated position beyond the end of the source
string, the position of the last character of string becomes the ending position.

The data type of the returned substring is AnV.

Extracting a Substring From a Source String

In the following request, POSITION determines the position of the first letter | in LAST_NAME
and stores the result in I_IN_NAME. SUBSTRING, then extracts three characters beginning with
the letter | from LAST_NAME and stores the results in |_SUBSTR.

TABLE FI LE EMPLOYEE
PRI NT

COVPUTE

| IN_NAVE/ 12 = POSITION(' I', LAST_NAVE); AND
COVPUTE

| _SUBSTR/ A3 =

SUBSTRI NG(LAST_NAME, | | N _NAME, | I N _NAMVE+2);
BY LAST_NAME

ON TABLE SET PAGE NOPAGE

END

Using Functions 141

TOKEN: Extracting a Token From a String

The output is:

LAST_NAME | IN_.NAME | _SUBSTR
BANNI NG 5 ING
BLACKWOOD 0 BL
CROSS 0 CR
GREENSPAN 0 R
I RVI NG 1 IRV
JONES 0 JO
MCCOY 0 M
MCKNI GHT 5 | CGH
ROVANS 0 RO
SM TH 3 ITH
3 ITH
STEVENS 0 ST

TOKEN: Extracting a Token From a String

Syntax:

142

The token function extracts a token (substring) from a string of characters. The tokens are
separated by a delimiter character and specified by a token number reflecting the position of

the token in the string.
How to Extract a Token From a String
TOKEN(st ring, delimter, nunber)

where:

string
Fixed length alphanumeric

Is the character string from which to extract the token.

del imter
Fixed length alphanumeric

Is a single character delimiter.

nunber
Integer

Is the token number to extract.

Information Builders

5. Simplified Character Functions I

Example: Extracting a Token From a String

TOKEN extracts the second token from the PRODUCT_SUBCATEG column, where the delimiter
is the letter P:

DEFI NE FI LE WF_RETAIL_LITE

TOK1/ A20 =TOKEN(PRODUCT_SUBCATEG, ' P', 2);
END

TABLE FI LE WF_RETAIL_LITE

SUM TCK1 AS Token

BY PRODUCT_SUBCATEG

ON TABLE SET PAGE NOPAGE

END

Using Functions 143

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

The output is:

Product
Subcategory

Bl Ray
Boom Box
CRTTV
Charger
DVD Plavers

DVD Players - Portable

Flat Panel TV
Handheld
Headphones
Home Theater Svstems
Portable TV
Professional
Recetvers
Smartphone
Speaker Kits
Standard
Streaming
Tahlet

Universal Femote Controls

Video Editing
iPod Dockdng Station

Tolken

lavers
layers -

anel TV

hones

ortable TV

rofessional

hone
ealcer Kits

od Docking Station

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

144

The TRIM_ function removes all occurrences of a single character from either the beginning or

end of a string, or both.

Information Builders

5. Simplified Character Functions I

Syntax:

Note:

4 Leading and trailing blanks count as characters. If the character you want to remove is
preceded (for leading) or followed (for trailing) by a blank, the character will not be removed.
Alphanumeric fields that are longer than the number of characters stored within them are
padded with trailing blanks.

.4 The function will be optimized when run against a relational DBMS that supports trimming
the character and location specified.

How to Remove a Leading Character, Trailing Character, or Both From a String
TRI M _(where, pattern, string)

where:

wher e
Keyword

Defines where to trim the source string. Valid values are:
. LEADING, which removes leading occurrences.
.d TRAILING, which removes trailing occurrences.

4 BOTH, which removes leading and trailing occurrences.

pattern
Alphanumeric

Is a single character, enclosed in single quotation marks ('), whose occurrences are to be
removed from string. For example, the character can be a single blank (*).

string
Alphanumeric

Is the string to be trimmed.

The data type of the returned string is AnV.

Using Functions 145

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

Example:

Example:

146

Trimming a Character From a String

In the following request, TRIM_ removes leading occurrences of the character ‘B’ from the
DIRECTOR field:

TABLE FI LE MOVI ES

PRI NT DI RECTOR AND

COVPUTE

TRIMDI RFAl7 = TRIM (LEADING 'B', DI RECTOR);
VWHERE DI RECTOR CONTAINS ' BR

ON TABLE SET PAGE NOPAGE

END

The output is:

DI RECTOR TRI MDI R
ABRAHANS J. ABRAHANS J.
BROOKS R ROCKS R
BROOKS J. L. ROCKS J. L.

Trimming With Trailing Blanks

The following request trims a trailing period (.) from the director name. The field DIRECTOR has
format A17, so there are trailing blanks in most of the instances of the field. To create a field
(DIRECTORV) without trailing blanks, SQUEEZ converts the trailing blanks in DIRECTOR to a
single blank, then TRIMV removes the remaining trailing blank and stores it with format A17V,
so the length of the actual characters is known. Then TRIM_ is called against DIRECTOR and
DIRECTORYV, creating the fields TRIMDIR (trimmed DIRECTOR) and TRIMDIRV (trimmed
DIRECTORYV) :

DEFI NE FI LE MoVl ES

DI RECTORV/ AL7V = TRIM(' T', SQUEEZ(17, DIRECTOR 'Al7V), 17, ' ', 1,
DI RECTCRV) ;

TRIMDJI R/AL7 = TRIM (TRAILING '.', DI RECTOR);

TRIMDIRV/ A17V = TRIM (TRAILING '.', DI RECTORV);

END

TABLE FI LE MOVI ES

PRI NT DI RECTOR TRI MDI R DI RECTORV TRI MDI RV
ON TABLE SET PAGE NOPACE

END

The partial output shows that the trimmed DIRECTOR field still has the trailing periods because
the period is not the last character in the field. In the trimmed DIRECTORYV field, the trailing
periods have been removed:

Information Builders

5. Simplified Character Functions I

DI RECTOR TRI MDI R DI RECTCORV TRI MDI RV
SPI ELBERG S. SPI ELBERG S. SPI ELBERG S. SPI ELBERG S
KAZAN E KAZAN E. KAZAN E KAZAN E
VELLES O VELLES O VELLES O VELLES O
LUVET S LUMET S. LUVET S LUVET S

UPPER: Returning a String With All Letters Uppercase
The UPPER function takes a source string and returns a string of the same data type with all
letters translated to uppercase.

Syntax: How to Return a String With All Letters Uppercase

UPPER(st ri ng)

where:
string
Alphanumeric
Is the string to convert to uppercase.

The returned string is the same data type and length as the source string.

Example: Converting Letters to Uppercase

In the following request, LCWORD converts LAST_NAME to mixed case. Then UPPER converts
the LAST_NAME_MIXED field to uppercase:

DEFI NE FI LE EMPLOYEE

LAST_NAME_M XED/ AL5=LCOWORD(15, LAST NAME, 'Al5');
LAST_NANME_UPPER/ A15=UPPER(LAST _NAVE_M XED) ;

END

TABLE FI LE EMPLOYEE

PRI NT LAST NAMVE_UPPER AND FI RST_NAVE

BY LAST_NAMVE_M XED

WHERE CURR_JOBCODE EQ ' B02' OR 'Al7' OR ' B04' :

ON TABLE SET PAGE NOPAGE

END

Using Functions 147

UPPER: Returning a String With All Letters Uppercase

148

The output is:

LAST _NAME_M XED LAST_NAVE_UPPER

Banni ng
Bl ackwood
Cross
Mccoy
Mckni ght
Romans

BANNI NG
BLACKWOCD
CRGSS
MCCOY
MCKNI GHT
ROVANS

Information Builders

Chapter

Character Functions

Character functions manipulate alphanumeric fields and character strings.

In this chapter:

|
|

I T I I A

U

Using Functions

Character Function Notes

ARGLEN: Measuring the Length of a
String

ASIS: Distinguishing Between Space and
Zero

BITSON: Determining If a Bit Is On or Off

BITVAL: Evaluating a Bit String as an
Integer

BYTVAL: Translating a Character to
Decimal

CHKFMT: Checking the Format of a
String

CHKNUM: Checking a String for Numeric
Format

CTRAN: Translating One Character to
Another

CTRFLD: Centering a Character String
EDIT: Extracting or Adding Characters
GETTOK: Extracting a Substring (Token)

LCWORD: Converting a String to Mixed-
Case

LCWORD2: Converting a String to Mixed-
Case

L U o U

L

LOCASE: Converting Text to Lowercase
OVRLAY: Overlaying a Character String
PARAG: Dividing Text Into Smaller Lines

PATTERN: Generating a Pattern From a
String

POSIT: Finding the Beginning of a
Substring

REVERSE: Reversing the Characters in a
String

RJUST: Right-Justifying a Character
String

SOUNDEX: Comparing Character Strings
Phonetically

SPELLNM: Spelling Out a Dollar Amount

SQUEEZ: Reducing Multiple Spaces to a
Single Space

STRIP: Removing a Character From a
String

STRREP: Replacing Character Strings
SUBSTR: Extracting a Substring

TRIM: Removing Leading and Trailing
Occurrences

UPCASE: Converting Text to Uppercase

XMLDECOD: Decoding XML-Encoded
Characters

149

Character Function Notes

-l LCWORD3: Converting a String to Mixed- ' XMLENCOD: XML-Encoding Characters
Case

d LJUST: Left-Justifying a String

Character Function Notes

In addition to the functions discussed in this topic, there are character functions that are
available only in the Maintain language. For information on these functions, see Maintain-
specific Character Functions on page 233.

For many functions, the output argument can be supplied either as a field name or as a format
enclosed in single quotation marks. However, if a function is called from a Dialogue Manager
command, this argument must always be supplied as a format, and if a function is called from
a Maintain Data procedure, this argument must always be supplied as a field name. For
detailed information about calling a function and supplying arguments, see Accessing and
Calling a Function on page 61.

ARGLEN: Measuring the Length of a String

Syntax:

150

Available Languages: reporting, Maintain

The ARGLEN function measures the length of a character string within a field, excluding trailing
spaces. The field format in a Master File specifies the length of a field, including trailing
spaces.

In Dialogue Manager, you can measure the length of a supplied character string using
the .LENGTH suffix.

How to Measure the Length of a Character String
ARGLEN(/ engt h, source_string, output)

where:

/ engt h
Integer

Is the length of the field containing the character string, or a field that contains the length.

source_string
Alphanumeric

Is the name of the field containing the character string.

Information Builders

6. Character Functions I

out put
Integer

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

Example: Measuring the Length of a Character String

ARGLEN determines the length of the character string in LAST_NAME and stores the result in
NAME_LEN:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

NAME_LEN/ | 3 = ARGLEN(15, LAST NAME, NAME_LEN);
VWHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAVE NAVE_LEN
SM TH 5
JONES 5
MCCOY 5
BLACKWOOD 9
GREENSPAN 9
CROSS 5

ASIS: Distinguishing Between Space and Zero
Available Languages: reporting

The ASIS function distinguishes between a space and a zero in Dialogue Manager. It
differentiates between a numeric string, a constant or variable defined as a numeric string
(number within single quotation marks), and a field defined simply as numeric. ASIS forces a
variable to be evaluated as it is entered rather than be converted to a number. It is used in
Dialogue Manager equality expressions only.

Using Functions 151

ASIS: Distinguishing Between Space and Zero

Syntax:

Example:

152

How to Distinguish Between a Space and a Zero
ASI S(ar gunent)

where:

ar gument
Alphanumeric

Is the value to be evaluated. Supply the actual value, the name of a field that contains the
value, or an expression that returns the value. An expression can call a function.

If you specify an alphanumeric literal, enclose it in single quotation marks. If you specify
an expression, use parentheses, as needed, to ensure the correct order of evaluation.

Distinguishing Between a Space and a Zero

The first request does not use ASIS. No difference is detected between variables defined as a

space and O.

-SET &ARL = ' ';

-SET &AR2 = 0;

-1F &AR2 EQ &ARL GOTO ONE;

-TYPE VARL &ARL EQ VAR2 &/AR2 NOT TRUE
SQUIT

- ONE

-TYPE VARL &VARL EQ VAR2 &/AR2 TRUE

The output is:
VARL EQ VAR2 0 TRUE

The next request uses ASIS to distinguish between the two variables.

-SET &ARL = ' ';

- SET &AR2 = 0;

-1 F &AR2 EQ ASIS(&VAR1) GOTO ONE;
-TYPE VARL &ARL EQ VAR2 &/AR2 NOT TRUE
SQUIT

- ONE

-TYPE VARL &VARL EQ VAR2 &/AR2 TRUE

The output is:
VARL EQ VAR2 0 NOT TRUE

Information Builders

6. Character Functions I

Reference:

Usage Notes for ASIS

In general, Dialogue Manager variables are treated as alphanumeric values. However, a
Dialogue Manager variable with the value of '." may be treated as an alphanumeric value ('.") or
a number (0) depending on the context used.

d If the Dialogue Manager variable '."' is used in a mathematical expression, its value will be

treated as a number. For example, in the following request, &DMVARL1 is used in an
arithmetic expression and is evaluated as zero (0).

- SET &DWARL='.";
- SET &DWAR2=10 + &DWARL;
- TYPE DWAR2 = &DWAR2

The output is;

DWAR2 = 10

If the Dialogue Manager variable value '." is used in an IF test and is compared to the
values ' ', '0', or '.", the result will be TRUE even if ASIS is used, as shown in the following
example. The following IF tests all evaluate to TRUE.

- SET &DWARL=".";
- SET &DWAR2=I F &DWARL EQ "' ' THEN ' TRUE' ELSE ' FALSE';
- SET &DWAR3=IF &DWARL EQ '.' THEN ' TRUE' ELSE ' FALSE';

- SET &DWAR4A=I F &DWARL EQ '0' THEN ' TRUE' ELSE ' FALSE';

If the Dialogue Manager variable is used with ASIS, the result of the ASIS function will be
always be considered alphanumeric and will distinguish between the space (‘), zero (‘0’),
or period (*.”), as in the following example. The following IF tests all evaluate to TRUE.

-SET &DWAR2=IF ASI S('.') EQ'.' THEN 'TRUE' ELSE 'FALSE';
-SET &DWAR3=IF ASIS(' ') EQ' ' THEN 'TRUE ELSE ' FALSE ;
- SET &DWAR4=IF ASIS('0') EQ'O0'" THEN ' TRUE' ELSE ' FALSE ;

d Comparing ASIS('0") to ' ' and ASIS(' ') to '0' always evaluates to FALSE.

BITSON: Determining If a Bit Is On or Off

Using Functions

Available Languages: reporting, Maintain

The BITSON function evaluates an individual bit within a character string to determine whether
it is on or off. If the bit is on, BITSON returns a value of 1. If the bit is off, it returns a value of
0. This function is useful in interpreting multi-punch data, where each punch conveys an item
of information.

153

BITSON: Determining If a Bit Is On or Off

Syntax: How to Determine If a Bit Is On or Off
BI TSON(b/ t number, source_string, output)

where:

br t nunmber
Integer

Is the number of the bit to be evaluated, counted from the left-most bit in the character
string.
source_string

Alphanumeric

Is the character string to be evaluated, enclosed in single quotation marks, or a field or
variable that contains the character string. The character string is in multiple eight-bit
blocks.

out put
Integer

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Example: Evaluating a Bit in a Field

BITSON evaluates the 24th bit of LAST_NAME and stores the result in BIT_24:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

Bl T_24/11 = BITSON(24, LAST_NAME, BIT 24);
VWHERE DEPARTMENT EQ 'M S';

END

The output is:
LAST_NAME BIT 24

154 Information Builders

6. Character Functions I

BITVAL: Evaluating a Bit String as an Integer

Syntax:

Available Languages: reporting, Maintain

The BITVAL function evaluates a string of bits within a character string. The bit string can be
any group of bits within the character string and can cross byte and word boundaries. The
function evaluates the subset of bits in the string as an integer value.

If the number of bits is:
1 Less than 1, the returned value is O.

.d Between 1 and 31 (the recommended range), the returned value is a zero or positive
number representing the bits specified, extended with high-order zeroes for a total of 32
bits.

4 Exactly 32, the returned value is the positive, zero, or the complement value of negative
two, of the specified 32 bits.

4 Greater than 32 (33 or more), the returned value is the positive, zero, or the complement
value of negative two, of the rightmost 32 bits specified.

How to Evaluate a Bit String
Bl TVAL(source_string, startbit, nunber, output)

where:

source_string
Alphanumeric

Is the character string to be evaluated, enclosed in single quotation marks, or a field or
variable that contains the character string.

startbit
Integer

Is the number of the first bit in the bit string, counting from the left-most bit in the
character string. If this argument is less than or equal to O, the function returns a value of
zero.

number
Integer

Is the number of bits in the subset of bits. If this argument is less than or equal to O, the
function returns a value of zero.

Using Functions 155

BYTVAL: Translating a Character to Decimal

out put
Integer

Is the name of the field that contains the binary integer equivalent, or the format of the
output value enclosed in single quotation marks.

Example: Evaluating a Bit String

BITVAL evaluates the bits 12 through 20 of LAST_NAME and stores the result in a field with
the format 15:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

STRING VAL/ |5 = BITVAL(LAST NAME, 12, 9, 'I5');
VWHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAME STRI NG_VAL
SM TH 332
JONES 365
MCCOY 60
BLACKWOOD 316
GREENSPAN 412
CRCSS 413

BYTVAL: Translating a Character to Decimal
Available Languages: reporting, Maintain
The BYTVAL function translates a character to the ASCII, EBCDIC, or Unicode decimal value
that represents it, depending on the operating system.

Syntax: How to Translate a Character

BYTVAL(charact er, output)

where:

character
Alphanumeric

Is the character to be translated. You can specify a field or variable that contains the
character, or the character itself enclosed in single quotation marks. If you supply more
than one character, the function evaluates the first.

156 Information Builders

6. Character Functions I

Example:

out put
Integer

Is the name of the field that contains the corresponding decimal value, or the format of the
output value enclosed in single quotation marks.

Translating the First Character of a Field

BYTVAL translates the first character of LAST_NAME into its ASCII or EBCDIC decimal value
and stores the result in LAST_INIT_CODE. Since the input string has more than one character,
BYTVAL evaluates the first one.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND

COVPUTE LAST_| NI T_CODE/ | 3 = BYTVAL (LAST NAME, 'I3');

VWHERE DEPARTMENT EQ "M S';
END

The output on an ASCII platform is:
LAST_NAME LAST_ | NI T_CODE

SM TH 83
JONES 74
MCCOY 77
BLACKWOOD 66
GREENSPAN 71
CRCSS 67

The output on an EBCDIC platform is:
LAST NAVE LAST | NI T_CODE

SM TH 226
JONES 209
MCCOY 212
BLACKWOOD 194
GREENSPAN 199
CRCSS 195

Using Functions 157

CHKFMT: Checking the Format of a String

Example:

Returning the EBCDIC Value With Dialogue Manager

This Dialogue Manager request prompts for a character, then returns the corresponding
number. The following reflects the results on the Windows platform.

- SET &CODE = BYTVAL (&CHAR, 'I3');
- HTMLFORM BEG N

<HTM_>

<BODY>

THE EQUI VALENT VALUE | S &CODE

</ BODY>

</ HTML>

- HTMLFORM END

Assume the value entered for &CHAR is an exclamation point (!). The output is:

THE EQUI VALENT VALUE | S 33

CHKFMT: Checking the Format of a String

Syntax:

158

Available Languages: reporting, Maintain

The CHKFMT function checks a character string for incorrect characters or character types. It
compares each character string to a second string, called a mask, by comparing each
character in the first string to the corresponding character in the mask. If all characters in the
character string match the characters or character types in the mask, CHKFMT returns the
value 0. Otherwise, CHKFMT returns a value equal to the position of the first character in the
character string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the
character string corresponding to the mask. For example, if you are using a four-character
mask to test a nine-character string, only the first four characters in the string are checked; the
rest are returned as a no match with CHKFMT giving the first non-matching position as the
result.

How to Check the Format of a Character String
CHKFMT(nunthar, source_string, ' mask', output)

where:

nunthar
Integer

Is the number of characters being compared to the mask.

Information Builders

6. Character Functions I

string
Alphanumeric

Is the character string to be checked enclosed in single quotation marks, or a field or
variable that contains the character string.

' mask'
Alphanumeric

Is the mask, which contains the comparison characters enclosed in single quotation
marks.

Some characters in the mask are generic and represent character types. If a character in
the string is compared to one of these characters and is the same type, it matches.
Generic characters are:

Ais any letter between A and Z (uppercase or lowercase).
9 is any digit between 0-9.

X is any letter between A—Z or any digit between 0-9.

$ is any character.

Any other character in the mask represents only that character. For example, if the third
character in the mask is B, the third character in the string must be B to match.

out put
Integer

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Using Functions 159

CHKNUM: Checking a String for Numeric Format

Example:

Checking the Format of a Field

CHKFMT examines EMP_ID for nine numeric characters starting with 11 and stores the result
in CHK_ID:

TABLE FI LE EMPLOYEE

PRI NT EMP_I D AND LAST_NAME AND

COVPUTE CHK_I D/ 13 = CHKFMT(9, EMP_ID, '119999999', CHK_ID);
VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

071382660 STEVENS 1
119265415 SM TH 0
119329144 BANNI NG 0
123764317 | RVI NG 2
126724188 ROVANS 2
451123478 MCKNI GHT 1

CHKNUM: Checking a String for Numeric Format

Syntax:

160

The CHKNUM function checks a character string for numeric format. If the string contains a
valid numeric format, CHKNUM returns the value 1. If the string contains characters that are
not valid in a number, CHKNUM returns zero (0).

How to Check the Format of a Character String
CHKNUM nunthar, source_string, output)

where:

nunthar
Integer

Is the number of characters in the string.

string
Alphanumeric

Is the character string to be checked enclosed in single quotation marks, or a field or
variable that contains the character string.

out put
Numeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Information Builders

6. Character Functions I

Example: Checking a String for Numeric Format

CHKNUM examines the strings STR1, STR2, and STR3 for numeric format.
DEFI NE FI LE WF_RETAIL_LITE

STR1/ A8 = ' 12345E01";
STR2/ A8 = ' ABCDEFG ;
STR3/ A8 = '1234.567";

CHK1/11= CHKNUM 8, STR1, CHK1) ;

CHK2/ 1 1= CHKNUM 8, STR2, CHK2) ;

CHK3/ | 1= CHKNUM 8, STR3, CHK3) ;

END

TABLE FILE WE_RETAIL_LITE

PRINT STRL IN 20 CHKL STR2 CHK2 STR3 CHK3
BY PRODUCT CATEGORY

WHERE PRODUCT_CATEGORY EQ ' Vi deo Producti on'
ON TABLE SET PAGE NOPAGE

ON TABLE PCHOLD FORMAT WP

END

The output is:

Pr oduct
Cat egory STR1 CHK1 STR2 CHK2 STR3
CHK3
Vi deo Production 12345E01 1 ABCDEFG 0 1234.567 1
12345E01 1 ABCDEFG 0 1234.567 1
12345E01 1 ABCDEFG 0 1234.567 1
12345E01 1 ABCDEFG 0 1234.567 1
12345E01 1 ABCDEFG 0 1234.567 1
12345E01 1 ABCDEFG 0 1234.567 1

CTRAN: Translating One Character to Another
Available Languages: reporting, Maintain

The CTRAN function translates a character within a character string to another character based
on its decimal value. This function is especially useful for changing replacement characters to
unavailable characters, or to characters that are difficult to input or unavailable on your
keyboard. It can also be used for inputting characters that are difficult to enter when
responding to a Dialogue Manager -PROMPT command, such as a comma or apostrophe. It
eliminates the need to enclose entries in single quotation marks (').

Using Functions 161

CTRAN: Translating One Character to Another

To use CTRAN, you must know the decimal equivalent of the characters in internal machine
representation. Note that the coding chart for conversion is platform dependent, hence your
platform and configuration option determines whether ASCII, EBCDIC, or Unicode coding is
used. Printable EBCDIC or ASCII characters and their decimal equivalents are listed in
Character Chart for ASCIl and EBCDIC on page 53.

In Unicode configurations, this function uses values in the range:
d 0 to 255 for 1-byte characters.

4 256 to 65535 for 2-byte characters.

d 65536 to 16777215 for 3-byte characters.

d 16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

Syntax: How to Translate One Character to Another
CTRAN(/ engt h, source_string, decimnal, decval ue, output)

where:
/engt h

Integer

Is the number of characters in the source string, or a field that contains the length.
source_string

Alphanumeric

Is the character string to be translated enclosed in single quotation marks ('), or the field
or variable that contains the character string.

deci mal
Integer
Is the ASCII or EBCDIC decimal value of the character to be translated.

decval ue
Integer

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
decimal.

out put

Alphanumeric

162 Information Builders

6. Character Functions I

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Example: Translating Spaces to Underscores on an ASCII Platform

CTRAN translates the spaces in ADDRESS_LN3 (ASCII decimal value 32) to underscores (ASCII
decimal value 95), and stores the result in ALT_ADDR:

TABLE FI LE EMPLOYEE
PRI NT ADDRESS_LN3 AND COVPUTE
ALT_ADDR/ A20 = CTRAN (20, ADDRESS_LN3, 32, 95, ALT ADDR);

BY EMP_I D
WHERE TYPE EQ ' HSM ;
END

The output is:

EMP_I D ADDRESS_LN3 ALT_ADDR

117593129 RUTHERFORD NJ 07073 RUTHERFORD NJ_07073_
119265415 NEW YORK NY 10039 NEW YORK_NY 10039
119329144 FREEPORT NY 11520 FREEPORT_NY 11520 __
123764317 NEW YORK NY 10001 NEW YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY 11520 __
451123478 ROSELAND NJ 07068 ROSELAND NJ~07068~__
543729165 JERSEY CI TY NJ 07300 JERSEY_CI TY_NJ_07300
818692173 FLUSHI NG NY 11354 FLUSHI NG NY_ 11354

Example: Translating Spaces to Underscores on an EBCDIC Platform

CTRAN translates the spaces in ADDRESS_LN3 (EBCDIC decimal value 64) to underscores
(EBCDIC decimal value 109) and stores the result in ALT_ADDR:

TABLE FI LE EMPLOYEE
PRI NT ADDRESS_LN3 AND COVPUTE
ALT_ADDR/ A20 = CTRAN(20, ADDRESS_LN3, 64, 109, ALT ADDR);

BY EMP_I D
WHERE TYPE EQ ' HSM
END

The output is:

EMP_ID ADDRESS_LN3 ALT_ADDR

117593129 RUTHERFORD NJ 07073 RUTHERFORD NJ_07073_
119265415 NEW YORK NY 10039 NEW YORK_NY_10039
119329144 FREEPORT NY 11520 FREEPORT_NY 11520 __
123764317 NEW YORK NY 10001 NEW YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY 11520 __
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CITY NJ 07300 JERSEY_CITY_NJ_07300
818692173 FLUSHI NG NY 11354 FLUSH NG _NY_ 11354

Using Functions 163

CTRFLD: Centering a Character String

CTRFLD: Centering a Character String
Available Languages: reporting, Maintain

The CTRFLD function centers a character string within a field. The number of leading spaces is
equal to or one less than the number of trailing spaces.

CTRFLD is useful for centering the contents of a field and its report column, or a heading that
consists only of an embedded field. HEADING CENTER centers each field value including
trailing spaces. To center the field value without the trailing spaces, first center the value
within the field using CTRFLD.

Limit: Using CTRFLD in a styled report (StyleSheets feature) generally negates the effect of
CTRFLD unless the item is also styled as a centered element. Also, if you are using CTRFLD on
a platform for which the default font is proportional, either use a non-proportional font, or issue
SET STYLE=OFF before running the request.

Syntax: How to Center a Character String
CTRFLD(source_string, [ength, output)

where:

source_string
Alphanumeric

Is the character string enclosed in single quotation marks, or a field or variable that
contains the character string.

/ engt h
Integer

Is the number of characters in source_string and output, or a field that contains the length.
This argument must be greater than 0. A length less than O can cause unpredictable
results.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

164 Information Builders

6. Character Functions I

Example: Centering a Field

CTRFLD centers LAST_NAME and stores the result in CENTER_NAME:

SET STYLE=OFF

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

CENTER_NAME/ A12 = CTRFLD (LAST NAME, 12, 'Al2');
WHERE DEPARTMENT EQ 'M S

END

The output is:

LAST_NAMVE CENTER_NAME
SM TH SM TH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOCD
GREENSPAN GREENSPAN
CROSS CROSS

EDIT: Extracting or Adding Characters
Available Languages: reporting

The EDIT function extracts characters from the source string and adds characters to the output
string, according to the mask. It can extract a substring from different parts of the source
string. It can also insert characters from the source string into an output string. For example, it
can extract the first two characters and the last two characters of a string to form a single
output string.

EDIT compares the characters in a mask to the characters in a source string. When it
encounters a nine (9) in the mask, EDIT copies the corresponding character from the source
field to the output string. When it encounters a dollar sign ($) in the mask, EDIT ignores the
corresponding character in the source string. When it encounters any other character in the
mask, EDIT copies that character to the corresponding position in the output string. This
process ends when the mask is exhausted.

Note:

.4 EDIT does not require an output argument because the result is alphanumeric and its size
is determined from the mask value.

.4 EDIT can also convert the format of a field. For information on converting a field with EDIT,
see EDIT: Converting the Format of a Field on page 443.

Using Functions 165

EDIT: Extracting or Adding Characters

Syntax:

Example:

166

How to Extract or Add Characters
EDI T(source_string, 'nask');

where:

source_string
Alphanumeric

Is a character string from which to pick characters. Each 9 in the mask represents one
digit, so the size of source_string must be at least as large as the number of 9's in the
mask.

mask
Alphanumeric

Is a string of mask characters enclosed in single quotation marks or a field containing the
character string enclosed in single quotation marks. The length of the mask, excluding
characters other than 9 and $, determines the length of the output field.

Extracting and Adding Characters

EDIT extracts the first initial from the FIRST_NAME field and stores the result in FIRST_INIT.
EDIT also adds dashes to the EMP_ID field and stores the result in EMPIDEDIT. The mask
used to extract the first initial is stored in the virtual field named MASK1.:

DEFI NE FI LE EMPLOYEE

MASK1/ A10 = ' 9335358583

END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

FIRST_INI T/ Al = EDIT(FIRST_NAME, MASK1);
EMPI DEDI T/ A11 = EDIT(EMP_ID, '999-99-9999"');
WHERE DEPARTMENT EQ "M S';

END

The output is:

LAST_NAME FIRST_INIT EMPIDED T

SM TH M 112-84-7612
JONES D 117-59-3129
MCCOY J 219-98-4371
BLACKWOOD R 326- 17- 9357
GREENSPAN M 543-72-9165
CRCSS B 818-69-2173

Information Builders

6. Character Functions I

GETTOK: Extracting a Substring (Token)

Syntax:

Available Languages: reporting, Maintain

The GETTOK function divides a character string into substrings, called tokens. The data must
have a specific character, called a delimiter, that occurs in the string and separates the string
into tokens. GETTOK returns the token specified by the token_number argument. GETTOK
ignores leading and trailing blanks in the source character string.

For example, suppose you want to extract the fourth word from a sentence. In this case, use
the space character for a delimiter and the number 4 for token_number. GETTOK divides the
sentence into words using this delimiter, then extracts the fourth word. If the string is not
divided by the delimiter, use the PARAG function for this purpose. See PARAG: Dividing Text
Into Smaller Lines on page 177.

How to Extract a Substring (Token)
GETTOK(source_string, inlen, token_number, 'delim, outlen, output)

where:

source_string
Alphanumeric

Is the source string from which to extract the token.

i nlen
Integer

Is the number of characters in source_string. If this argument is less than or equal to O,
the function returns spaces.

t oken_nunber
Integer

Is the number of the token to extract. If this argument is positive, the tokens are counted
from left to right. If this argument is negative, the tokens are counted from right to left. For
example, -2 extracts the second token from the right. If this argument is O, the function
returns spaces. Leading and trailing null tokens are ignored.

Using Functions 167

GETTOK: Extracting a Substring (Token)

168

"delim

Alphanumeric

Is the delimiter in the source string enclosed in single quotation marks. If you specify more
than one character, only the first character is used.

Note: In Dialogue Manager, to prevent the conversion of a delimiter space character (' ') to
a double precision zero, include a non-numeric character after the space (for example, '%").
GETTOK uses only the first character (the space) as a delimiter, while the extra character
(%) prevents conversion to double precision.

outl en

Integer

Is the size of the token extracted. If this argument is less than or equal to O, the function
returns spaces. If the token is longer than this argument, it is truncated; if it is shorter, it
is padded with trailing spaces.

out put

Alphanumeric

Is the name of the field that contains the token, or the format of the output value enclosed
in single quotation marks. The delimiter is not included in the token.

Note that the delimiter is not included in the extracted token.

Information Builders

6. Character Functions I

Example:

Extracting a Token
GETTOK extracts the last token from ADDRESS_LN3 and stores the result in LAST_TOKEN.

The delimiter is a space:

TABLE FI LE EMPLOYEE

PRI NT ADDRESS_LN3 AND COVPUTE

LAST_TOKEN A10 = GETTOK (ADDRESS_LN3, 20, -1, ' ', 10, LAST_ TOKEN),
AS ' LAST TOKEN, (ZI P CODE)'

VWHERE TYPE EQ ' HSM ;

END

The output is:

LAST TOKEN
ADDRESS_LN3 (ZI P CODE)
RUTHERFORD NJ 07073 07073
NEW YORK NY 10039 10039
FREEPCORT NY 11520 11520
NEW YORK NY 10001 10001
FREEPCORT NY 11520 11520
ROSELAND NJ 07068 07068
JERSEY CITY NJ 07300 07300
FLUSHI NG NY 11354 11354

LCWORD: Converting a String to Mixed-Case

Syntax:

Available Languages: reporting, Maintain

The LCWORD function converts the letters in a character string to mixed-case. It converts every
alphanumeric character to lowercase except the first letter of each new word and the first letter
after a single or double quotation mark, which it converts to uppercase. For example,
O'CONNOR is converted to O'Connor and JACK'S to Jack'S.

LCWORD skips numeric and special characters in the source string and continues to convert
the following alphabetic characters. The result of LCWORD is a string in which the initial
uppercase characters of all words are followed by lowercase characters.

How to Convert a Character String to Mixed-Case
LCWORD(/ engt h, source_string, output)

where:

[engt h
Integer

Is the number of characters in source_string and output.

Using Functions 169

LCWORD2: Converting a String to Mixed-Case

string
Alphanumeric

Is the character string to be converted enclosed in single quotation marks, or a field or
variable containing the character string.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The length must be greater than or equal to length.

Example: Converting a Character String to Mixed-Case

LCWORD converts the LAST_NAME field to mixed-case and stores the result in MIXED_CASE.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

M XED_CASE/ A15 = LCWORD (15, LAST NAME, MIXED_CASE);
WHERE DEPARTMENT EQ ' PRODUCTI ON

END

The output is:

LAST_NAVME M XED_CASE
STEVENS St evens

SM TH Smth

BANNI NG Banni ng

I RVI NG Irving
ROVANS Romans
MCKNI GHT Mckni ght

LCWORD2: Converting a String to Mixed-Case
Available Languages: reporting, Maintain

The LCWORD2 function converts the letters in a character string to mixed-case by converting
the first letter of each word to uppercase and converting every other letter to lowercase. In
addition, a double quotation mark or a space indicates that the next letter should be converted
to uppercase.

For example, "SMITH" would be changed to "Smith" and "JACK S" would be changed to
"Jack S".

170 Information Builders

6. Character Functions I

Syntax:

Example:

How to Convert a Character String to Mixed-Case
LCWORD2(/ engt h, string, output)

where:

/ engt h
Integer

Is the length, in characters, of the character string or field to be converted, or a field that
contains the length.

string
Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The length must be greater than or equal to length.

Converting a Character String to Mixed-Case
LCWORD2 converts the string O'CONNOR’s to mixed-case:

DEFI NE FI LE EMPLOYEE

MYVAL1/ A10=" O CONNCR' S’ ;

LC2/ A10 = LOWORD2(10, MYVAL1, 'Al0');
END

TABLE FI LE EMPLOYEE

SUM LAST_NAME NOPRI NT MYVAL1 LC2

END

The output is:
MYVAL1 LC2

O CONNOR' S O Connor's

LCWORD3: Converting a String to Mixed-Case

The LCWORD3 function converts the letters in a character string to mixed-case by converting
the first letter of each word to uppercase and converting every other letter to lowercase. In
addition, a single quotation mark indicates that the next letter should be converted to
uppercase, as long as it is neither followed by a blank nor the last character in the input string.

For example, 'SMITH' would be changed to 'Smith' and JACK'S would be changed to Jack's.

Using Functions 171

LJUST: Left-Justifying a String

Syntax:

Example:

How to Convert a Character String to Mixed-Case Using LCWORD3
LCWORD3(/ engt h, string, output)

where:

/ engt h
Integer

Is the length, in characters, of the character string or field to be converted, or a field that
contains the length.

string
Alphanumeric

Is the character string to be converted, or a field that contains the string.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The length must be greater than or equal to length.

Converting a Character String to Mixed-Case Using LCWORD3
LCWORD3 converts the strings O'CONNOR’s and o’connor’s to mixed-case:

DEFI NE FI LE EMPLOYEE

MYVAL1/ A10=" O CONNOR' S' ;

MYVAL2/ A10=' o' connor's';

LC1/ A10 = LCWORD3(10, MYVAL1, 'Al0');

LC2/ A10 = LCWORD3(10, MYVAL2, 'Al0');

END

TABLE FI LE EMPLOYEE

SUM LAST_NAME NOPRI NT MYVAL1 LC1 MYVAL2 LC2
END

On the output, the letter C after the first single quotation mark is in uppercase because it is
not followed by a blank and is not the final letter in the input string. The letter s after the
second single quotation mark (') is in lowercase because it is the last character in the input
string:

MYVAL1 LC1 MYVAL2 LC2

OCONNOCR S O Connor's o'connor's O Connor's

LJUST: Left-Justifying a String

172

Available Languages: reporting

LJUST leftjustifies a character string within a field. All leading spaces become trailing spaces.

Information Builders

6. Character Functions I

Syntax:

Example:

LJUST will not have any visible effect in a report that uses StyleSheets (SET STYLE=ON) unless
you center the item.

There is a version of the LJUST function that is available only in the Maintain language. For
information on this function, see LJUST: Left-Justifying a Character String (Maintain) on page
237.

How to Left-Justify a Character String
LIJUST(/ ength, source_string, output)

where:

[engt h
Integer

Is the number of characters in source_string and output, or a field that contains the length.

source_string
Alphanumeric

Is the character string to be justified, or a field or variable that contains the string.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Left-Justifying a String

The following request creates the XNAME field in which the last names are not leftjustified.
Then, LJUST left-justifies the XNAME field and stores the result in YNAME.

SET STYLE=OFF

DEFI NE FI LE EMPLOYEE

XNAMVE/ A25=| F LAST_NAMVE EQ ' BLACKWOOD THEN " | LAST_NAME ELSE
"' | LAST_NAME;

YNAVE/ A25=LJUST (15, XNAME, 'A25');

END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME XNAME YNAME
END

Using Functions 173

LOCASE: Converting Text to Lowercase

The output is:

LAST_NAME XNAMVE YNAME
STEVENS STEVENS STEVENS
SM TH SM TH SM TH
JONES JONES JONES

SM TH SM TH SM TH
BANNI NG BANNI NG BANNI NG

I RVI NG I RVI NG I RVI NG
ROVANS ROVANS ROVANS
MCCOY MCCOY MCCOY
BLACKWOOD BLACKWOOD BLACKWOOD
MCKNI GHT MCKNI GHT MCKNI GHT
GREENSPAN GREENSPAN GREENSPAN
CRCSS CRGSS CRGSS

LOCASE: Converting Text to Lowercase

Syntax:

174

Available Languages: reporting, Maintain

The LOCASE function converts alphanumeric text to lowercase.
How to Convert Text to Lowercase
LOCASE(/ engt h, source_string, output)

where:

/engt h
Integer

Is the number of characters in source_string and output, or a field that contains the length.
The length must be greater than O and the same for both arguments; otherwise, an error

occurs.

source_string
Alphanumeric

Is the character string to convert in single quotation marks, or a field or variable that

contains the string.

out put
Alphanumeric

Is the name of the field in which to store the result, or the format of the output value
enclosed in single quotation marks. The field name can be the same as source_string.

Information Builders

6. Character Functions I

Example:

Converting a String to Lowercase

LOCASE converts the LAST_NAME field to lowercase and stores the result in LOWER_NAME:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

LOVWER NAVE/ A15 = LOCASE (15, LAST NAME, LOWER_NAME);
WHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAME LONER _NAME
SM TH smth
JONES j ones
MCCOY ncco
BLACKWOOD bl ackwood
GREENSPAN gr eenspan
CRGCSS Cross

OVRLAY: Overlaying a Character String

Syntax:

Available Languages: reporting

The OVRLAY function overlays a base character string with a substring. The function enables
you to edit part of an alphanumeric field without replacing the entire field.

There is a version of the OVRLAY function that is available only in the Maintain language. For
information on this function, see OVRLAY: Overlaying a Character String (Maintain) on page
243.

How to Overlay a Character String
OVRLAY(source_string, length, substring, sublen, position, output)

where:

source_string
Alphanumeric

Is the base character string.

stringlen
Integer

Is the number of characters in source_string and output, or a field that contains the length.
If this argument is less than or equal to O, unpredictable results occur.

Using Functions 175

OVRLAY: Overlaying a Character String

Example:

176

substring
Alphanumeric

Is the substring that will overlay source_string.

subl en
Integer

Is the number of characters in substring, or a field that contains the length. If this
argument is less than or equal to O, the function returns spaces.

posi tion
Integer

Is the position in source_string at which the overlay begins. If this argument is less than or
equal to 0, the function returns spaces. If this argument is larger than stringlen, the
function returns the source string.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. If the overlaid string is longer than the output field, the string is
truncated to fit the field.

Note that if the overlaid string is longer than the output field, the string is truncated to fit
the field.

Replacing Characters in a Character String

OVRLAY replaces the last three characters of EMP_ID with CURR_JOBCODE to create a new
security identification code and stores the result in NEW_ID:

TABLE FI LE EMPLOYEE

PRI NT EMP_I D AND CURR_JOBCODE AND COVPUTE

NEW I D/ A9 = OVRLAY (EMP_ID, 9, CURR JOBCODE, 3, 7, NEW_ID);
BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAVE FIRST_NAME EMP_ID CURR JOBCODE NEW D
BLACKWOOD ROSEMARI E 326179357 B04 326179804
CROSS BARBARA 818692173 Al7 818692A17
GREENSPAN MARY 543729165 A07 543729A07
JONES DI ANE 117593129 BO3 117593B03
MCCOY JOHN 219984371 B02 219984B02
SM TH MARY 112847612 Bl4 112847B14

Information Builders

6. Character Functions I

PARAG: Dividing Text Into Smaller Lines

Syntax:

Available Languages: reporting, Maintain

The PARAG function divides a character string into substrings by marking them with a delimiter.
It scans a specific number of characters from the beginning of the string and replaces the last
space in the group scanned with the delimiter, thus creating a first substring, also known as a
token. It then scans the next group of characters in the line, starting from the delimiter, and
replaces its last space with a second delimiter, creating a second token. It repeats this
process until it reaches the end of the line.

Once each token is marked off by the delimiter, you can use the function GETTOK to place the
tokens into different fields (see GETTOK: Extracting a Substring (Token) on page 167). If PARAG
does not find any spaces in the group it scans, it replaces the first character after the group
with the delimiter. Therefore, make sure that any group of characters has at least one space.
The number of characters scanned is provided as the maximum token size.

For example, if you have a field called 'subtitle' which contains a large amount of text
consisting of words separated by spaces, you can cut the field into roughly equal substrings by
specifying a maximum token size to divide the field. If the field is 350 characters long, divide it
into three substrings by specifying a maximum token size of 120 characters. This technique
enables you to print lines of text in paragraph form.

Tip: If you divide the lines evenly, you may create more sub-lines than you intend. For example,
suppose you divide 120-character text lines into two lines of 60 characters maximum, but one
line is divided so that the first sub-line is 50 characters and the second is 55. This leaves
room for a third sub-line of 15 characters. To correct this, insert a space (using weak
concatenation) at the beginning of the extra sub-line, then append this sub-line (using strong
concatenation) to the end of the one before it. Note that the sub-line will be longer than 60
characters.

How to Divide Text Into Smaller Lines
PARAG(/ engt h, source_string, 'delimter' , max_token_size, output)

where:

/ engt h
Integer

Is the number of characters in source_string and output, or a field that contains the length.

Using Functions 177

PARAG: Dividing Text Into Smaller Lines

Example:

178

source_string
Alphanumeric

Is a string to divide into tokens enclosed in single quotation marks, or a field or variable
that contains the text.

delimter
Alphanumeric

Is the delimiter enclosed in single quotation marks. Choose a character that does not
appear in the text.

max_token_size
Integer

Is the upper limit for the size of each token.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Dividing Text Into Smaller Lines

PARAG divides ADDRESS_LN2 into smaller lines of not more than ten characters using a
comma as the delimiter. It then stores the result in PARA_ADDR:

TABLE FI LE EMPLOYEE

PRI NT ADDRESS_LN2 AND COVPUTE

PARA_ADDR/ A20 = PARAG (20, ADDRESS_LN2, ',', 10, PARA ADDR);
BY LAST_NAME

VWHERE TYPE EQ ' HSM ;

END

The output is:

LAST_NAVME ADDRESS_LN2 PARA_ADDR

BANNI NG APT 4C APT 4C ,

CRCSS 147-15 NORTHERN BLD 147-15, NORTHERN, BLD
GREENSPAN 13 LI NDEN AVE. 13 LI NDEN, AVE.

I RVI NG 123 E 32 ST. 123 E 32, ST. ,
JONES 235 MURRAY HI L PKWY 235 MURRAY, H L PKW
MCKNI GHT 117 HARRI SON AVE. 117, HARRI SON, AVE.
ROVANS 271 PRESI DENT ST. 271, PRESI DENT, ST.
SM TH 136 E 161 ST. 136 E 161, ST.

Information Builders

6. Character Functions I

PATTERN: Generating a Pattern From a String

The PATTERN function examines a source string and produces a pattern that indicates the
sequence of numbers, uppercase letters, and lowercase letters in the source string. This
function is useful for examining data to make sure that it follows a standard pattern.

In the output pattern:
.4 Any character from the input that represents a single-byte digit becomes the character 9.

4 Any character that represents an uppercase letter becomes A, and any character that
represents a lowercase letter becomes a. For European NLS mode (Western Europe,
Central Europe), A and a are extended to apply to accented alphabets.

.4 For Japanese, double-byte characters and Hankaku-katakana become C (uppercase). Note
that double-byte includes Hiragana, Katakana, Kanji, full-width alphabets, full-width
numbers, and full-width symbols. This means that all double-byte letters such as Chinese
and Korean are also represented as C.

- Special characters remain unchanged.

.4 An unprintable character becomes the character X.

Syntax: How to Generate a Pattern From an Input String
PATTERN (/ength, source_string, output)

where:

/ engt h
Numeric

Is the length of source_string.

source_string
Alphanumeric

Is the source string enclosed in single quotation marks, or a field containing the source
string.

out put
Alphanumeric

Is the name of the field to contain the result or the format of the field enclosed in single
quotation marks.

Using Functions 179

PATTERN: Generating a Pattern From a String

Example: Producing a Pattern From Alphanumeric Data

The following 19 records are stored in a fixed format sequential file (with LRECL 14) named
TESTFILE:

212-736- 6250
212 736 4433
123-45- 6789
800- 969- | NFO
10121- 2898
10121

2 Penn Pl aza
917-339-6380
917-339-4350
(212) 736-6250
(212) 736-4433
212-736- 6250
212-736- 6250
212-736- 6250
(212) 736 5533
(212) 736 5533
(212) 736 5533
10121 A&

800- 969- | NFO

The Master File is:

FI LENAME=TESTFI LE, SUFFI X=FI X
SEGMVENT=TESTFI LE, SEGTYPE=S0, $
FI ELDNAME=TESTFLD, USAGE=A14, ACTUAL=A14, $

)

The following request generates a pattern for each instance of TESTFLD and displays them by
the pattern that was generated. It shows the count of each pattern and its percentage of the
total count. The PRINT command shows which values of TESTFLD generated each pattern.

FI LEDEF TESTFILE DI SK testfile.ftnDEFI NE FI LE TESTFI LE
PATTERN A14 = PATTERN (14, TESTFLD, 'A14') ;
END
TABLE FI LE TESTFI LE
SUM CNT. PATTERN AS ' COUNT' PCT. CNT. PATTERN AS ' PERCENT'
BY PATTERN
PRI NT TESTFLD
BY PATTERN
ON TABLE COLUMN- TOTAL
END

Note that the next to last line produced a pattern from an input string that contained an
unprintable character, so that character was changed to X. Otherwise, each numeric digit
generated a 9 in the output string, each uppercase letter generated the character ‘A’, and
each lowercase letter generated the character ‘a’. The output is:

180 Information Builders

6. Character Functions I

PATTERN COUNT PERCENT TESTFLD
(999) 999 9999 3 15.79 (212) 736 5533
(212) 736 5533
(212) 736 5533
736- 6250
(212) 736- 4433

(999) 999- 9999

N
[N
o
a1
w
—~
N
=
N
-

9 Aaaa Aaaaa 1 5.26 2 Penn Plaza
999 999 9999 1 5.26 212 736 4433
999- 99- 9999 1 5.26 123-45-6789
999- 999- AAAA 2 10.53 800-969-1 NFO
800- 969- | NFO
999- 999- 9999 6 31.58 212-736-6250
917- 339- 6380
917- 339- 4350
212-736- 6250
212-736- 6250
212-736- 6250
99999 1 5.26 10121
99999 X 1 5.26 10121 A&
99999- 9999 1 5.26 10121-2898
TOTAL 19 100. 00

POSIT: Finding the Beginning of a Substring
Available Languages: reporting

The POSIT function finds the starting position of a substring within a source string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value O.

There is a version of the POSIT function that is available only in the Maintain language. For
information on this function, see POSIT: Finding the Beginning of a Substring (Maintain) on page
244,

Syntax: How to Find the Beginning of a Substring
POSI T(source_string, [length, substring, sublength, output)

where:

source_string
Alphanumeric

Is the string to parse enclosed in single quotation marks, or a field or variable that
contains the source character string.

Using Functions 181

POSIT: Finding the Beginning of a Substring

Example:

182

/engt h
Integer

Is the number of characters in the source string, or a field that contains the length. If this
argument is less than or equal to 0, the function returns a 0.

substring
Alphanumeric

Is the substring whose position you want to find. This can be the substring enclosed in
single quotation marks, or the field that contains the string.

subl engt h
Integer

Is the number of characters in substring. If this argument is less than or equal to O, or if it
is greater than length, the function returns a O.

out put
Integer

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Finding the Position of a Letter

POSIT determines the position of the first capital letter | in LAST_NAME and stores the result
in I_IN_NAME:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

I _IN_NAVE/ | 2 = POSIT(LAST NAME, 15, 'I', 1, 'I2');

VHERE DEPARTMENT EQ ' PRODUCTI ON
END

The output is:
LAST NAME I | N_NAMVE

Information Builders

6. Character Functions I

REVERSE: Reversing the Characters in a String

Syntax:

Example:

The REVERSE function reverses the characters in a string. This reversal includes all trailing
blanks, which then become leading blanks. However, in an HTML report with SET
SHOWBLANKS=O0FF (the default value), the leading blanks are not visible.

How to Reverse the Characters in a String
REVERSE(/ engt h, source_string, output)

where:

/engt h
Integer

Is the number of characters in source_string and output, or a field that contains the length.

source_string
Alphanumeric

Is the character string to reverse enclosed in single quotation marks, or a field that
contains the character string.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Reversing the Characters in a String

In the following request against the EMPLOYEE data source, the REVERSE function is used to
reverse the characters in the LAST_NAME field to produce the field named REVERSE_LAST. In
this field, the trailing blanks from LAST_NAME have become leading blanks. The TRIM function
is used to strip the leading blanks from REVERSE_LAST to produce the field named
TRIM_REVERSE:

DEFI NE FI LE EMPLOYEE

REVERSE_LAST/ Al5 = REVERSE(15, LAST_NAME, REVERSE LAST);

TRIM REVERSE/ A15 = TRIM' L', REVERSE LAST, 15, ' ', 1, 'Al5');
END

TABLE FI LE EMPLOYEE

PRI NT REVERSE_LAST TRl M _REVERSE

BY LAST NAME

END

Using Functions 183

RJUST: Right-Justifying a Character String

The output is:

LAST_NAME
BANNI NG
BLACKWOOD
CROSS
GREENSPAN
| RVI NG
JONES
MCCOY
MCKNI GHT
ROVANS

SM TH

STEVENS

REVERSE_LAST

RJUST: Right-Justifying a Character String

Available Languages: reporting

TRI M_REVERSE

The RJUST function rightjustifies a character string. All trailing blacks become leading blanks.
This is useful when you display alphanumeric fields containing numbers.

RJUST does not have any visible effect in a report that uses StyleSheets (SET STYLE=ON)
unless you center the item. Also, if you use RJUST on a platform on which StyleSheets are
turned on by default, issue SET STYLE=OFF before running the request.

There is a version of the RJUST function that is available only in the Maintain language. For
information on this function, see RJUST: Right-Justifying a Character String (Maintain) on page

245.

Syntax:

How to Right-Justify a Character String

RIUST(/ ength, source_string, output)

where:

/engt h
Integer

Is the number of characters in source_string and output, or a field that contains the length.
Their lengths must be the same to avoid justification problems.

source_string
Alphanumeric

Is the character string to right justify, or a field or variable that contains the character
string enclosed in single quotation marks.

184

Information Builders

6. Character Functions I

Example:

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Right-Justifying a String
RJUST right-justifies the LAST_NAME field and stores the result in RIGHT_NAME:

SET STYLE=OFF

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COWVPUTE

Rl GHT_NAVE/ A15 = RJUST (15, LAST NAME, RIGHT NAME);
VWHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAMVE Rl GHT_NAME
SM TH SM TH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOOD
GREENSPAN GREENSPAN
CROSS CROSS

SOUNDEX: Comparing Character Strings Phonetically

Available Languages: reporting, Maintain

The SOUNDEX function analyzes a character string phonetically, without regard to spelling. It
converts character strings to four character codes. The first character must be the first
character in the string. The last three characters represent the next three significant sounds in
the source string.

To conduct a phonetic search, do the following:

1. Use SOUNDEX to translate data values from the field you are searching for to the phonetic
codes.

2. Use SOUNDEX to translate your best guess target string to a phonetic code. Remember
that the spelling of your target string need be only approximate. However, the first letter
must be correct.

3. Use WHERE or IF criteria to compare the temporary fields created in Step 1 to the
temporary field created in Step 2.

Using Functions 185

SOUNDEX: Comparing Character Strings Phonetically

Syntax: How to Compare Character Strings Phonetically
SOUNDEX(/ engt h, source_string, output)

where:

/ engt h
Alphanumeric

Is the number of characters in source_string, or a field that contains the length. It can be a
number enclosed in single quotation marks, or a field containing the number. The number
must be from 01 to 99, expressed with two digits (for example '01'); a number larger than
99 causes the function to return asterisks (*) as output.

source_string
Alphanumeric

Is the string to analyze enclosed in single quotation marks, or a field or variable that
contains the character string.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Example: Comparing Character Strings Phonetically

The following request creates three fields:
4 PHON_NAME contains the phonetic code of employee last names.
4 PHON_COQY contains the phonetic code of your guess, MICOY.

4 PHON_MATCH contains YES if the phonetic codes match, NO if they do not.

The WHERE criteria selects the last name that matches your best guess.

DEFI NE FI LE EMPLOYEE

PHON_NAME/ A4 = SOUNDEX('15', LAST NAME, PHON_NAME),

PHON_COY/ A4 W TH LAST_NAME = SOUNDEX('15', 'MICOY', PHON_COY);
PHON_MATCH A3 = | F PHON_NAME | S PHON_COY THEN ' YES' ELSE ' NO ;
END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME

| F PHON_MATCH I S ' YES'
END

186 Information Builders

6. Character Functions I

The output is:
LAST_NAME

SPELLNM: Spelling Out a Dollar Amount

Available Languages: reporting, Maintain

The SPELLNM function spells out an alphanumeric string or numeric value containing two
decimal places as dollars and cents. For example, the value 32.50 is THIRTY TWO DOLLARS

AND FIFTY CENTS.

Syntax: How to Spell Out a Dollar Amount

SPELLNM out / engt h, nunber, output)

where:

out/ ength
Integer

Is the number of characters in output , or a field that contains the length.

If you know the maximum value of number, use the following table to determine the value

of outlength:

If number is less than...

...outlength should be

$10 37

$100 45

$1,000 59

$10,000 74

$100,000 82

$1,000,000 96
number

Alphanumeric or Numeric (9.2)

Is the number to be spelled out.

Using Functions

This value must contain two decimal places.

187

SQUEEZ: Reducing Multiple Spaces to a Single Space

Example:

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Spelling Out a Dollar Amount

SPELLNM spells out the values in CURR_SAL and stores the result in AMT_IN_WORDS:

TABLE FI LE EMPLOYEE

PRI NT CURR SAL AND COWMPUTE

AMT_| N_WORDS/ A82 = SPELLNM(82, CURR SAL, AMT IN WORDS);
WHERE DEPARTMENT EQ 'M S

END

The output is:

$13,200. 00 TH RTEEN THOUSAND TWO HUNDRED DOLLARS AND NO CENTS

$18, 480. 00 ElI GHTEEN THOUSAND FOUR HUNDRED El GHTY DOLLARS AND NO CENTS
$18, 480. 00 ElI GHTEEN THOUSAND FOUR HUNDRED El GHTY DOLLARS AND NO CENTS
$21, 780. 00 TWENTY- ONE THOUSAND SEVEN HUNDRED EI GHTY DOLLARS AND NO CENTS
$9, 000. 00 NI NE THOUSAND DOLLARS AND NO CENTS

$27,062. 00 TWENTY- SEVEN THOUSAND S| XTY- TWO DOLLARS AND NO CENTS

SQUEEZ: Reducing Multiple Spaces to a Single Space

Syntax:

188

Available Languages: reporting, Maintain

The SQUEEZ function reduces multiple contiguous spaces within a character string to a single
space. The resulting character string has the same length as the original string but is padded
on the right with spaces.

How to Reduce Multiple Spaces to a Single Space
SQUEEZ(/ engt h, source_string, output)

where:
/ engt h

Integer

Is the number of characters in source_string and output, or a field that contains the length.
source_string

Alphanumeric

Is the character string to squeeze enclosed in single quotation marks, or the field that
contains the character string.

Information Builders

6. Character Functions I

Example:

out put
Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

Reducing Multiple Spaces to a Single Space

SQUEEZ reduces multiple spaces in the NAME field to a single blank and stores the result in a
field with the format A30:

DEFI NE FI LE EMPLOYEE

NAVE/ A30 = FI RST_NAME | LAST_NANME,
END

TABLE FI LE EMPLOYEE

PRI NT NAME AND COVPUTE

SQNAME/ A30 = SQUEEZ (30, NAME, 'A30');
VWHERE DEPARTMENT EQ 'M S';

END

The output is:

NAME SOQNAME

MARY SM TH MARY SM TH

DI ANE JONES DI ANE JONES

JOHN MCCOY JOHN MCCOY

ROSEMARI E BLACKWOOD ROSEMARI E BLACKWOOD
MARY GREENSPAN MARY GREENSPAN
BARBARA CRGCSS BARBARA CROCSS

STRIP: Removing a Character From a String

Syntax:

Available Languages: reporting, Maintain

The STRIP function removes all occurrences of a specific character from a string. The resulting
character string has the same length as the original string but is padded on the right with
spaces.

How to Remove a Character From a String
STRIP(/ ength, source string, char, output)

where:

/ engt h
Integer

Is the number of characters in source_string and output, or a field that contains the
number.

Using Functions 189

STRIP: Removing a Character From a String

source_string
Alphanumeric

Is the string from which the character will be removed, or a field containing the string.

char
Alphanumeric

Is the character to be removed from the string. This can be an alphanumeric literal
enclosed in single quotation marks, or a field that contains the character. If more than one
character is provided, the left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You must
then enclose this character combination in single quotation marks.

out put
Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

Example: Removing Occurrences of a Character From a String

STRIP removes all occurrences of a period (.) from the DIRECTOR field and stores the result in
a field with the format A17:

TABLE FI LE MOVl ES

PRI NT DI RECTOR AND COVPUTE

SDI RFAl7 = STRIP(17, DIRECTOR, '.', 'Al7');
WHERE CATEGORY EQ ' COVEDY'

END

The output is:

DI RECTORS SDI R
ZEMECKI S R ZEMECKI S R
ABRAHAMS J. ABRAHAMS J
ALLEN W ALLEN W
HALLSTROM L. HALLSTROM L
MARSHALL P. MARSHALL P
BROOKS J. L. BROOKS JL

190 Information Builders

6. Character Functions I

Example: Removing Single Quotation Marks From a String

STRIP removes all occurrences of a single quotation mark (') from the TITLE field and stores
the result in a field with the format A39:

TABLE FI LE MOVI ES
PRI NT TI TLE AND COVPUTE

STI TLE/ A39 = STRIP(39, TITLE, '''', 'A39');
VWHERE Tl TLE CONTAINS rrr!
END

The output is:

TI TLE STITLE

BABETTE' S FEAST BABETTES FEAST

JANE FONDA' S COVPLETE WORKOUT JANE FONDAS COVPLETE WORKOUT
JANE FONDA' S NEW WORKQUT JANE FONDAS NEW WORKCUT

M CKEY MANTLE' S BASEBALLTI PS M CKEY MANTLES BASEBALL TIPS

Example: Removing Commas From a String (Maintain)

STRIP removes all occurrences of a comma from the TITLE field:

MAI NTAI'N FI LE MOVI ES

FOR 10 NEXT MOVI ECODE | NTO MOVSTK
VWHERE Tl TLE CONTAINS ', ";

COVPUTE | /1 2=1;

REPEAT MOVSTK. FOCI NDEX

TYPE "TITLE | S: <MOVSTK(1). TI TLE"

COVPUTE NOCOMVA/ A39=STRIP (39,MOVSTK() .TITLE, ',',NOCOMMA);

TYPE "NEW TI TLE I'S: <NOCOWA" ;

COWUTE | =1 +1

ENDREPEAT

END

The output is:

TITLE I S: SMJRFS, THE
NEW TITLE | S: SMURFS THE

STRREP: Replacing Character Strings

The STRREP replaces all instances of a specified string within a source string. It also supports
replacement by null strings.

Using Functions 191

STRREP: Replacing Character Strings

Syntax: How to Replace Character Strings

STRREP (/nlength, instring, searchlength, searchstring, replength,
repstring, outlength, output)

where:

i nl engt h
Numeric

Is the number of characters in the source string.

instring
Alphanumeric

Is the source string.

searchl engt h
Numeric

Is the number of characters in the (shorter length) string to be replaced.

searchstring
Alphanumeric

Is the character string to be replaced.

repl ength
Numeric

Is the number of characters in the replacement string. Must be zero (0) or greater.

repstring
Alphanumeric

Is the replacement string (alphanumeric). Ignored if replength is zero (0).

out | ength
Numeric

Is the number of characters in the resulting output string. Must be 1 or greater.

out put
Alphanumeric

Is the resulting output string after all replacements and padding.

Reference: Usage Note for STRREP Function

The maximum string length is 4095.

192 Information Builders

6. Character Functions I

Example: Replacing Commas and Dollar Signs

In the following example, STRREP finds and replaces commas and dollar signs that appear in
the CS_ALPHA field, first replacing commas with null strings to produce CS_NOCOMMAS
(removing the commas) and then replacing the dollar signs ($) with (USD) in the right-most
CURR_SAL column:

TABLE FI LE EMPLOYEE

SUM CURR_SAL NOPRI NT
COVPUTE CS_ALPHA/ A15=FTOA(CURR SAL,' (D12.2M"', CS_ALPHA);

CS_NOCOMVAS/ A14=STRREP(15, CS ALPHA, 1,',',0,' X', 14, CS_NOCOMVAS) ;
CS_USD/ AL7=STRREP(14, CS_NOCOMMAS, 1,' $', 4,' USD ', 17, CS_USD);
NOPRI NT
CS_USDI R AS CURR SAL

BY LAST_NAME

END

The output is:

LAST_NAME CS_ALPHA CS_NOCOMVAS CURR_SAL
BANNI NG $29, 700. 00 $29700. 00 USD 29700. 00
BLACKWOOD $21, 780. 00 $21780. 00 USD 21780. 00
CROSS $27, 062. 00 $27062. 00 USD 27062. 00
GREENSPAN $9, 000. 00 $9000. 00 USD 9000. 00
I RVI NG $26, 862. 00 $26862. 00 USD 26862. 00
JONES $18, 480. 00 $18480. 00 USD 18480. 00
MCCOY $18, 480. 00 $18480. 00 USD 18480. 00
MCKNI GHT $16, 100. 00 $16100. 00 USD 16100. 00
ROVANS $21, 120. 00 $21120. 00 USD 21120. 00
SM TH $22, 700. 00 $22700. 00 USD 22700. 00
STEVENS $11, 000. 00 $11000. 00 USD 11000. 00

SUBSTR: Extracting a Substring
Available Languages: reporting

The SUBSTR function extracts a substring based on where it begins and its length in the
source string. SUBSTR can vary the position of the substring depending on the values of other
fields.

There is a version of the SUBSTR function that is available only in the Maintain language. For
information on this function, see SUBSTR: Extracting a Substring (Maintain) on page 253.

Using Functions 193

SUBSTR: Extracting a Substring

Syntax:

194

How to Extract a Substring
SUBSTR(/ ength, source_string, start, end, sublength, output)

where:

/engt h
Integer

Is the number of characters in source_string, or a field that contains the length.

source_string
Alphanumeric

Is the string from which to extract a substring enclosed in single quotation marks, or the
field containing the parent string.

start
Integer

Is the starting position of the substring in the source string. If start is less than one or
greater than length, the function returns spaces.

end
Integer

Is the ending position of the substring. If this argument is less than start or greater than
length, the function returns spaces.

subl engt h
Integer

Is the number of characters in the substring (normally end - start + 1). If sublength is
longer than end - start +1, the substring is padded with trailing spaces. If it is shorter, the
substring is truncated. This value should be the declared length of output. Only sublength
characters will be processed.

out put
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks.

Information Builders

6. Character Functions I

Example: Extracting a String

POSIT determines the position of the first letter | in LAST_NAME and stores the result in
I_IN_NAME. SUBSTR then extracts three characters beginning with the letter | from
LAST _NAME, and stores the results in |_SUBSTR.
TABLE FI LE EMPLOYEE
PRI NT
COVPUTE
I _IN_NAVE/ | 2 = POSIT(LAST NAME, 15, 'I', 1, 'I2'); AND
COVPUTE
| _SUBSTR/ A3 =
SUBSTR (15, LAST NAME, I_IN_NAME, I_IN_NAME+2, 3, I_SUBSTR);
BY LAST_NAME

VWHERE DEPARTMENT EQ ' PRODUCTI ON
END

The output is:
LAST_NAME I _IN_NAME | _SUBSTR

Since Romans and Stevens have no | in their names, SUBSTR extracts a blank string.

TRIM: Removing Leading and Trailing Occurrences
Available Languages: reporting

The TRIM function removes leading and/or trailing occurrences of a pattern within a character
string.

There is a version of the TRIM function that is available only in the Maintain language. For
information on this function, see TRIM: Removing Trailing Occurrences (Maintain) on page 254.

Using Functions 195

TRIM: Removing Leading and Trailing Occurrences

Syntax: How to Remove Leading and Trailing Occurrences

TRIM tri mwhere, source_string, [ength, pattern, sublength, output)

where:

trimwhere
Alphanumeric

Is one of the following, which indicates where to remove the pattern:
'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

source_string
Alphanumeric

Is the string to trim enclosed in single quotation marks, or the field containing the string.

string_length
Integer

Is the number of characters in the source string.

pattern
Alphanumeric

Is the character string pattern to remove enclosed in single quotation marks.

subl engt h
Integer

Is the number of characters in the pattern.

out put
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks.

196 Information Builders

6. Character Functions I

Example:

Example:

Removing Leading Occurrences

TRIM removes leading occurrences of the characters BR from the DIRECTOR field and stores
the result in a field with the format A17:

TABLE FI LE MOVI ES

PRI NT DI RECTOR AND

COVPUTE
TRI MDI R/ A17 = TRIM('L', DIRECTOR, 17, 'BR', 2, 'Al7');
VWHERE DI RECTCR CONTAI NS ' BR

END

The output is:

DI RECTOR TRI MDI R
ABRAHAMS J ABRAHAMS J
BROOKS R OOKS R
BROOKS J. L OCKS J. L

Removing Trailing Occurrences

TRIM removes trailing occurrences of the characters ER from the TITLE. In order to remove
trailing non-blank characters, trailing spaces must be removed first. The TITLE field has trailing
spaces. Therefore, TRIM does not remove the characters ER when creating field TRIMT. The
SHORT field does not have trailing spaces. Therefore, TRIM removes the trailing ER characters
when creating field TRIMS:

DEFI NE FI LE MOVI ES
SHORT/ A19 = SUBSTR(19, TITLE, 1, 19, 19, SHORT);
END
TABLE FI LE MOVI ES
PRINT TITLE IN1 AS'TITLE
SHORT IN 40 AS ' SHORT: ' OVER

COWPUTE

TRI MI/ A39 = TRIM('T', TITLE, 39, 'ER', 2, 'A39'); IN 1 AS ' TRI M:
COVWPUTE

TRI M5/ A19 = TRIM('T', SHORT, 19, 'ER', 2, 'A19'); IN 40 AS 'TRI Ms:
VWHERE TI TLE LI KE ' %&ER
END

The output is:

TI TLE: LEARN TO SKI BETTER SHORT: LEARN TO SKI BETTER
TRI MT: LEARN TO SKI BETTER TRI VS: LEARN TO SKI BETT
TI TLE: FANNY AND ALEXANDER SHORT: FANNY AND ALEXANDER
TRI MT: FANNY AND ALEXANDER TRI MS: FANNY AND ALEXAND

Using Functions 197

UPCASE: Converting Text to Uppercase

UPCASE: Converting Text to Uppercase
Available Languages: reporting

The UPCASE function converts a character string to uppercase. It is useful for sorting on a field
that contains both mixed-case and uppercase values. Sorting on a mixed-case field produces
incorrect results because the sorting sequence in EBCDIC always places lowercase letters
before uppercase letters, while the ASCII sorting sequence always places uppercase letters
before lowercase. To obtain correct results, define a new field with all of the values in
uppercase, and sort on that field.

There is a version of the UPCASE function that is available only in the Maintain language. For
information on this function, see UPCASE: Converting Text to Uppercase (Maintain) on page
255.

Syntax: How to Convert Text to Uppercase
UPCASE(/ engt h, source_string, output)

where:

[engt h
Integer

Is the number of characters in source_string and output.

I nput
Alphanumeric

Is the string to convert enclosed in single quotation marks, or the field containing the
character string.

out put
Alphanumeric of type AnV or An

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks.

Example: Converting a Mixed-Case String to Uppercase
UPCASE converts the LAST_NAME_MIXED field to uppercase:

DEFI NE FI LE EMPLOYEE

LAST_NAVE_M XED/ A15=| F DEPARTMENT EQ 'M'S' THEN LAST_NAME ELSE
LOWORD(15, LAST NAME, ' Al5'):

LAST_NAIVE_UPPER/ Al5=UPCASE (15, LAST NAME_MIXED, "Al15') ;

END

198 Information Builders

6. Character Functions I

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME_M XED AND FI RST_NAME BY LAST_NAME_UPPER
VHERE CURR_JOBCCDE EQ 'B02' OR 'Al7' OR 'B04';

END

Now, when you execute the request, the names are sorted correctly.

The output is:
LAST_NAME_UPPER LAST_NAME M XED FI RST_NAME

BANNI NG Banni ng JOHN
BLACKWOOD BLACKWOOD ROSEVARI E
CROSS CRCSS BARBARA
MCCOY MCCOY JOHN

MCKNI GHT Mckni ght ROCGER
ROVANS Romans ANTHONY

If you do not want to see the field with all uppercase values, you can NOPRINT it.

XMLDECOD: Decoding XML-Encoded Characters

Syntax:

The XMLDECOD function decodes the following five standard XML-encoded characters when
they are encountered in a string:

Character Name Character XML-Encoded Representation
ampersand & &

greater than symbol > >

less than symbol < <

double quotation mark " "

single quotation mark (apostrophe) | ' '

How to Decode XML-Encoded Characters
XMLDECOD(/ nl engt h, source_string, outlength, output)

where:
i nl ength
Integer

Is the length of the field containing the source character string, or a field that contains the
length.

Using Functions 199

XMLDECOD: Decoding XML-Encoded Characters

source_string
Alphanumeric

Is the name of the field containing the source character string or the string enclosed in
single quotation marks (').

out/ ength
Integer

Is the length of the output character string, or a field that contains the length.

out put
Integer

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

Example: Decoding XML-Encoded Characters

The file XMLFUNCS is a .csv file that contains some unencoded characters and some XML-
encoded characters. The Master File is:
FI LE = XMLFUNCS, SUFFI X=COM $

SEGNAME = SEG01, SEGIYPE=S1, $
FI ELD=I NSTRI NG, ALI AS=CHARS, USAGE=A30, ACTUAL=A30, $

The contents of the file follow:

CHARS: & < > ,$

ENCODED: &anp; > ,$
ENCODED: " ' , $
M XED: &anp; < > . $

200 Information Builders

6. Character Functions I

XMLDECOD decodes any of the supported XML-encoded characters. Note that some viewers
automatically decode the encoded values for display, so the output is produced in a plain text
format (FORMAT WP):

FI LEDEF XMLFUNCS DI SK xml funcs. csv

DEFI NE FI LE XM_FUNCS

QUTSTRI NG A30=XMLDECOD (30, INSTRING, 30, "A30");
END

TABLE FI LE XM_LFUNCS

PRI NT | NSTRI NG QUTSTRI NG

ON TABLE PCHOLD FORVAT WP

ON TABLE SET PAGE NOPAGE

In the output string, XML-encoded characters have been decoded, and characters that were
not encoded have been left as they were in the input string:

I NSTRI NG QUTSTRI NG
CHARS: & < > CHARS: & < >
ENCODED: &anp; > ; ENCODED: & >
ENCODED: " ' ENCODED: " '

M XED: &anp; < > M XED: & < >

XMLENCOD: XML-Encoding Characters

The XMLENCOD function encodes the following five standard characters when they are
encountered in a string;:

Character Name Character Encoded Representation
ampersand & &

greater than symbol > >

less than symbol < <

double quotation mark " "

single quotation mark (apostrophe) | ' '

Using Functions 201

XMLENCOD: XML-Encoding Characters

Syntax:

Example:

202

How to XML-Encode Characters
XMLENCOD(/ n/ engt h, source_string, option, outlength, output)

where:

i nl ength
Integer
Is the length of the field containing the source character string, or a field that contains the
length.

source_string
Alphanumeric

Is the name of the field containing the source character string or a string enclosed in
single quotation marks (').

option
Integer

Is a code that specifies whether to process a string that already contains XML-encoded
characters. Valid values are:

. O, the default, which cancels processing of a string that already contains at least one
XML-encoded character.

d 1, which processes a string that contains XML-encoded characters.

out | ength
Integer

Is the length of the output character string, or a field that contains the length.

Note: The output length, in the worst case, could be six times the length of the input.

out put
Integer

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

XML-Encoding Characters

The file XMLFUNCS is a .csv file that contains some unencoded characters and some XML-
encoded characters. The Master File is:

FI LE = XMLFUNCS, SUFFI X=COM $
SEGNAME = SEGD1, SEGTYPE=S1, $
FI ELD=I NSTRI NG, ALI AS=CHARS, USAGE=A30, ACTUAL=A30, $

Information Builders

6. Character Functions I

The contents of the file follow:

CHARS: & <> ,|$

ENCODED: &anp; > ,$
ENCODED: " ' . $
M XED: &anp; < > ' $

XMLENCOD XML-encodes any of the supported characters to produce OUTSTRING1, and
processes every input string regardless of whether it already contains XML-encoded
characters. For OUTSTRINGZ2, it only encodes those strings that do not contain any XML-
encoded characters. Note that some viewers automatically decode the encoded values for
display, so the output is produced in plain text format (FORMAT WP):

FI LEDEF XMLFUNCS DI SK xni funcs. csv

DEFI NE FI LE XMLFUNCS

OUTSTRI NG1/ A30=XMLENCOD (30, INSTRING, 1,30, 'A30");
QUTSTRI NG2/ A30=XMLENCOD (30, INSTRING, 0,30, 'A30");
END

TABLE FI LE XMLFUNCS

PRI NT | NSTRING OUTSTRINGL I N 24 OQUTSTRING2 I N 48
ON TABLE SET PAGE NOPAGE

ON TABLE PCHOLD FORMAT WP

END

In OUTSTRING1, the supported characters have been XML-encoded, and output is produced
even if the input string contains encoded characters. OUTSTRING2 is only produced when no
XML-encoded characters exist in the input string:

I NSTRI NG QUTSTRI NGL QUTSTRI N&
CHARS: & < > CHARS: &anp; &t; > CHARS: &anp; &t; >
ENCODED: &anp; > ; ENCCODED: &anp; > ;

ENCODED: " ' ENCODED: " '
M XED: &anp; < > MXED: &anp; &t; >

Using Functions 203

XMLENCOD: XML-Encoding Characters

204 Information Builders

Chapter

Variable Length Character Functions

Overview

The character format AnV is supported in synonyms for FOCUS, XFOCUS, and relational
data sources. This format is used to represent the VARCHAR (variable length character)
data types supported by relational database management systems.

In this chapter:

4 Overview
LENV: Returning the Length of an Alphanumeric Field

LOCASV: Creating a Variable Length Lowercase String

SUBSTV: Extracting a Variable Length Substring

d
d
.4 POSITV: Finding the Beginning of a Variable Length Substring
d
.4 TRIMV: Removing Characters From a String

d

UPCASV: Creating a Variable Length Uppercase String

For relational data sources, AnV keeps track of the actual length of a VARCHAR column. This
information is especially valuable when the value is used to populate a VARCHAR column in a
different RDBMS. It affects whether trailing blanks are retained in string concatenation and, for
Oracle, string comparisons (the other relational engines ignore trailing blanks in string
comparisons).

In a FOCUS or XFOCUS data source, AnV does not provide true variable length character
support. It is a fixed-length character field with an extra two leading bytes to contain the actual
length of the data stored in the field. This length is stored as a short integer value occupying
two bytes. Because of the two bytes of overhead and the additional processing required to
strip them, AnV format is not recommended for use with non-relational data sources.

AnV fields can be used as arguments to all Information Builders-supplied functions that expect
alphanumeric arguments. An AnV input parameter is treated as an An parameter and is padded
with blanks to its declared size (n). If the last parameter specifies an AnV format, the function
result is converted to type AnV with actual length set equal to its size.

Using Functions 205

LENV: Returning the Length of an Alphanumeric Field

The functions described in this topic are designed to work specifically with the AnV data type
parameters.

Reference: Usage Notes for Using an AnV Field in a Function

The following affect the use of an AnV field in a function:

- When using an AnV argument in a function, the input parameter is treated as an An
parameter and is padded with blanks to its declared size (n). If the last parameter specifies
an AnV format, the function result is converted to type AnV with actual length set equal to
its size.

- Many functions require both an alphanumeric string and its length as input arguments. If
the supplied string is stored in an AnV field, you still must supply a length argument to
satisfy the requirements of the function. However, the length that will be used in the
function's calculations is the actual length stored as the first two bytes of the AnV field.

d In general, any input argument can be a field or a literal. In most cases, numeric input
arguments are supplied to these functions as literals, and there is no reason not to supply
an integer value. However, if the value is not an integer, it is truncated to an integer value
regardless of whether it was supplied as a field or a literal.

LENV: Returning the Length of an Alphanumeric Field

Syntax:

206

Available Languages: reporting

LENV returns the actual length of an AnV field or the size of an An field.
How to Find the Length of an Alphanumeric Field
LENV(source_string, output)

where:

source_string
Alphanumeric of type An or AnV

Is the source string or field. If it is an An format field, the function returns its size, n. For a
character string enclosed in quotation marks or a variable, the size of the string or variable
is returned. For a field of AnV format, its length, taken from the length-in-bytes of the field,
is returned.

Information Builders

7. Variable Length Character Functions I

Example:

out put
Integer

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks (').

Finding the Length of an AnV Field

TRIMV creates an AnV field named TITLEV by removing trailing blanks from the TITLE value.
Then LENV returns the actual length of each instance of TITLEV to the ALEN field:

TABLE FI LE MOVI ES

PRI NT

COWUTE TI TLEV/ A39V = TRIMV('T', TITLE, 39, ' ', 1, TITLEV);
ALEN 12 = LENV(TI TLEV, ALEN) ;

BY CATEGORY NOPRI NT

VWHERE CATEGORY EQ ' CHI LDREN

END

The output is:

TI TLEV ALEN
SMURFS, THE 11
SHAGGY DOG, THE 15
SCOOBY- DOO- A DOG I N THE RUFF 28
ALI CE | N WONDERLAND 19
SESAME STREET- BEDTI ME STORI ES AND SONGS 39
ROVPER ROOM ASK M SS MOLLY 26
SLEEPI NG BEAUTY 15
BAMBI 5

LOCASV: Creating a Variable Length Lowercase String

Syntax:

Available Languages: reporting

The LOCASV function converts alphabetic characters in the source string to lowercase and is
similar to LOCASE. LOCASYV returns AnV output whose actual length is the lesser of the actual
length of the AnV source string and the value of the input parameter upper_limit.

How to Create a Variable Length Lowercase String
LOCASV(upper_lim t, Ssource_string, output)

where:

upper_limt
Integer

Is the limit for the length of the source string.

Using Functions 207

POSITV: Finding the Beginning of a Variable Length Substring

Example:

source_string
Alphanumeric of type An or AnV

Is the string to be converted to lowercase in single quotation marks, or a field or variable
that contains the string. If it is a field, it can have An or AnV format. If it is a field of type
AnV, its length is taken from the length in bytes stored in the field. If upper_limit is smaller
than the actual length, the source string is truncated to this upper limit.

out put
Alphanumeric of type An or AnV

Is the name of the field in which to store the result, or the format of the output value
enclosed in single quotation marks ('). This value can be for a field that is AnV or An
format.

If the output format is AnV, the actual length returned is equal to the smaller of the source
string length and the upper limit.

Creating a Variable Length Lowercase String

In this example, LOCASV converts the LAST_NAME field to lowercase and specifies a length
limit of five characters. The results are stored in the LOWCV_NAME field:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND COVPUTE

LOWCV_NAVE/ AL5V = LOCASV(5, LAST NAME, LOWCV_NAME);
WHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAVE LONCV_NAVE
SM TH smth
JONES j ones
MCCOY nccoy
BLACKWOOD bl ack
GREENSPAN green
CRCSS Cross

POSITV: Finding the Beginning of a Variable Length Substring

208

Available Languages: reporting

The POSITV function finds the starting position of a substring within a larger string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value O. This is similar to POSIT;
however, the lengths of its AnV parameters are based on the actual lengths of those
parameters in comparison with two other parameters that specify their sizes.

Information Builders

7. Variable Length Character Functions I

Syntax: How to Find the Beginning of a Variable Length Substring
POSI TV(source_string, upper_linmt, substring, sub_[imt, output)

where:

source_string
Alphanumeric of type An or AnV

Is the source string that contains the substring whose position you want to find. It can be
the string enclosed in single quotation marks ('), or a field or variable that contains the
source string. If it is a field of AnV format, its length is taken from the length bytes stored
in the field. If upper_limit is smaller than the actual length, the source string is truncated
to this upper limit.

upper_limt
Integer

Is a limit for the length of the source string.

substring
Alphanumeric of type An or AnV

Is the substring whose position you want to find. This can be the substring enclosed in
single quotation marks ('), or the field that contains the string. If it is a field, it can have An
or AnV format. If it is a field of type AnV, its length is taken from the length bytes stored in
the field. If sub_limit is smaller than the actual length, the source string is truncated to this
limit.

sub_ limt
Integer

Is the limit for the length of the substring.

out put
Integer

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks (').

Using Functions 209

SUBSTV: Extracting a Variable Length Substring

Example:

Finding the Starting Position of a Variable Length Pattern

POSITV finds the starting position of a trailing definite or indefinite article in a movie title (such
as ", THE" in SMURFS, THE). First TRIMV removes the trailing blanks from the title so that the

article will be the trailing pattern:

DEFI NE FI LE MOVI ES

TITLEV/ A39V = TRRMW(' T', TITLE, 39," ', 1, TITLEV);
PSTART/ | 4 = POSITV(TITLEV,LENV(TITLEV,'I4'),
PLEN 14 = | F PSTART NE O THEN LENV(TI TLEV, ' 14")

ELSE O0;
END
TABLE FI LE MOVI ES
PRI NT TI TLE

PSTART AS 'Pattern, Start' IN 25

PLEN AS ' Pattern, Length'
BY CATEGORY NOPRI NT
WHERE PLEN NE O
END

The output is:

Pattern
TI TLE Start
SMURFS, THE 7
SHAGGY DOG, THE 11
MALTESE FALCON, THE 15
PHI LADELPHI A STORY, THE 19
TIN DRUM THE 9
FAM LY, THE 7
CHORUS LINE, A 12
MORNI NG AFTER, THE 14
Bl RDS, THE 6
BOY AND H'S DOG, A 16

SUBSTV: Extracting a Variable Length Substring

210

Available Languages: reporting

woowooigoogal

PSTART +1

The SUBSTV function extracts a substring from a string and is similar to SUBSTR. However, the
end position for the string is calculated from the starting position and the substring length.
Therefore, it has fewer parameters than SUBSTR. Also, the actual length of the output field, if

it is an AnV field, is determined based on the substring length.

Information Builders

7. Variable Length Character Functions I

Syntax: How to Extract a Variable Length Substring

SUBSTV(upper_Iimt, source_string, start, sub_limt, output)

where:

upper_limt

Integer

Is the limit for the length of the source string.

source_string

Alphanumeric of type An or AnV

Is the character string that contains the substring you want to extract. It can be the string
enclosed in single quotation marks ('), or the field containing the string. If it is a field, it
can have An or AnV format. If it is a field of type AnV, its length is taken from the length
bytes stored in the field. If upper_limit is smaller than the actual length, the source string
is truncated to the upper limit. The final length value determined by this comparison is
referred to as p_length (see the description of the output parameter for related
information).

start

Integer

Is the starting position of the substring in the source string. The starting position can
exceed the source string length, which results in spaces being returned.

sub_limt

Integer

Is the length, in characters, of the substring. Note that the ending position can exceed the
input string length depending on the provided values for start and sub_limit.

out put

Using Functions

Alphanumeric of type An or AnV

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks ('). This field can be in An or AnV format.

If the format of output is AnV, and assuming end is the ending position of the substring,
the actual length, outlen, is computed as follows from the values for end, start, and
p_length (see the source_string parameter for related information):

If end > p_length or end < start, then outlen = 0. Otherwise, outlen = end - start + 1.

211

TRIMV: Removing Characters From a String

Example: Extracting a Variable Length Substring

The following request extracts a trailing definite or indefinite article from a movie title (such as
", THE" in "SMURFS, THE"). First it trims the trailing blanks so that the article is the trailing
pattern. Next it finds the starting position and length of the pattern. Then SUBSTV extracts the
pattern and TRIMV trims the pattern from the title:

DEFI NE FI LE MOVI ES
TITLEV/ A39V = TRRMWV(' T', TITLE, 39,' ', 1, TITLEV);
PSTART/ 14 = POSI TV(TI TLEV, LENV(TI TLEV, " 14"), ',", 1,'14");
PLEN' 14 = | F PSTART NE O THEN LENV(TITLEV,'14") - PSTART +1
ELSE 0;
PATTERN A20V= SUBSTV (39, TITLEV, PSTART, PLEN, PATTERN);
NEWTT T/ A39V = TRI MW(' T', TI TLEV, 39, PATTERN, LENV(PATTERN, ' 14"), NEWIIT);
END
TABLE FI LE MOVI ES
PRI NT TI TLE
PSTART AS 'Pattern, Start' IN 25
PLEN AS ' Pattern, Length’
NEWIT T AS ' Trimmed, Title' IN 55
BY CATEGORY NOPRI NT
VWHERE PLEN NE O
END

The output is:

Pattern Pattern Trimed

TI TLE Start Length Title

SMURFS, THE 7 5 SMJRFS

SHAGGY DOG, THE 11 5 SHAGGY DOG
MALTESE FALCON, THE 15 5 MALTESE FALCON
PHI LADELPHI A STORY, THE 19 5 PHI LADELPHI A STORY
TIN DRUM THE 9 5 TIN DRUM

FAM LY, THE 7 5 FAMLY

CHORUS LI NE, A 12 3 CHORUS LI NE
MORNI NG AFTER, THE 14 5 MORNI NG AFTER
BI RDS, THE 6 5 BIRDS

BOY AND H S DOG A 16 3 BOY AND H S DOG

TRIMV: Removing Characters From a String
Available Languages: reporting

The TRIMV function removes leading and/or trailing occurrences of a pattern within a character
string. TRIMV is similar to TRIM. However, TRIMV allows the source string and the pattern to
be removed to have AnV format.

TRIMV is useful for converting an An field to an AnV field (with the length in bytes containing
the actual length of the data up to the last non-blank character).

212 Information Builders

7. Variable Length Character Functions I

Syntax: How to Remove Characters From a String

TRIW(trimwhere, source_string, upper_limt, pattern, pattern |imt,
out put)
where:

tri muwhere
Alphanumeric

Is one of the following, which indicates where to remove the pattern:
'L' removes leading occurrences.
'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

source_string
Alphanumeric of type An or AnV

Is the source string to be trimmed. It can be the string enclosed in single quotation marks
('), or the field containing the string. If it is a field, it can have An or AnV format. If it is a
field of type AnV, its length is taken from the length in bytes stored in the field. If
upper_limit is smaller than the actual length, the source string is truncated to this upper
limit.

upper_limt
Integer

Is the upper limit for the length of the source string.

pattern
Alphanumeric of type An or AnV

Is the pattern to remove from the string, enclosed in single quotation marks (‘). If it is a
field, it can have An or AnV format. If it is a field of type AnV, its length is taken from the
length in bytes stored in the field. If pattern_limit is smaller than the actual length, the
pattern is truncated to this limit.

plength_|inmt
Integer

Is the limit for the length of the pattern.

out put
Alphanumeric of type An or AnV

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks ('). The field can be in AnV or An format.

Using Functions 213

UPCASV: Creating a Variable Length Uppercase String

Example:

If the output format is AnV, the length is set to the number of characters left after
trimming.

Creating an AnV Field by Removing Trailing Blanks

TRIMV creates an AnV field named TITLEV by removing trailing blanks from the TITLE value:

TABLE FI LE MOVI ES

PRI NT DI RECTOR

COVPUTE TI TLEV/ A39V = TRIMV('T', TITLE, 39, ' ', 1, TITLEV);
BY CATEGCORY

END

Here are the first 10 lines of the output:

CATEGORY DI RECTCR TI TLEV
ACTI ON SPI ELBERG S. JAVS
VERHOVEN P. ROBOCCP
VERHOVEN P. TOTAL RECALL
SCOIT T. TOP GUN
MCDONALD P. RAMBO | 11
CHI LDREN SMURFS, THE
BARTON C. SHAGGY DOG, THE
SCOCBY- DOO- A DOG | N THE RUFF
GEROM NI ALI CE | N WONDERLAND

SESAME STREET- BEDTI ME STORI ES AND SONGS

UPCASV: Creating a Variable Length Uppercase String

Syntax:

214

Available Languages: reporting

UPCASV converts alphabetic characters to uppercase, and is similar to UPCASE. However,
UPCASYV can return AnV output whose actual length is the lesser of the actual length of the
AnV source string and an input parameter that specifies the upper limit.

How to Create a Variable Length Uppercase String
UPCASV(upper_|im t, source_string, output)

where:

upper_limt
Integer

Is the limit for the length of the source string. It can be a positive constant or a field whose
integer portion represents the upper limit.

Information Builders

7. Variable Length Character Functions I

source_string
Alphanumeric of type An or AnV

is the string to convert to uppercase. It can be the character string enclosed in single
quotation marks ('), or the field containing the character string. If it is a field, it can have
An or AnV format. If it is a field of type AnV, its length is taken from the length in bytes
stored in the field. If upper_limit is smaller than the actual length, the source string is
truncated to the upper limit.

out put
Alphanumeric of type An or AnV

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks ('). This can be a field with AnV or An format.

If the output format is AnV, the length returned is equal to the smaller of the source string
length and upper_limit.

Example: Creating a Variable Length Uppercase String

Suppose you are sorting on a field that contains both uppercase and mixed-case values. The
following request defines a field called LAST_NAME_MIXED that contains both uppercase and
mixed-case values:

DEFI NE FI LE EMPLOYEE

LAST_NAME_M XED/ A15=| F DEPARTMENT EQ ' M S THEN LAST NAVE ELSE
LOWORD(15, LAST_NAME, ' Al5');

LAST_NANE_UPCASV/ AL5V=UPCASV(5, LAST NAME M XED, 'Al5') ;

END

Suppose you execute a request that sorts by this field:

TABLE FI LE EMPLOYEE

PRI NT LAST NAME_M XED AND FI RST_NAME BY LAST_NAVE UPCASV
WHERE CURR_JOBCODE EQ ' B02' OR 'Al7' OR 'B04";

END

The output is:
LAST_NAME_UPCASV LAST_NAME_M XED FI RST_NAME

BANNI Banni ng JOHN
BLACK BLACKWOOD ROSEVARI E
CRCSS CRCSS BARBARA
MCCOY MCCOY JOHN

MCKNI Mckni ght ROGER
ROVAN Romans ANTHONY

Using Functions 215

UPCASV: Creating a Variable Length Uppercase String

216 Information Builders

Chapter

Character Functions for DBCS Code
Pages

The functions in this topic manipulate strings of DBCS and SBCS characters when your
configuration uses a DBCS code page.

In this chapter:

-1 DCTRAN: Translating A Single-Byte or Double-Byte Character to Another
DEDIT: Extracting or Adding Characters

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String
DSUBSTR: Extracting a Substring

JPTRANS: Converting Japanese Specific Characters

KKFCUT: Truncating a String

SFTDEL: Deleting the Shift Code From DBCS Data

L U o U U U

SFTINS: Inserting the Shift Code Into DBCS Data

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another

The DCTRAN function translates a single-byte or double-byte character within a character string
to another character based on its decimal value. To use DCTRAN, you need to know the
decimal equivalent of the characters in internal machine representation.

The DCTRAN function can translate single-byte to double-byte characters and double-byte to
single-byte characters, as well as single-byte to single-byte characters and double-byte to
double-byte characters.

Syntax: How to Translate a Single-Byte or Double-Byte Character to Another
DCTRAN(/ engt h, source_string, indecinmal, outdecinal, output)

where:
/ engt h
Double

Using Functions 217

DEDIT: Extracting or Adding Characters

Example:

Is the number of characters in source_string.
source_string

Alphanumeric

Is the character string to be translated.
i ndeci nal

Double

Is the ASCII or EBCDIC decimal value of the character to be translated.
out deci mal

Double

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
indecimal.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks (').

Using DCTRAN to Translate Double-Byte Characters

In the following:

DCTRAN(E, 'ATATBEE, 177, 70, A8)

For ATARREE the result iz AFABRRTE.

DEDIT: Extracting or Adding Characters

218

If your configuration uses a DBCS code page, you can use the DEDIT function to extract
characters from or add characters to a string.

DEDIT works by comparing the characters in a mask to the characters in a source field. When
it encounters a nine (9) in the mask, DEDIT copies the corresponding character from the
source field to the new field. When it encounters a dollar sign ($) in the mask, DEDIT ignores
the corresponding character in the source field. When it encounters any other character in the
mask, DEDIT copies that character to the corresponding position in the new field.

Information Builders

8. Character Functions for DBCS Code Pages I

Syntax: How to Extract or Add DBCS or SBCS Characters
DEDI T(/ nl engt h, source_string, mask_length, nmask, output)

where:

i nl engt h
Integer

Is the number of bytes in source_string. The string can have a mixture of DBCS and SBCS
characters. Therefore, the number of bytes represents the maximum number of characters
possible in the source string.

source_string
Alphanumeric

Is the string to edit enclosed in single quotation marks ('), or the field containing the
string.

mask_Il engt h
Integer

Is the number of characters in mask.

mask
Alphanumeric

Is the string of mask characters.

Each nine (9) in the mask causes the corresponding character from the source field to be
copied to the new field.

Each dollar sign ($) in the mask causes the corresponding character in the source field to
be ignored.

Any other character in the mask is copied to the new field.

out put
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks (').

Using Functions 219

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

Example: Adding and Extracting DBCS Characters

The following example copies alternate characters from the source string to the new field,
starting with the first character in the source string, and then adds several new characters at
the end of the extracted string:

DEDITI 15, '®alMiDusedto, 16, 9F95050F0f-20 E < (T 2, A300
The resultis BN DA H-PEC[H 2
The following example copies alternate characters from the source string to the new field,

starting with the second character in the source string, and then adds several new characters
at the end of the extracted string;:

DEDIT 15, '&alMiZux edio’, 16, 'F9R9R9E9F9-ARCDE', 'A20"
The result 15 ameo-ABCDE.

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

The DSTRIP function removes all occurrences of a specific single-byte or double-byte character
from a string. The resulting character string has the same length as the original string, but is
padded on the right with spaces.

Syntax: How to Remove a Single-Byte or Double-Byte Character From a String
DSTRI P(/ engt h, source_string, char, output)

where:
[engt h

Double

Is the number of characters in source_string and outfield.
source_string

Alphanumeric

Is the string from which the character will be removed.

220 Information Builders

8. Character Functions for DBCS Code Pages I

Example:

char
Alphanumeric

Is the character to be removed from the string. If more than one character is provided, the
left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You must
then enclose this character combination in single quotation marks.

out put

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks (').

Removing a Double-Byte Character From a String

In the following:

DSTRIP(9, 'A HAZRETE, 'H', A9

For &4 HAABEE, the result is AAABEE.

DSUBSTR: Extracting a Substring

Syntax:

If your configuration uses a DBCS code page, you can use the DSUBSTR function to extract a
substring based on its length and position in the source string.

How to Extract a Substring
DSUBSTR(/ nl/ engt h, source_string, start, end, sublength, output)

where:

i nl ength
Integer

Is the length of the source string in bytes, or a field that contains the length. The string can
have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents
the maximum number of characters possible in the source string.

source_string
Alphanumeric

Is the string from which the substring will be extracted enclosed in single quotation marks
("), or the field containing the parent string.

Using Functions 221

JPTRANS: Converting Japanese Specific Characters

Example:

start
Integer

Is the starting position (in number of characters) of the substring in the source string. If
this argument is less than one or greater than end, the function returns spaces.

end
Integer

Is the ending position (in number of characters) of the substring. If this argument is less
than start or greater than inlength, the function returns spaces.

subl engt h
Integer

Is the length of the substring, in characters (normally end - start + 1). If sublength is longer
than end - start +1, the substring is padded with trailing spaces. If it is shorter, the
substring is truncated. This value should be the declared length of output. Only sublength
characters will be processed.

out put
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks (').
Extracting a Substring

The following example extracts the 3-character substring in positions 4 through 6 from a 15-
byte string of characters:

DEUBSTEL 15, 'daltiDuxeddo’, 4, 6, 3, 'A10Y
The resultis 1771,

JPTRANS: Converting Japanese Specific Characters

222

The JPTRANS function converts Japanese specific characters.

Information Builders

8. Character Functions for DBCS Code Pages I

Syntax: How to Convert Japanese Specific Characters

JPTRANS (' type _of _conversion , |ength, source_string, 'output_fornat')

where:

type of_conversion

Using Functions

Is one of the following options indicating the type of conversion you want to apply to
Japanese specific characters. The following table shows the single component input types:

Conversion Type

Description

" UPCASE' Converts Zenkaku (Fullwidth) alphabets to Zenkaku uppercase.
' LOCASE Converts Zenkaku alphabets to Zenkaku lowercase.

" HNZNAL PHA' Converts alphanumerics from Hankaku (Halfwidth) to Zenkaku.
" HNZNSI GN Converts ASCIl symbols from Hankaku to Zenkaku.

" HNZNKANA' Converts Katakana from Hankaku to Zenkaku.

" HNZNSPACE' Converts space (blank) from Hankaku to Zenkaku.

" ZNHNALPHA Converts alphanumerics from Zenkaku to Hankaku.

" ZNHNSI GN Converts ASCII symbols from Zenkaku to Hankaku.

" ZNHNKANA' Converts Katakana from Zenkaku to Hankaku.

" ZNHNSPACE' Converts space from Zenkaku to Hankaku.

" HI RAKATA' Converts Hiragana to Zenkaku Katakana.

" KATAH RA Converts Zenkaku Katakana to Hiragana.

' 930TMR39" Converts codepage from 930 to 939.

' 939TR30' Converts codepage from 939 to 930.

223

JPTRANS: Converting Japanese Specific Characters

/engt h
Integer

Is the number of characters in the source_string.
source_string
Alphanumeric

Is the string to convert.
out put _for nat
Alphanumeric

Is the name of the field that contains the output, or the format enclosed in single
quotation marks (').

Example: Using the JPTRANS Function
JPTRANS(' UPCASE', 20, Al pha_DBCS Field, 'A20')

For a b o, theresultizs AB .
JPTRANS(' LOCASE', 20, Al pha_DBCS Field, 'A20")

For AE O, theresultiz a b c.

JPTRANS(' HNZNALPHA' , 20, Al pha_SBCS Field, 'A20')
For 2aBbCcl23 theresultis A aBb Cc 1 2 3

JPTRANS(' HNZNSI GN', 20, Synbol SBCS Field, 'A20')

For !@$%,.?, the resultis | @$ %, . ?

JPTRANS(' HNZNKANA' , 20, Hankaku_Kat akana_Fi el d, ' A20")

For [A" =24 -}), theresultis "R—ZAR—J.

JPTRANS(' HNZNSPACE' , 20, Hankaku_Kat akana_Fi el d, 'A20")

For F4 7 theresultis 7 4 9

JPTRANS(' ZNHNALPHA' , 20, Al pha_DBCS Field, 'A20')

For AaBbCc 1 23, theresultis AaBbCc123.

224 Information Builders

8. Character Functions for DBCS Code Pages I

Reference:

JPTRANS(' ZNHNSI GN', 20, Synbol DBCS Field, 'A20")

For | @%$%. - 7,theresultis (@$%,.?

JPTRANS(' ZNHNKANA' , 20, Zenkaku_Kat akana_Field, 'A20")

For 'R—AR—JL. J ,theresultis [A" -25" -},]

JPTRANS(' ZNHNSPACE' , 20, Zenkaku_Kat akana_Field, 'A20")

For 7 A "7 theresultis 7 A 7

JPTRANS(' HI RAKATA', 20, Hiragana Field, 'A20")

For & W2, the resultis 7 "7

JPTRANS(' KATAHI RA' , 20, Zenkaku_Kat akana_Field, 'A20")

For ¥ - 77, the resultis & W >

In the following, codepoints 0x62 0x63 0x64 are converted to Ox81 Ox82 Ox83, respectively:
JPTRANS(' 930TM939', 20, CP930_Field, 'A20")

In the following, codepoints 0x59 0x62 0x63 are converted to Ox81 0x82 Ox83, respectively:
JPTRANS(' 939T(M930', 20, CP939 Field, 'A20')

Usage Notes for the JPTRANS Function
.d HNZNSIGN and ZNHNSIGN focus on the conversion of symbols.

Many symbols have a one-to-one relation between Japanese Fullwidth characters and ASCII
symbols, whereas some characters have one-to-many relations. For example, the Japanese
punctuation character (U+3001) and Fullwidth comma , (U+FFOC) will be converted to the

same comma , (U+002C). The following EXTRA rule for those special cases is shown below:

HNZNSIGN:
4 Double Quote " (U+0022) -> Fullwidth Right Double Quote ” (U+201D)
4 Single Quote ' (U+0027) -> Fullwidth Right Single Quote ’ (U+2019)

4 Comma , (U+002C) -> Fullwidth Ideographic Comma (U+3001)

Using Functions 225

JPTRANS: Converting Japanese Specific Characters

226

Full Stop . (U+0O02E) -> Fullwidth Ideographic Full Stop ? (U+3002)
Backslash \ (U+005C) -> Fullwidth Backslash \ (U+FF3C)
Halfwidth Left Corner Bracket (U+FF62) -> Fullwidth Left Corner Bracket (U+300C)

Halfwidth Right Corner Bracket (U+FF63) -> Fullwidth Right Corner Bracket (U+300D)

L U U U L

Halfwidth Katakana Middle Dot ? (U+FF65) -> Fullwidth Middle Dot - (U+30FB)
ZNHNSIGN:

Fullwidth Right Double Quote ” (U+201D) -> Double Quote " (U+0022)
Fullwidth Left Double Quote “ (U+201C) -> Double Quote " (U+0022)
Fullwidth Quotation " (U+FFO2) -> Double Quote " (U+0022)

Fullwidth Right Single Quote ’ (U+2019) -> Single Quote ' (U+0027)
Fullwidth Left Single Quote ‘ (U+2018) -> Single Quote ' (U+0027)
Fullwidth Single Quote ' (U+FFO7) -> Single Quote ' (U+0027)
Fullwidth ldeographic Comma (U+3001) -> Comma , (U+002C)
Fullwidth Comma , (U+FFOC) -> Comma , (U+002C)

Fullwidth Ideographic Full Stop ? (U+3002) -> Full Stop . (U+002E)
Fullwidth Full Stop . (U+FFOE) -> Full Stop . (U+002E)

Fullwidth Yen Sign ¥ (U+FFE5) -> Yen Sign ¥ (U+00A5)

Fullwidth Backslash \ (U+FF3C) -> Backslash \ (U+005C)

Fullwidth Left Corner Bracket (U+300C) -> Halfwidth Left Corner Bracket (U+FF62)

Fullwidth Right Corner Bracket (U+300D) -> Halfwidth Right Corner Bracket (U+FF63)

L v v v v v v U v v v U ouwou oL

Fullwidth Middle Dot - (U+30FB) -> Halfwidth Katakana Middle Dot - (U+FF65)

HNZNKANA and ZNHNKANA focus on the conversion of Katakana

They convert not only letters, but also punctuation symbols on the following list:

d Fullwidth Ideographic Comma (U+3001) <-> Halfwidth Ideographic Comma (U+FF64)

Information Builders

8. Character Functions for DBCS Code Pages I

. Fullwidth Ideographic Full Stop (U+3002) <-> Halfwidth Ideographic Full Stop (U+FF61)
4 Fullwidth Left Corner Bracket (U+300C) <-> Halfwidth Left Corner Bracket (U+FF62)

.4 Fullwidth Right Corner Bracket (U+300D) <-> Halfwidth Right Corner Bracket (U+FF63)
1 Fullwidth Middle Dot - (U+30FB) <-> Halfwidth Katakana Middle Dot - (U+FF65)

.4 Fullwidth Prolonged Sound (U+30FC) <-> Halfwidth Prolonged Sound (U+FF70)

JPTRANS can be nested for multiple conversions.

For example, text data may contain fullwidth numbers and fullwidth symbols. In some
situations, they should be cleaned up for ASCIl numbers and symbols.

For /N2 d77# 1 2 3, theresultis /N2, J77#123

JPTRANS(' ZNHNALPHA' , 20, JPTRANS(' ZNHNSI GN', 20, Symbol DBCS Fi el d,
"A20'), ' A20')

HNZNSPACE and ZNHNSPACE focus on the conversion of a space (blank character).

Currently only conversion between U+0020 and U+3000 is supported.

KKFCUT: Truncating a String

Syntax:

Using Functions

If your configuration uses a DBCS code page, you can use the KKFCUT function to truncate a
string.

How to Truncate a String
KKFCUT(/ engt h, source_string, output)

where:

/ engt h

Integer

Is the length of the source string in bytes, or a field that contains the length. The string can
have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents
the maximum number of characters possible in the source string.

source_string

Alphanumeric

Is the string that will be truncated enclosed in single quotation marks ('), or the field
containing the string.

227

SFTDEL: Deleting the Shift Code From DBCS Data

out put
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks (').

The string will be truncated to the number of bytes in the output field.

Example: Truncating a String

In the following, KKFCUT truncates the COUNTRY field (up to 10 bytes long) to A4 format:
COUNTRY_CUT/ A4 = KKFCUT(10, COUNTRY, 'A4'):

The output in ASCII environments is shown in the following image:

E& COUNTRY_CUT
AFYR AF
B B
ARUT AR
oy o

T SA 77

The output in EBCDIC environments is shown in the following image:

EE COUNTRY_CUT
SEJR A
HAE H
4 HRYT T
Fqy F
T 7

SFTDEL: Deleting the Shift Code From DBCS Data

If your configuration uses a DBCS code page, you can use the SFTDEL function to delete the
shift code from DBCS data.

228 Information Builders

8. Character Functions for DBCS Code Pages I

Syntax: How to Delete the Shift Code From DBCS Data
SFTDEL(source_string, [|ength, output)

where:

source_string
Alphanumeric

Is the string from which the shift code will be deleted enclosed in single quotation marks
("), or the field containing the string.

/ engt h
Integer

Is the length of the source string in bytes, or a field that contains the length. The string can
have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents
the maximum number of characters possible in the source string.

out put
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks (').

Example: Deleting the Shift Code From a String

In the following, SFTDEL deleted the shift code from the COUNTRY field (up to 10 bytes long):
COUNTRY_DEL/ A10 = SFTDEL(COUNTRY, 10, 'Al10');

The output in ASCII environments is shown in the following image:

B COUNTRY_DEL
AFJR AFUR
B B
ARJT ARUT
Y Y

FTAA FTAA

Using Functions 229

SFTINS: Inserting the Shift Code Into DBCS Data

The output in EBCDIC environments is shown in the following image:

E# COUNTREY_DEL
AT [hlATATR
H7A A0
A&7 [blilila
Rt [Thl1
T2z THEITITZ

SFTINS: Inserting the Shift Code Into DBCS Data
If your configuration uses a DBCS code page, you can use the SFTINS function to insert the
shift code into DBCS data.

Syntax: How to Insert the Shift Code Into DBCS Data

SFTINS(source_string, [ength, output)

where:

source_string
Alphanumeric

Is the string into which the shift code will be inserted enclosed in single quotation marks
("), or the field containing the string.

/ engt h
Integer

Is the length of the source string in bytes, or a field that contains the length. The string can
have a mixture of DBCS and SBCS characters. Therefore, the number of bytes represents
the maximum number of characters possible in the source string.

out put
Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed in
single quotation marks (').
Example: SFTINS: Inserting the Shift Code Into a String

In the following example, SFTINS inserts the shift code into the COUNTRY_DEL field (which is
the COUNTRY field with the shift code deleted):

COUNTRY_I NS/ AL10 = SFTI NS(COUNTRY_DEL, 10, 'A10');

230 Information Builders

8. Character Functions for DBCS Code Pages I

The output displays the original COUNTRY field, the COUNTRY_DEL field with the shift code
deleted, and the COUNTRY_INS field with the shift code re-inserted.

The output in ASCII environments, is shown in the following image:

E+
AF1) 2
B
AR T
o
A

Using Functions

COUNTRY_DEL ~ COUNTRY_INS

B B
AR)7 ARUT
A A
T T

[bIATATZ 4] R
AN H
(bl jlAla Y-
[Tkl R
EdNAREE Wwhr

231

SFTINS: Inserting the Shift Code Into DBCS Data

232 Information Builders

Chapter

Maintain-specific Character Functions

Character functions manipulate alphanumeric fields or character strings. The functions in
this topic are available only in the WebFOCUS Maintain language. There are additional
character functions that are available in both the reporting and Maintain languages. For
information on these functions, see Character Functions on page 149.

In this chapter:

i

|

CHAR2INT: Translating a Character Into
an Integer Value

INT2CHAR: Translating an Integer Value
Into a Character

LCWORD and LCWORD2: Converting a
Character String to Mixed-Case

LENGTH: Determining the Length of a
Character String

LJUST: Left-Justifying a Character String
(Maintain)

LOWER: Converting a Character String to
Lowercase

MASK: Extracting or Adding Characters

MNTGETTOK: Extracting Tokens From a
String Function

NLSCHR: Converting Characters From
the Native English Code Page

OVRLAY: Overlaying a Character String
(Maintain)

POSIT: Finding the Beginning of a
Substring (Maintain)

1

RJUST: Right-Justifying a Character
String (Maintain)

SELECTS: Decoding a Value From a
Stack

STRAN: Substituting One Substring for
Another

STRCMP: Comparing Character Strings

STRICMP: Comparing Character Strings
and Ignoring Case

STRNCMP: Comparing Character
Substrings

STRTOKEN: Extracting a Substring Based
on Delimiters

SUBSTR: Extracting a Substring
(Maintain)

TRIM: Removing Trailing Occurrences
(Maintain)

TRIMLEN: Determining the Length of a
String Excluding Trailing Spaces

UPCASE: Converting Text to Uppercase
(Maintain)

Using Functions

233

CHAR2INT: Translating a Character Into an Integer Value

CHAR2INT: Translating a Character Into an Integer Value
The CHAR2INT function translates an ASCIl or EBCDIC character to the integer value it
represents, depending on the operating system.

Syntax: How to Translate a Character Into an Integer Value

CHAR2I NT(" character")

where:
character

Is the ASCII or EBCDIC character to translate into its integer value.

Example: Translating a Character Into an Integer Value

CHARZ2INT translates the character X into its integer equivalent.

MAI NTAI' N

I NT/ 1 3=CHAR2I NT(" X");
type "INT IS <I NT";
END

On an ASCII platform, the integer value would be 120.
On an EBCDIC platform, the integer value would be 231.

INT2CHAR: Translating an Integer Value Into a Character
The INT2CHAR function translates an integer into the equivalent ASCII or EBCDIC character,
depending on the operating system.

Syntax: How to Translate an Integer Value Into a Character

I NT2CHAR(val ue)

where:
val ue

Is the integer to translate into its equivalent ASCII or EBCDIC character.

Example: Translating an Integer Value Into a Character

INT2CHAR translates the integer value 93 into its character equivalent.

MAI NTAI N
CHAR/ Al=I NT2CHAR(93) ;
TYPE "CHAR | S <CHAR';
END

234 Information Builders

9. Maintain-specific Character Functions I

On an ASCII platform, the result would be a right bracket (]). On an EBCDIC platform, the result
would be a right parenthesis.

LCWORD and LCWORD2: Converting a Character String to Mixed-Case

Syntax:

The LCWORD and LCWORD2 functions convert the letters in a character string to mixed-case.
These functions convert character strings in the following way:

.d LCWORD. Converts every alphanumeric character to lowercase except the first letter of
each new word and the first letter after a single or double quotation mark. For example,
O'CONNOR is converted to O'Connor and JACK'S to Jack'S.

If LCWORD encounters a number in the character string, it treats it as an uppercase
character and continues to convert the following alphabetic characters to lowercase.

4 LCWORD2. Converts every alphanumeric character to lowercase except the first letter of
each new word. LCWORD?2 leaves any character after a single quotation mark as upper
case, except that when there is at least one non-blank character before the quote and just
one character followed by either the end of the string or a space immediately after the
quote, the next letter is converted to lowercase. For example, 'O’'CONNOR' would be
changed to 'O’Connor,' and JACK'S would be changed to Jack's.

To use these functions, you must import the function library MNTUWS. For information on
importing this library, see Accessing and Calling a Function on page 61.

There is also an LCWORD function available for both the reporting and Maintain languages. For
information on this function, see Character Functions on page 149.

How to Convert a Character String to Mixed-Case
{ LOWORD| LCWORD2} (st ri ng)

where:
string
Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

Using Functions 235

LENGTH: Determining the Length of a Character String

Example:

Converting a Character String to Mixed-Case

LCWORD and LCWORD2 convert the string O'CONNOR to mixed-case:

MAI NTAI N FI LE CAR

MODULE | MPORT (MNTUWS)

COVPUTE MYVAL1/ A10=" 0O CONNCR';
COVPUTE LC1/ A10 = LCWORD(MYVAL1)
COVPUTE LC2/ A10 = LCWORD2(MYVAL1)
TYPE "<<MYVAL1 <<LCl <<LC2"

END

The output is:
MYVAL1 LC1 LC2

O CONNOR O Connor O connor

LENGTH: Determining the Length of a Character String

Syntax:

Example:

236

The LENGTH function determines the length of a character string, including trailing spaces.
How to Determine the Length of a Character String
LENGTH(st ri ng)

where:

string
Alphanumeric
Is the character string whose length is to be found, or a temporary field that contains the
string.

Determining the Length of a Character String

LENGTH determines the length of a variable in COUNTRY:

MAI NTAI N FI LE CAR
MODULE | MPORT (MNTUWS)

NEXT COUNTRY | NTO STK1

COVPUTE LEN | 3 = LENGTH(STK1(1). COUNTRY)
TYPE "<STK1(1). COUNTRY HAS A LENGTH OF <<LEN'
END

The result is:

ENGLAND HAS A LENGTH OF 10

Information Builders

9. Maintain-specific Character Functions I

LJUST: Left-Justifying a Character String (Maintain)

The LJUST function left-justifies a character string within a field. All leading spaces are
removed.

LJUST will not have any visible effect in a report that uses StyleSheets (SET STYLE=ON) unless
you center the item.

To use this function, you must import the function library MNTUWS. For information on
importing this library see Accessing and Calling a Function on page 61.

There is also an LJUST function available for the reporting language. For information on this
function, see Character Functions on page 149.

Syntax: How to Left-Justify a Character String
LIJUST(st ring)
where:
string
Alphanumeric
Is the character string to be justified, or a temporary field that contains the string.
LOWER: Converting a Character String to Lowercase

The LOWER function converts a character string to lowercase.

To use this function, you must import the function library MNTUWS. For more information on
importing this library see Accessing and Calling a Function on page 61.

Syntax: How to Convert a Character String to Lowercase
LONER(st ri ng)

where:
string
Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

Using Functions 237

MASK: Extracting or Adding Characters

MASK: Extracting or Adding Characters

Syntax:

Example:

238

The MASK function extracts characters from or adds characters to an alphanumeric string. It
can extract a substring from different parts of the parent string, and can insert characters from
a parent string into another substring. For example, it can extract the first two characters and
the last two characters of a string to form a single substring.

MASK works by comparing the characters in a mask to the characters in a source field. When
it encounters a 9 in the mask, MASK copies the corresponding character from the source field
to the new field. When it encounters a dollar sign in the mask, MASK ignores the
corresponding character in the source field. When it encounters any other character in the
mask, MASK copies that character to the corresponding position in the new field.

MASK replaces the masking functionality of the EDIT function that is available in the reporting
language.
How to Extract or Add Characters

MASK(f7 el dname, ' nask')

where:
fiel dname

Is the source field.
mask

Is a character string enclosed in single quotation marks, or a temporary field that contains
the string.

Extracting a Character From a Field

MASK extracts the first initial from the FIRST_NAME field:

MASK(FI RST_NAME, ' 9$$$$$$$$$")

The following are sample values for FIRST_NAME and the values for the result of the MASK
function:

FIRST_NAME MASK_FI RST_NAME
MARY

DI ANE D

JOHN J

ROSEMARI E R

MARY M

BARBARA B

Information Builders

9. Maintain-specific Character Functions I

Example: Adding Dashes to a Field

MASK adds dashes to the EMP_ID field:

MASK(EMP_I D,

' 999-99-9999')

The following are sample values for EMP_ID and the values for the result of the MASK function:

112847612
117593129
219984371
326179357
543729165
818692173

MNTGETTOK: Extracting Tokens From a String Function

MASK_EMP_I D
112- 84- 7612
117- 59- 3129
219- 98- 4371
326- 17- 9357
543-72- 9165
818- 69- 2173

The Maintain function MNTGETTOK divides a character string into substrings, called tokens. In

order to use MNTGETTOK, the data must have a specific character called a delimiter that
occurs in the string and separates the string into tokens. MNTGETTOK returns the token
specified by the token_number argument.

For example, you can use MNTGETTOK to extract individual values from a list separated by
semi-colons, by designating the semi-colon as the delimiter.

To use this function, you must import the function library MNTUWS.

Note:

-1 The Maintain function called strtoken() returns only the first token from a string.

4 MNTGETTOK can work with variable length character strings (format AO).

Syntax: How to Extract a Substring (Token)

Modul e | nport (Mt uws)

MNTGETTOK(/ nfi el d, "del i n’', t oken_nunber)

where:
infield

Alphanumeric

Is the field containing the original character string or a character string enclosed in single
or double quotation marks.

delim

Alphanumeric

Using Functions

239

MNTGETTOHK: Extracting Tokens From a String Function

Example:

240

Is the delimiter in the parent string enclosed in single or double quotation marks. If you
specify more than one character, only the first character is used. The delimiter is not
included in the token.

t oken_number
Integer

Is the number of the token to extract. If this argument is positive, the tokens are counted
from left to right. If this argument is negative, the tokens are counted from right to left. For
example, -2 extracts the second token from the right. If this argument is O, the function
returns spaces.

Extracting Tokens From a String

MNTGETTOK extracts tokens from the variable length character string SKILLSTRING and stores
the result in the variable length character string TOKENX. The delimiter is a blank space. The
token number is based on the value of the counter variable i, which increments with each pass
through the Repeat loop:

MAI NTAI N

MODULE | MPORT(MNTUWS)

SKI LLSTRI NG A0="Typi ng Steno Filing Bkkpi ng"

COWUTE i/i2 =1

TYPE "Job skills required are:"

REPEAT 6

COVPUTE TOKENX/ AO=MNTCGETTOK(SKI LLSTRING, ' ', i);
TYPE " <<TOKENX";

COVPUTE i = i+1;

ENDREPEAT

END

The output is:

Job skills required are:
Typi ng

St eno

Filing

Bkkpi ng

Information Builders

9. Maintain-specific Character Functions I

Example:

Extracting the Zip Code From an Address

The following procedure against the EMPLOYEE data source retrieves the EMPINFO segment
and the first instance of ADDRESS_LN3 for each employee, then extracts the last token (zip

code) from ADDRESS_LN3:

MAI NTAI N FI LE EMPLOYEE
MODULE | MPORT(MNTUWB)

REPEAT ALL;

NEXT EMP_ID | NTO ESTACK

| F FOCFETCH NE 0 THEN GOTO EXI TREPEAT;
NEXT ADDRESS_LN3 | NTO ASTACK

TYPE " <<ESTACK. FI RST_NAME <<ESTACK. LAST_NANE";

TYPE " <<ASTACK. ADDRESS LN3";

COWPUTE ZI P/ AO=MNTCETTOK(ASTACK. ADDRESS LN3,
TYPE "ZIP CODE | S <<ZI P";

TYPE " ",

ENDREPEAT

END

Using Functions

-1);

241

NLSCHR: Converting Characters From the Native English Code Page

NLSCHR: Converting Characters From the Native English Code Page

242

The output is:

ALFRED STEVENS
NEW YORK NY 10001
ZI P CODE I'S: 10001

MARY SM TH
NEW YORK NY 10001
ZI P CCDE | S: 10001

DI ANE JONES
NEW YORK NY 10001
ZI P CCDE | S: 10001

RI CHARD SM TH
NEW YORK NY 10001
ZI P CODE I'S: 10001

JOHN BANNI NG
FREEPORT NY 11520
ZI P CODE I'S: 11520

JOAN I RVI NG
NEW YORK NY 10001
ZI P CODE I'S: 10001
ANTHONY ROVANS
NEW YORK NY 10001
ZI P CODE I'S: 10001

JOHN MCCOY
NEW YORK NY 10001
ZI P CCDE | S: 10001

ROSEMARI E BLACKWOOD
NEW YORK NY 10001
ZI P CCDE | S: 10001

ROGER MCKNI GHT
NEW YORK NY 10001
ZI P CODE I'S: 10001

MARY GREENSPAN
NEW YORK NY 10001
ZI P CODE |I'S: 10001

BARBARA CRGSS
NEW YORK NY 10001
ZI P CODE |I'S: 10001

NLSCHR converts a character from the native English code page to the running code page. This
is useful when hosting Web applications on an EBCDIC host with non-English code pages.

Information Builders

9. Maintain-specific Character Functions I

Syntax:

Example:

How to Convert Characters From the Native English Code Page
NLSCHR(" char act er")

where:
character

Is the character being converted from the native English code page.

Converting Characters From the Native English Code Page

NLSCHR forces the dollar sign to appear whenever the variable ADOLLAR is used, regardless
of the code page being run.

MAI NTAI N
ADOLLAR/ A1I=NLSCHR("$") ;

END

OVRLAY: Overlaying a Character String (Maintain)

Syntax:

The OVRLAY function overlays a base character string with a substring.

To use this function, you must import the function library MNTUWS. For information on
importing this library, see Accessing and Calling a Function on page 61.

There is also an OVRLAY function available for the reporting language. For information on this
function, see Character Functions on page 149.

How to Overlay a Character String
OVRLAY(stringl, string2, position)

where:
stringl

Alphanumeric

Is the base character string.
string2

Alphanumeric

Is the substring that will overlay string1.

Using Functions 243

POSIT: Finding the Beginning of a Substring (Maintain)

Example:

posi tion
Integer

Is the position in the base string at which the overlay begins.

Overlaying a Character String

OVRLAY replaces the letters MCA in the MOVIECODE field with MHD:

MAI NTAI' N FI LE novi es
Modul e I mport (Mt uws) ;
Case Top
I nfer novi ecode into MCASTK
Comput e MCASTK. NEWCODE/ A6;
For all next Moviecode into stkl
Stack copy from stkl into MCASTK
wher e novi ecode contains ' MCA';
Conpute i/i2=1;
Type "Original Code New Code"
repeat ntastk. Foccount
Conput e MCASTK(i).Newcode = OVRLAY (MCASTK (I) .MOVIECODE, 'MHD', 4);

Type " <<MCASTK(i). novi ecode <<MCASTK(|) . NEWCODE"
Conput e i =i +1;

endr epeat

EndCase

END

The following are sample values for MOVIECODE and the values for the result of the OVRLAY
function:

Oi gi nal Code New Code

001MCA 001MHD
081MCA 081MHD
082MCA 082MHD
161MCA 161MHD
196 MCA 196vHD
530MCA 530MHD
550MCA 550MHD
883MCA 883MHD

POSIT: Finding the Beginning of a Substring (Maintain)

244

The POSIT function finds the starting position of a substring within a larger string. For example,
the starting position of the substring DUCT in the string PRODUCTION is 4. If the substring is
not in the parent string, the function returns the value O.

To use this function, you must import the function library MNTUWS. For information on
importing this library see Accessing and Calling a Function on page 61.

There is also a POSIT function available for the reporting language. For information on this
function, see POSIT: Finding the Beginning of a Substring on page 181.

Information Builders

9. Maintain-specific Character Functions I

Syntax:

Example:

How to Find the Beginning of a Substring
PCSI T(parent, substring)

where:
parent

Alphanumeric

Is the parent string.
substring

Alphanumeric

Is the substring for which to find the position.

Finding the Beginning of a Substring

POSIT displays all movie titles containing the word ROOF and the starting position of the ROOF
string:

MAI NTAI N FI LE novi es
Modul e | mport (Mt uws);
Case Top
For all next Mviecode into stkl
Wiere Title Contains ' ROOF ;
Conpute i/i2=1;
type " Title Start Position of word ROOF"
repeat stkl.Foccount
Comput e STK1(i).POS/ |3 = POSIT(STK1(I).TITLE, 'ROOF');
Type " <STK1(i).Title <<STK1(l).pos"
Conput e i =i +1;
endr epeat
EndCase
END

The following are sample values for MOVIECODE and values for the result of the POSIT
function:
Title Start Position of word ROOF

FI DDLER ON THE ROOF 16
CAT ON A HOT TI'N ROCOF 18

RJUST: Right-Justifying a Character String (Maintain)

The RJUST function right-justifies a character string. All trailing blanks become leading blanks.
This is useful when you display alphanumeric fields containing numbers.

RJUST does not have any visible effect in a report that uses StyleSheets (SET STYLE=ON)
unless you center the item. Also, if you use RJUST on a platform on which StyleSheets are
turned on by default, issue SET STYLE=OFF before running the request.

Using Functions 245

SELECTS: Decoding a Value From a Stack

Syntax:

There is also an RJUST function available for the reporting language. For information on this
function, see RJUST: Right-Justifying a Character String on page 184.

How to Right-Justify a Character String
RIUST(string, [ength, char)

where:
string

Is the character string, or a temporary field that contains the string.
/ engt h

Is the length, in characters, of the result. If this argument is less than the length of string,
RJUST trims string from right to left. If this argument is zero, RJUST returns a variable
length string of length zero.

char

Is the character with which to pad the character string and rightjustify it. RJUST uses char
only when length is greater than the length of string.

SELECTS: Decoding a Value From a Stack

Syntax:

246

The SELECTS function decodes a value from a stack.
How to Decode a Value From a Stack
target SELECTS (code, result, code, result, ... [ELSE default])

where:
target

Is a valid expression. It can be either a field name or a variable that resolves to a single
stack cell.

code

Is the value for which SELECTS searches. Once the value is found, the input expression is
assigned the corresponding result. The comma between the code and result is optional.

resul t

Is the value assigned when the input expression has the corresponding code.

Information Builders

9. Maintain-specific Character Functions I

Example:

Example:

def aul t
Is the value to be assigned if the code is not found among the list of codes. If the default
is omitted, a space or zero is assigned to non-matching codes.

Decoding Values With SELECTS

The following computes a user-defined field based on the values in a stack:

COWPUTE Square = Stk(Cnt).Nunmber SELECTS (1 1, 2 4, 3 9);

Because SELECTS is a binary operator, it can also be used in an expression:

COWPUTE Square_Plus = Stk(Cnt).Nunber SELECTS (1 1, 2 4, 3 9) +1;

Decoding a Value From a Stack

The following example uses MASK to extract the first character of the field CURR_JOBCODE in
the EMPLOYEE file. Then SELECTS creates a value for the field JOB_CATEGORY:

MAI NTAI N FI LE Enpl oyee

Case Top
FOR ALL NEXT EMPI NFO EMP_I D | NTO EnpSt ack;
COWPUTE
DEPX_CODE/ Al = MASK(EnpSt ack() . CURR_JOBCCDE, ' 9%$') ;

JOB_CATEGORY/ A15 = DEPX CODE SELECTS (A 'ADMINISTRATIVE'
B 'DATA PROCESSING') ;
EndCase
END

The following table shows sample values for CURR_JOBCODE and the corresponding values for
JOB_CATEGORY:

CURR_JOBCODE JOB_CATEGORY

A0l ADM NI STRATI VE
AO07 ADM NI STRATI VE
Al5 ADM NI STRATI VE
Al7 ADM NI STRATI VE
B02 DATA PROCESSI NG
B03 DATA PROCESSI NG
BO4 DATA PROCESSI NG
B14 DATA PROCESSI NG

STRAN: Substituting One Substring for Another

The STRAN function substitutes a substring for another substring in a character string. STRAN
enables you to edit part of a character string without replacing the field entirely.

To use this function, import the function library MNTUWS. For more information on importing
this library see Calling a Function on page 61.

Using Functions 247

STRAN: Substituting One Substring for Another

Syntax: How to Substitute a Substring
STRAN(st ring, substrl, substr?)

where:
string
Alphanumeric

Is the character string into which you want to substitute one substring for another, or a
temporary field that contains the string.

substri

Alphanumeric

Is the substring to replace.
substr2

Alphanumeric

Is the substring to insert in place of substrl.

Example: Substituting One String for Another

STRAN replaces the word DOOR with the word Seater in the MODEL field:

MAI NTAI N FI LE CAR

MODULE | MPORT (MNTUWS) ;

FOR ALL NEXT COUNTRY CAR MODEL | NTO XSTK
VWHERE MODEL CONTAI NS ' DOOR

COVPUTE XSTK. NEWMODY A24;

COVPUTE | /1 2=1;

REPEAT XSTK. FOCCOUNT
COVPUTE XSTK(|) . NEWMOD=STRAN (XSTK (I) .MODEL, 'DOOR', ' SEATER');
TYPE "<<XSTK(Il).CAR <<XSTK(I).MODEL <<XSTK(I).NEWDOD'
COWPUTE | =I +1;

ENDREPEAT

END

248 Information Builders

9. Maintain-specific Character Functions I

The following are sample values for MODEL and values for the result of the STRAN function:

CAR MODEL STRAN

PEUGECT 504 4 DOCR 504 4 SEATER

ALFA ROMEO 2000 4 DOOR BERLI NA 2000 4 SEATER BERLI NA
MASERATI DORA 2 DOCR DORA 2 SEATER

DATSUN B210 2 DOOR AUTO B210 2 SEATER AUTO
TOYCOTA COROLLA 4 DOOR DI X AUTO COROLLA 4 SEATER DI X AUT
AUDI 100 LS 2 DOCR AUTO 100 LS 2 SEATER AUTO
BMWV 2002 2 DOOR 2002 2 SEATER

BMWV 2002 2 DOCR AUTO 2002 2 SEATER AUTO
BMWV 3.0 SI 4 DOCOR 3.0 SI 4 SEATER

BMWV 3.0 SI 4 DOOR AUTO 3.0 SI 4 SEATER AUTO
BMWV 5301 4 DOOR 5301 4 SEATER

BMWV 5301 4 DOCR AUTO 5301 4 SEATER AUTO

STRCMP: Comparing Character Strings

Syntax:

Example:

The STRCMP function compares two character strings using the EBCDIC or ASCII collating
sequence.

. If the first string is less than the second string, STRCMP returns a negative value.
. If the first string is greater than the second string, STRCMP returns a positive value.

. If the first string is equal to the second string, STRCMP returns zero.

How to Compare Character Strings
STRCVP(st ringl, string2)

where:
stringl, string2
Alphanumeric

Are the strings to compare, or temporary fields that contain the strings.

Comparing Character Strings

STRCMP compares the length of two fields:

MAI NTAI'N

COVPUTE STR1/ A20 "STRING IS LONG ;
STR2/ A20 = ' STRING | S LONGER ;

COVPUTE DI F/ | 3= STRCMP (STR1, STR2);

TYPE " STR1 <<STR1"

TYPE " STR2 <<STR2"

Using Functions 249

STRICMP: Comparing Character Strings and Ignoring Case

0 THEN TYPE "STR2 | S GREATER THAN STR1"
F GI' 0 THEN TYPE "STR2 | S LESS THAN STR1"
F EQ O THEN TYPE "STR2 EQUALS STR1"

COVPUTE STR3/ A20 = ' STRI NG
STR4/ A20 = ' STRI NG

TYPE "STR3 = <<STR3"

TYPE "STR4 = <<STR4"

COVPUTE DI F= STRCMP (STR3, STRA4);

IF DIF LT O THEN TYPE "STR4 | S GREATER THAN STR3"

ELSE IF DIF GI' 0 THEN TYPE "STR4 | S LESS THAN STR3"

ELSE IF DIF EQ O THEN TYPE "STR4 EQUALS STR3"

TYPE " "

COWUTE DI F= STRCMP (STR1, STR4);

IF DIF LT O THEN TYPE "STR1 | S GREATER THAN STR4"

ELSE IF DIF GI' 0 THEN TYPE "STRL | S LESS THAN STR4"

ELSE |F DIF EQ O THEN TYPE "STR1 EQUALS STR4"

END

ONGEST"

IS L
IS LONG ;

The result is:

STR1 STRING | S LONG
STR2 STRING | S LONGER
STR2 IS GREATER THAN STR1

STR3 STRING | S LONGEST
STRA = STRING | S LONG
STR4 IS LESS THAN STR3

STR1 EQUALS STR4

STRICMP: Comparing Character Strings and Ignoring Case

250

The STRICMP function compares two character strings using the EBCDIC or ASCII collating

sequence, but ignores case differences.

. If the first string is less than the second string, STRICMP returns a negative value.

. If the first string is greater than the second string, STRICMP returns a positive value.

. If the first string is equal to the second string, STRICMP returns zero.

Information Builders

9. Maintain-specific Character Functions I

Syntax:

How to Compare Character Strings and Ignore Case
STRI CVP(st ringl, string2)

where:
stringl, string2
Alphanumeric

Are the strings to compare, or temporary fields that contain the strings.

STRNCMP: Comparing Character Substrings

Syntax:

The STRNCMP function compares a specified number of characters in two character strings
starting at the beginning of the strings using the EBCDIC or ASCII collating sequence.

. If the first string is less than the second string, STRNCMP returns a negative value.
. If the first string is greater than the second string, STRNCMP returns a positive value.

. If the first string is equal to the second string, STRNCMP returns zero.

How to Compare Character Substrings
STRNCNVP(st ringl, string2 nunber)

where:
stringl, string2

Alphanumeric

Are the strings that contain the substrings to compare.
nunber

Integer

Is the number of characters to compare in string1 and string2.

STRTOKEN: Extracting a Substring Based on Delimiters

The STRTOKEN function returns a substring, consisting of the characters of a string, from the
beginning of a string to a specified character, called a delimiter.

To use this function, you must import the function library MNTUWS. For more information on
importing this library see Calling a Function on page 61.

Using Functions 251

STRTOKEN: Extracting a Substring Based on Delimiters

Syntax: How to Extract a Substring
STRTOKEN(st ring, deliniters)

where:
string

Alphanumeric

Is the character string, or a variable that contains the string enclosed in double quotation

marks (").
delinmters

Alphanumeric

Is a character string, or variable enclosed in double quotation marks (") that contains a list
of delimiters. Separate the delimiters with semicolons.

Example: Extracting a Substring

STRTOKEN returns a substring of the first five STREET values in the VIDEOTRK data source

based on the delimiters period, space, or asterisk.

MAI NTAI N FI LE VI DEOTRK
MODULE | MPORT (MNTUWS) ;

FOR ALL NEXT CUSTID | NTO CSTACK ;
COVPUTE CNT/ 15 = 1;

TYPE " ";

REPEAT WHI LE CNT LE 5;

COWUTE SUBSTREET/ A20 = STRTOKEN (CSTACK (CNT)
<CSTACK(CNT) . STREET"

TYPE " STREET =

TYPE " SUBSTREET = <SUBSTREET "
COVPUTE CNT = CNT +1;

ENDREPEAT

END

The output is:

STREET = 86 ELLIOIT AVE.
SUBSTREET = 86

STREET = 7 DAVENPORT LA
SUBSTREET = 7

STREET = 8 MAGNOLI A LA
SUBSTREET = 8

STREET = 35 POVELL ST.
SUBSTREET = 35

STREET = 10 COW LA
SUBSTREET = 10

252

.STREET,".; ,*");

Information Builders

9. Maintain-specific Character Functions I

SUBSTR: Extracting a Substring (Maintain)

The SUBSTR function extracts a substring based on where it begins and its length in the
parent string. SUBSTR can vary the position of the substring depending on the values of other
fields.

There is also a SUBSTR function available for the reporting language. For information on this
function, see SUBSTR: Extracting a Substring on page 193.
Syntax: How to Extract a Substring

SUBSTR(string, start, [ength)

where:
string
Alphanumeric

Is the parent string enclosed in single quotation marks, or a field or variable containing the
character string.

start

Integer

Is the starting position of the substring in the parent string.
[engt h

Integer

Is the length, in characters, of the substring.

Example: Extracting the First Character of a String in Maintain

SUBSTR extracts the first letter of FIRST_NAME, combines it with LAST_NAME, and stores the
result in UID:

MAI NTAI N FI LE EMPLOYEE

CASE TOP

| NFER EMP_I D FI RST_NAME LAST_NAME | NTO ADDSTACK

COVPUTE Ul D/ A9 = SUBSTR(ADDSTACK(). FI RST_NAME, 1,1) ||
ADDSTACK() . LAST_NAME;

ENDCASE

END

Using Functions 253

TRIM: Removing Trailing Occurrences (Maintain)

The following table shows sample values for FIRST_NAME and LAST_NAME, and the
corresponding values for UID:

FI RST_NAME LAST_NAME u b

JOE SM TH JSM TH
SAM JONES SJONES
TERRI VWHI TE TWH TE

TRIM: Removing Trailing Occurrences (Maintain)
The TRIM function removes trailing occurrences of a pattern within a character string.

There is also a TRIM function available for the reporting language. For information on this
function, see TRIM: Removing Leading and Trailing Occurrences on page 195.

Syntax: How to Remove Trailing Occurrences
TRI M St ring)

where:
string
Alphanumeric
Is the character string enclosed in single quotation marks, or the field containing the
string.
TRIMLEN: Determining the Length of a String Excluding Trailing Spaces

The TRIMLEN function determines the length of a character string excluding trailing spaces.
Syntax: How to Determine the Length of a String Excluding Trailing Spaces
TRI MLEN (st ring)

where:
string
Alphanumeric

Is the string to be measured.

254 Information Builders

9. Maintain-specific Character Functions I

Example:

Determining the Length of a String Excluding Trailing Spaces

TRIMLEN determines the length of a field in COUNTRY excluding trailing blanks:

MAI NTAI N FI LE CAR

MODULE | MPORT (MNTUWG)

NEXT COUNTRY | NTO STK1

COVPUTE LEN | 3 = LENGTH(STK1(1). COUNTRY) ;

COVPUTE LEN2/ |3 = TRIMLEN (STK1(1) .COUNTRY);

TYPE "<STK1(1). COUNTRY HAS A LENGTH OF <LEN2 W THOUT TRAI LI NG BLANKS"
END

The result is:
ENGLAND HAS A LENGTH OF 7 W THOUT TRAI LI NG BLANKS

UPCASE: Converting Text to Uppercase (Maintain)

Syntax:

The UPCASE function converts a character string to uppercase. It is useful for sorting on a field
that contains both mixed-case and uppercase values. Sorting on a mixed-case field produces
incorrect results because the sorting sequence in EBCDIC always places lowercase letters
before uppercase letters, while the ASCII sorting sequence always places uppercase letters
before lowercase. To obtain correct results, define a new field with all of the values in
uppercase, and sort on that.

To use this function, you must import the function library MNTUWS. For information on
importing this library, see Calling a Function on page 61.

There is also an UPCASE function available for the reporting language. For information on this
function, see UPCASE: Converting Text to Uppercase on page 198.

How to Convert Text to Uppercase
UPCASE(st ri ng)

where:
string
Alphanumeric

Is the character string to be converted to uppercase.

Using Functions 255

UPCASE: Converting Text to Uppercase (Maintain)

256 Information Builders

Chapter

Data Source and Decoding Functions

Data source and decoding functions search for data source records, retrieve data source
records or values, and assign values based on the value of an input field.

The result of a data source function must be stored in a field. The result cannot be
stored in a Dialogue Manager variable.

For many functions, the output argument can be supplied either as a field name or as a
format enclosed in single quotation marks (‘). However, if a function is called from a
Dialogue Manager command, this argument must always be supplied as a format. If a
function is called from a Maintain Data procedure, this argument must always be
supplied as a field name. For detailed information about calling a function and supplying
arguments, see Accessing and Calling a Function on page 61.

In this chapter:

d CHECKMD5: Computing an MD5 Hash Check Value
CHECKSUM: Computing a Hash Sum

DB_EXPR: Inserting an SQL Expression Into a Request
DB_INFILE: Testing Values Against a File or an SQL Subquery
DB_LOOKUP: Retrieving Data Source Values

DECODE: Decoding Values

FIND: Verifying the Existence of a Value in a Data Source

LAST: Retrieving the Preceding Value

L U U U U v oo

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

CHECKMD5: Computing an MD5 Hash Check Value

CHECKMD?5 takes an alphanumeric input value and returns a 128-bit value in a fixed length
alphanumeric string, using the MD5 hash function. A hash function is any function that can be
used to map data of arbitrary size to data of fixed size. The values returned by a hash function
are called hash values. They can be used for assuring the integrity of transmitted data.

Using Functions 257

CHECKMDS5: Computing an MD5 Hash Check Value

Syntax:

Example:

258

How to Compute an MD5 Hash Check Value
CHECKNDS(buf fer)

where:

buffer
Is a data buffer whose hash value is to be calculated. It can be a set of data of different
types presented as a single field, or a group field in one of the following data type formats:
An, AnV, or TXn.

Calculating an MD5 Hash Check Value

The following request calculates an MD5 hash check value and converts it to an alphanumeric
hexadecimal value for display.

DEFI NE FI LE WF_RETAIL_LI TE
MD5/ A32 = HEXTYPE(CHECKMD5(PRODUCT _CATEGCRY)) ;
END
TABLE FILE WF_RETAIL_LITE
SUM MD5
BY PRODUCT CATEGORY
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, FONT=COUR! ER, $
ENDSTYLE
END

The output is shown in the following image. The monospaced font shows that although the
input values have varying length, the output has a fixed length.

Product

Category M5

lAccessories |98EDEESB00D9527ADSACERBE4S1B3FAEG
|camcorder |6122923BDD05C2231F81991B8D12A3A1
|computers |45888R4DA062F16A099ATFTC6CCLSEED
Media Player |D34BEA29F24AF9FDE2E10B3ELIDE5TCFY
|sterec Systems |3RASFFE9806E269ATEBN66AS4092F0A3
[Televisions |23B5BCY9DD2B4262 TEF64A4FCARABOB2|
[Video Production|[60913E95848330A2C4A5D921ET7CEBR14|

Information Builders

10. Data Source and Decoding Functions I

CHECKSUM: Computing a Hash Sum

Syntax:

Example:

CHECKSUM computes a hash sum, called the checksum, of its input parameter, as a whole
number in format 111. This can be used for equality search of the fields. A checksum is a hash
sum used to ensure the integrity of a file after it has been transmitted from one storage device
to another.

How to Compute a CHECKSUM Hash Value
CHECKSUM buf fer)

where:

buffer
Is a data buffer whose hash index is to be calculated. It can be a set of data of different
types presented as a single field, in one of the following data type formats: An, AnV, or
TXn.

Calculating a CHECKSUM Hash Value

The following request computes a checksum hash value.

DEFI NE FI LE WF_RETAIL_LITE
CHKSUM | 11 = (CHECKSUM PRODUCT _CATEGORY)) ;

END

TABLE FI LE W_RETAIL_LI TE

PRI NT CHKSUM

BY PRODUCT CATEGORY

WHERE PRODUCT CATEGORY NE LAST PRODUCT CATEGORY
ON TABLE SET PAGE NOLEAD

END

Using Functions 259

DB_EXPR: Inserting an SQL Expression Into a Request

The output is shown in the following image.

Product

Category CHESUM
|Accessories || -830549649)
|Camcorder | -912058982]
|Computers || 469201037

Media Player |-1760917009)
|Stereo Systems |-1853215244|
[Televisions | 810407163
[Video Production|| 275494446

DB_EXPR: Inserting an SQL Expression Into a Request

Syntax:

Reference:

260

The DB_EXPR function inserts a native SQL expression exactly as entered into the native SQL
generated for a FOCUS or SQL language request.

The DB_EXPR function can be used in a DEFINE command, a DEFINE in a Master File, a
WHERE clause, a FILTER FILE command, a filter in a Master File, or in an SQL statement. It
can be used in a COMPUTE command if the request is an aggregate request (uses the SUM,
WRITE, or ADD command) and has a single display command. The expression must return a
single value.

How to Insert an SQL Expression Into a Request With DB_EXPR
DB_EXPR(nati ve_SQ._expressi on)

where:
native_SQ._expression

Is a partial native SQL string that is valid to insert into the SQL generated by the request.
The SQL string must have double quotation marks (") around each field reference, unless
the function is used in a DEFINE with a WITH phrase.

Usage Notes for the DB_EXPR Function

.4 The expression must return a single value.

4 Any request that includes one or more DB_EXPR functions must be for a synonym that has
a relational SUFFIX.

Information Builders

10. Data Source and Decoding Functions I

Example:

-l Field references in the native SQL expression must be within the current synonym context.

4 The native SQL expression must be coded inline. SQL read from a file is not supported.

Inserting the DB2 BIGINT and CHAR Functions Into a TABLE Request

The following TABLE request against the WF_RETAIL data source uses the DB_EXPR function in
the COMPUTE command to call two DB2 functions. It calls the BIGINT function to convert the
squared revenue to a BIGINT data type, and then uses the CHAR function to convert that value
to alphanumeric.

TABLE FI LE WF_RETAI L

SUM REVENUE NOPRI NT

AND COVPUTE BI GREV/ A31 = DB_EXPR(CHAR(BI G NT("REVENUE" * "REVENUE"))) ;
AS ' Al pha Square Revenue'

BY REG ON

ON TABLE SET PAGE NOPAGE

END

WF_RETAIL is a sample data source you can create by right-clicking an application on the
Reporting Server Web Console and pointing to New and then clicking Tutorials from the context
menu.

The trace shows that the expression from the DB_EXPR function was inserted into the DB2
SELECT statement:

SELECT
T11."REG ON',
SUM(T1."Revenue"),
((CHAR (BIGINT (SUM(T1."Revenue") * SUM(T1."Revenue")))))
FROM
wd_fact_sales T1,
wrd_di m cust oner T5,
wr d_di m geography T11
WHERE
(T5."1 D_CUSTOMER' = T1."|D_CUSTOVER') AND
(T11. "I D_GEOGRAPHY" = T5."| D_GEOGRAPHY")
GROUP BY
T11."REG ON "
ORDER BY
T11."REG ON "
FOR FETCH ONLY;
END

Using Functions 261

DB_INFILE: Testing Values Against a File or an SQL Subquery

The output is:

Eegion Alpha Square Revenue
Central 459024717717929
MidEast |61720206151994
NorthEast |247772056471221
NorthWest |42335175855351

SouthEast 203820846242531
SouthWest 9449541537794
West 164356565757257

DB_INFILE: Testing Values Against a File or an SQL Subquery

The DB_INFILE function compares one or more field values in a source file to values in a target
file. The comparison can be based on one or more field values. DB_INFILE returns the value 1
(TRUE) if the set of source fields matches a set of values from the target file. Otherwise, the
function returns O (zero, FALSE). DB_INFILE can be used where a function is valid in a
WebFOCUS request, such as in a DEFINE or a WHERE phrase.

The target file can be any data source that WebFOCUS can read. Depending on the data
sources accessed and the components in the request, either WebFOCUS or an RDBMS will
process the comparison of values.

If WebFOCUS processes the comparison, it reads the target data source and dynamically
creates a sequential file containing the target data values, along with a synonym describing the
data file. It then builds IF or WHERE structures in memory with all combinations of source and
target values. If the target data contains characters that WebFOCUS considers wildcard
characters, it will treat them as wildcard characters unless the command SET EQTEST = EXACT
is in effect.

The following situations exist when a relational data source is the source file:

.4 The target values are in a relational data source from the same RDBMS and connection.
In this case, the target file referenced by DB_INFILE can be:

4 An SQL file containing a subquery that retrieves the target values. A synonym must exist
that describes the target SQL file. The Access File must specify the CONNECTION and
DATASET for the target file.

262 Information Builders

10. Data Source and Decoding Functions I

Syntax:

If the subquery results in a SELECT statement supported by the RDBMS, the relational
adapter inserts the subquery into the WHERE predicate of the generated SQL.

If the subquery does not result in a valid SELECT statement for the RDBMS, the
relational adapter retrieves the target values. It then generates a WHERE predicate, with
a list of all combinations of source and target field values.

You can create an SQL file containing a subquery and a corresponding synonym using
the HOLD FORMAT SQL_SCRIPT command. For more information, see theCreating
Reports With WebFOCUS Languagemanual.

.4 A relational data source. A synonym must exist that describes the target data source.

If the data source contains only those fields referenced by DB_INFILE as target fields,
the relational adapter creates a subquery that retrieves the target values. If the
subquery results in a SELECT statement supported by the RDBMS, the relational
adapter inserts the subquery into the WHERE predicate of the generated SQL.

If the subquery does not result in a valid SELECT statement for the RDBMS, the
relational adapter retrieves a unique list of the target values. It then generates a
WHERE predicate with a list of all combinations of source and target field values.

d The target values are in a non-relational data source or a relational data source from a
different RDBMS or connection. In this case, the target values are retrieved and passed to
WebFOCUS for processing.

How to Compare Source and Target Field Values With DB_INFILE
DB_INFI LE(target_file, s1, t1, ... sn, tn)

where:
target_file

Is the synonym for the target file.
s1, ..., sn

Are fields from the source file.
t1, ..., tn

Are fields from the target file.

The function returns the value 1 if a set of target values matches the set of source values.
Otherwise, the function returns a zero (0).

Using Functions 263

DB_INFILE: Testing Values Against a File or an SQL Subquery

Reference: Usage Notes for DB_INFILE

Example:

264

- If both the source and target data sources have MISSING=O0N for a comparison field, then
a missing value in both files is considered an equality. If MISSING=OFF in one or both files,

a missing value in one or both files results in an inequality.

- Values are not padded or truncated when compared, except when comparing date and date-

time values.

. If the source field is a date field and the target field is a date-time field, the time

component is removed before comparison.

. If the source field is a date-time field and the target field is a date field, a zero time

component is added to the target value before comparison.

d If an alphanumeric field is compared to a numeric field, an attempt will be made to convert

the alphanumeric value to a number before comparison.

-1 If WebFOCUS processes the comparison, and the target data contains characters that
WebFOCUS considers wildcard characters, it will treat them as wildcard characters unless

the command SET EQTEST = EXACT is in effect.

Comparing Source and Target Values Using an SQL Subquery File

This example uses the WF_RETAIL DB2 data source.

WF_RETAIL is a sample data source you can create by right-clicking an application on the
Reporting Server Web Console, selecting New, and then Samples from the context menu.

The SQL file named retail_subquery.sql contains the following subquery that retrieves specified

state codes in the Central and NorthEast regions:

SELECT MAX(T11.REG ON), MAX(T11.STATECODE) FROM wrd_di m geography T11

VWHERE (T11. STATECODE IN(' AR, 'IA", "KS, "KY', "W, 'CT",

"NY', "RI')) AND (T11.REG ON IN(' Central', 'NorthEast'))
T11. REG ON, T11. STATECODE

The retail_subquery.mas Master File follows:

FI LENAME=RETAI L_SUBQUERY, SUFFI X=DB2 . $
SEGVENT=RETAI L_SUBQUERY, SEGTYPE=SO, $
FI ELDNAMVE=REGQ ON, ALI AS=EO01, USAGE=A15V, ACTUAL=A15V,
M SSI NG=ON, $
FI ELDNAVE=STATECODE, ALI AS=E02, USAGE=A2, ACTUAL=A2,
M SSI NG=ON, $

The retail_subquery.acx Access File follows:

CMA L ND'
GROUP BY

SEGNAME=RETAI L_SUBQUERY, CONNECTI ON=CON1, DATASET=RETAI L_SUBQUERY. SQL, $

Information Builders

10. Data Source and Decoding Functions I

Note: You can create an SQL subquery file, along with a corresponding synonym, using the
HOLD FORMAT SQL_SCRIPT command. For more information, see the Creating Reports With
WebFOCUS Language manual.

The following request uses the DB_INFILE function to compare region names and state codes
against the names retrieved by the subquery:

TABLE FI LE WF_RETAI L

SUM REVENUE

BY REG ON

BY STATECODE

WHERE DB_| NFI LE(RETAI L_SUBQUERY, REG ON, REG ON, STATECCDE, STATECODE)
ON TABLE SET PAGE NOPAGE

END

The trace shows that the subquery was inserted into the WHERE predicate in the generated
SQL:

SELECT
T11."REG ON',
T11. " STATECODE",
SUM T1. " Revenue")
FROM
wd_fact_sales T1,
wrd_di m cust oner T5,
wr d_di m geography T11
VHERE
(T5."ID_CUSTOMER" = T1."ID_CUSTOMER") AND
(T11."ID_GEOGRAPHY" = T5,"ID_GEOGRAPHY") AND
((T11."REGION", T11."STATECODE") IN (SELECT MAX(T11.REGION),
MAX (T11.STATECODE) FROM wrd_dim_geography T11 WHERE
(T11.STATECODE IN('AR', 'IA', 'KS', 'KY', 'WY', 'CT', 'MA',
'NJ', 'NY', 'RI')) AND (T11.REGION IN('Central', 'NorthEast'))
GROUP BY T11.REG ON, T11. STATECCDE))
GROUP BY
T11."REG ON',
T11." STATECODE
ORDER BY
T11."REG ON',
T11." STATECODE "
FOR FETCH ONLY;
END

Using Functions 265

DB_INFILE: Testing Values Against a File or an SQL Subquery

The output is:

State
Region |Code Revenue

Central AR 839.075.22
A [1.197.171.09
K5 [1.014.388.99
KY |[1.014825122
WY | 182.808.08
NorthEast CT |1.146.626.05
MA 2.070.919.74

NI |2.148.95556
NY 6,360.267.52
RI 342.972.30

Example: Comparing Source and Target Values Using a Sequential File

The empvalues.ftm sequential file contains the last and first names of employees in the MIS

department:

SM TH MARY JONES DI ANE MCCOY
JOHN BLACKWOOD ROSEMARI E GREENSPAN MARY
CROSS BARBARA

The empvalues.mas Master File describes the data in the empvalues.ftm file

FI LENAME=EMPVALUES, SUFFI X=FI X , | OTYPE=BI NARY, $
SEGVENT=EMPVALUE, SEGTYPE=S0, $

FI ELDNAVE=LN, ALI AS=E01, USAGE=A15, ACTUAL=A16, $

FI ELDNAVE=FN, ALl AS=E02, USAGE=A10, ACTUAL=A12, $

Note: You can create a sequential file, along with a corresponding synonym, using the HOLD
FORMAT SQL_SCRIPT command. For more information, see the Creating Reports With
WebFOCUS Language manual.

266 Information Builders

10. Data Source and Decoding Functions I

The following request against the FOCUS EMPLOYEE data source uses the DB_INFILE function
to compare employee names against the names stored in the empvalues.ftm file:

FI LEDEF EMPVALUES DI SK baseapp/ enpval ues. ftm

TABLE FI LE EMPLOYEE

SUM CURR_SAL

BY LAST_NAME BY FI RST_NAME

VWHERE DB_| NFI LE(EMPVALUES, LAST_NAME, LN, FI RST_NAME, FN)
ON TABLE SET PAGE NOPAGE

END

The output is:

LAST NAME |FIRST_NAME CURR_SAL
BLACKWOOD ROSEMARIE | 521,780.00

CROSS BARBAFA 527.062.00
GREENSPAN MARY 59.000.00
JONES DIANE 518.480.00
MCCOY JOHN 518.480.00
SMITH MARY 513,200.00

Syntax: How to Control DB_INFILE Optimization

To control whether to prevent optimization of the DB_INFILE expression, issue the following
command:

SET DB_I NFI LE = { DEFAULT| EXPAND ALWAYS| EXPAND_NEVER}

In a TABLE request, issue the following command:

ON TABLE SET DB_I NFI LE { DEFAULT| EXPAND ALVAYS| EXPAND NEVER}

where:
DEFAULT

Enables DB_INFILE to create a subquery if its analysis determines that it is possible. This
is the default value.

EXPAND_ALWAYS

Prevents DB_INFILE from creating a subquery. Instead, it expands the expression into IF
and WHERE clauses in memory.

Using Functions 267

DB_LOOKUP: Retrieving Data Source Values

EXPAND_NEVER

Prevents DB_INFILE from expanding the expression into IF and WHERE clauses in memory.
Instead, it attempts to create a subquery. If this is not possible, a FOC32585 message is
generated and processing halts.

DB_LOOKUP: Retrieving Data Source Values

Syntax:

268

Available Languages: reporting, MODIFY

You can use the DB_LOOKUP function to retrieve a value from one data source when running a
request against another data source, without joining or combining the two data sources.

DB_LOOKUP compares pairs of fields from the source and lookup data sources to locate
matching records and retrieve the value to return to the request. You can specify as many
pairs as needed to get to the lookup record that has the value you want to retrieve. If your field
list pairs do not lead to a unique lookup record, the first matching lookup record retrieved is
used.

DB_LOOKUP can be called in a DEFINE command, TABLE COMPUTE command, MODIFY
COMPUTE command, or DataMigrator flow.

There are no restrictions on the source file. The lookup file can be any non-FOCUS data source
that is supported as the cross referenced file in a cluster join. The lookup fields used to find
the matching record are subject to the rules regarding cross-referenced join fields for the
lookup data source. A fixed format sequential file can be the lookup file if it is sorted in the
same order as the source file.

How to Retrieve a Value From a Lookup Data Source
DB _LOOKUP(/ ook _nf, srcfldl, [ookfldl, srcfld2 [ookfld2 ..., returnfld);

where:
[ook _nf
Is the lookup Master File.
srcfldil, srcfld? ...
Are fields from the source file used to locate a matching record in the lookup file.
lookfldi, |ookfldz ...

Are columns from the lookup file that share values with the source fields. Only columns in
the table or file can be used; columns created with DEFINE cannot be used. For multi-
segment synonyms, only columns in the top segment can be used.

Information Builders

10. Data Source and Decoding Functions I

returnfld

Is the name of a column in the lookup file whose value is returned from the matching
lookup record. Only columns in the table or file can be used; columns created with DEFINE
cannot be used.

Reference: Usage Notes for DB_LOOKUP
- The maximum number of pairs that can be used to match records is 63.

4 If the lookup file is a fixed format sequential file, it must be sorted and retrieved in the
same order as the source file, unless the ENGINE INT SET CACHE=0ON command is in
effect. Having this setting in effect may also improve performance if the values will be
looked up more than once. The key field of the sequential file must be the first lookup field
specified in the DB_LOOKUP request. If it is not, no records will match.

In addition, if a DB_LOOKUP request against a sequential file is issued in a DEFINE FILE
command, you must clear the DEFINE FILE command at the end of the TABLE request that
references it, or the lookup file will remain open. It will not be reusable until closed and
may cause problems when you exit. Other types of lookup files can be reused without
clearing the DEFINE. They will be cleared automatically when all DEFINE fields are cleared.

d If the lookup field has the MISSING=0N attribute in its Master File and the DEFINE or
COMPUTE command specifies MISSING ON, the missing value is returned when the lookup
field is missing. Without MISSING ON in both places, the missing value is converted to a
default value (blank for an alphanumeric field, zero for a numeric field).

d Source records display on the report output even if they lack a matching record in the
lookup file.

. Only real fields in the lookup Master File are valid as lookup and return fields.

d If there are multiple rows in the lookup table where the source field is equal to the lookup
field, the first value of the return field is returned.

Using Functions 269

DB_LOOKUP: Retrieving Data Source Values

Example:

270

Retrieving a Value From a Fixed Format Sequential File in a TABLE Request

The following procedure creates a fixed format sequential file named GSALE from the GGSALES
data source. The fields in this file are PRODUCT (product description), CATEGORY (product
category), and PCD (product code). The file is sorted on the PCD field:

SET ASNAMES = ON

TABLE FI LE GGSALES

SUM PRODUCT CATEGORY

BY PCD

ON TABLE HOLD AS GSALE FORVAT ALPHA
END

The following Master File is generated as a result of the HOLD command:

FI LENAME=GSALE, SUFFI X=FI X . $
SEGVENT=GSALE, SEGTYPE=S1, $
FI ELDNAVE=PCD, ALI AS=E01, USAGE=A04, ACTUAL=A04, $
FI ELDNAVE=PRODUCT, ALI AS=E02, USAGE=A16, ACTUAL=A16, $
FI ELDNAVE=CATEGORY, ALl AS=E03, USAGE=A1l, ACTUAL=Al1, $

The following TABLE request against the GGPRODS data source, sorts the report on the field
that matches the key field in the lookup file. It retrieves the value of the CATEGORY field from
the GSALE lookup file by matching on the product code and product description fields. Note
that the DEFINE FILE command is cleared at the end of the request:

DEFI NE FI LE GGPRODS

PCAT/ A11 M SSI NG ON = DB_LOOKUP(GSALE, PRODUCT I D, PCD,
PRODUCT _DESCRI PTI ON, PRODUCT, CATEGORY) ;

END

TABLE FI LE GGPRODS

PRI NT PRODUCT DESCRI PTI ON PCAT

BY PRODUCT | D

END

DEFI NE FI LE GGPRODS CLEAR

END

Because the GSALE Master File does not define the CATEGORY field with the MISSING=0ON
attribute, the PCAT column displays a blank in those rows that have no matching record in the
lookup file:

Pr oduct Pr oduct PCAT
Code

B141 Hazel nut

B142 French Roast

Bl144 Kona

Information Builders

10. Data Source and Decoding Functions I

F101 Scone Food
F102 Bi scotti Food
F103 Croi ssant Food
G100 Mug Gfts
G104 Ther nos Gfts
G110 Cof fee Grinder Gfts
Gl21 Cof f ee Pot Gfts

If you add the MISSING=0N attribute to the CATEGORY field in the GSALE Master File, the
PCAT column displays a missing data symbol in rows that do not have a matching record in the

lookup file:

Pr oduct

Code Pr oduct PCAT

B141 Hazel nut

B142 French Roast

B144 Kona .

F101 Scone Food

F102 Bi scotti Food

F103 Cr oi ssant Food

G100 Mug Gfts

G104 Ther nos Gfts

Gl10 Cof fee G&i nder Gfts

Gl21 Cof f ee Pot Gfts
DECODE: Decoding Values

Available Languages: reporting, Maintain

The DECODE function assigns values based on the coded value of an input field. DECODE is
useful for giving a more meaningful value to a coded value in a field. For example, the field
GENDER may have the code F for female employees and M for male employees for efficient
storage (for example, one character instead of six for female). DECODE expands (decodes)
these values to ensure correct interpretation on a report.

You can use DECODE by supplying values directly in the function or by reading values from a
separate file.

The use of DECODE with Maintain is limited. For information on decoding values with
subscripted stack values, see SELECTS: Decoding a Value From a Stack on page 246.

Using Functions 271

DECODE: Decoding Values

Syntax:

272

How to Supply Values in the Function

DECCDE f/ el dname(codel resul t1 code2 result2. ..[ELSE default]);
DECODE f/ el dname(filenane ...[ELSE defaul t]);

where:

fiel dname
Alphanumeric or Numeric

Is the name of the input field.

code
Alphanumeric or Numeric

Is the coded value that DECODE compares with the current value of fieldname. If the value
has embedded blanks, commas, or other special characters, it must be enclosed in single
quotation marks. When DECODE finds the specified value, it returns the corresponding
result. When the code is compared to the value of the field name, the code and field name
must be in the same format.

resul t
Alphanumeric or Numeric

Is the returned value that corresponds to the code. If the result has embedded blanks or
commas, or contains a negative number, it must be enclosed in single quotation marks.
Do not use double quotation marks (").

If the result is presented in alphanumeric format, it must be a non-null, non-blank string.
The format of the result must correspond to the data type of the expression.

defaul t
Alphanumeric or Numeric

Is the value returned as a result for non-matching codes. The format must be the same as
the format of result. If you omit a default value, DECODE assigns a blank or zero to non-
matching codes.

filenanme
Alphanumeric

Is the name of the file in which code/result pairs are stored. Every record in the file must
contain a pair.

You can use up to 40 lines to define the code and result pairs for any given DECODE function,
or 39 lines if you also use an ELSE phrase. Use either a comma or blank to separate the code
from the result, or one pair from another.

Information Builders

10. Data Source and Decoding Functions I

Example:

Reference:

Note: DECODE has no output argument.

Supplying Values Using the DECODE Function

EDIT extracts the first character of the CURR_JOBCODE field, then DECODE returns either
ADMINISTRATIVE or DATA PROCESSING depending on the value extracted.

TABLE FI LE EMPLOYEE
PRI NT CURR_JOBCCODE AND COVPUTE
DEPX_CODE/ A1 = EDI T(CURR_JOBCODE, '9%$$'); NOPRI NT AND COVPUTE
JOB_CATEGORY/ Al5 = DECODE DEPX_CODE (A 'ADMINISTRATIVE'
B 'DATA PROCESSING');
BY LAST_NAME
VWHERE DEPARTMENT EQ 'M S';
END

The output is:
LAST_NAME CURR_JOBCCDE JOB_CATEGORY

BLACKWOOD BO4 DATA PROCESSI NG
CRCSS Al7 ADM NI STRATI VE
GREENSPAN AO07 ADM NI STRATI VE
JONES BO3 DATA PROCESSI NG
MCCOY B02 DATA PROCESSI NG
SM TH B14 DATA PROCESSI NG

Guidelines for Reading Values From a File

.4 Each record in the file is expected to contain pairs of elements separated by a comma or
blank.

.d If each record in the file consists of only one element, this element is interpreted as the
code, and the result becomes either a blank or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the screening
condition:

IF field IS (f//enane)

and as a file of literals for an IF criteria specified in a computational expression. For
example:

TAKE = DECODE SELECT (f//ename ELSE 1);
VALUE = |F TAKE IS O THEN... ELSE...;

TAKE is O for SELECT values found in the literal file and 1 in all other cases. The VALUE
computation is carried out as if the expression had been:

| F SELECT (f//ename) THEN... ELSE...;

Using Functions 273

DECODE: Decoding Values

- The file can contain up to 32,767 characters in the file.

4 All data is interpreted in ASCIl format on UNIX and Windows, or in EBCDIC format on z/0S,
and converted to the USAGE format of the DECODE pairs.

d Leading and trailing blanks are ignored.

.4 The remainder of each record is ignored and can be used for comments or other data. This
convention applies in all cases, except when the file name is HOLD. In that case, the file is
presumed to have been created by the HOLD command, which writes fields in the internal
format, and the DECODE pairs are interpreted accordingly. In this case, extraneous data in
the record is ignored.

Example: Reading DECODE Values From a File

The following example has two parts. The first part creates a file with a list of IDs and reads
the EDUCFILE data source. The second part reads the EMPLOYEE data source and assigns O
to those employees who have taken classes and 1 to those employees who have not. The
HOLD file contains only one column of values. Therefore, DECODE assigns the value O to an
employee whose EMP_ID appears in the file and 1 when EMP_ID does not appear in the file.
TABLE FI LE EDUCFI LE

PRI NT EVP_I D

ON TABLE HOLD
END

TABLE FI LE EMPLOYEE

PRI NT EMP_I D AND LAST_NAME AND FI RST_NAME AND COMPUTE
NOT_IN_LIST/I1 = DECODE EMP_ID (HOLD ELSE 1);

VWHERE DEPARTMENT EQ 'M S';

END

The output is:

EMP_ID LAST_NAME FI RST_NAME NOT_I N LI ST
112847612 SM TH MARY 0
117593129 JONES DI ANE 0
219984371 MOCOY JOHN 1
326179357 BLACKWOOD ROSEMARI E 0
543729165 GREENSPAN MARY 1
818692173 CROSS BARBARA 0

274 Information Builders

10. Data Source and Decoding Functions I

FIND: Verifying the Existence of a Value in a Data Source
Available Languages: MODIFY, Maintain

The FIND function determines if a data value is in a data source field being searched. The
function sets a temporary field to 1 (a non-zero value for MODIFY) if the data value is found in
the data source field, and to O if it is not. FIND does not change the searched file's current
database position. A value greater than zero confirms the presence of the data value, not the
number of instances in the data source field.

You can also use FIND in a VALIDATE command to determine if a transaction field value exists
in another FOCUS data source. If the field value is not in that data source, the function returns
a value of O, causing the validation test to fail and the request to reject the transaction.

You can use any number of FINDs in a COMPUTE or VALIDATE command. However, more FINDs
increase processing time and require more buffer space in memory.

Limit: FIND does not work on files with different DBA passwords.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1 if the

incoming value is not in the data source and to O if the incoming value is in the data source.
Syntax: How to Verify the Existence of a Value in a Data Source

FIND(f/ el dname [AS dbfieldl IN file);

where:
fiel dnanme
Is the name of the field that contains the incoming data value.

AS dbfield
Is the name of the data source field whose values are compared to the incoming field
values.

For Maintain - the AS field is required and the name must be qualified.

file
Is the name of the FOCUS data source.

For Maintain - the IN file is unnecessary since the AS field name is required and must be
qualified.

Note:

.4 FIND does not use an output argument.

Using Functions 275

FIND: Verifying the Existence of a Value in a Data Source

-1 Do not include a space between FIND and the left parenthesis.

Example: Verifying the Existence of a Value in Another Data Source (Maintain)

In the following example, FIND determines if a data value is found in another data source.

MAI NTAI N FI LE MOVI ES AND VI DEOTRK

FOR ALL NEXT MOVI ES. MOVI ECODE | NTO FI LMSTK

TYPE "RC SHOULD BE 1 WHERE MOVI ECODE EXI STS | N BOTH FI LES';

TYPE " "

COWPUTE RC/ 1 1;

COWPUTE |/11=1;

REPEAT FI LMSTK. FOCCOUNT
COWPUTE RC= FI ND(FI LMSTK(). MOVI ECODE AS VI DEOTRK. MOVI ECODE)
TYPE "FOR MOVI ECODE = <<FI LMSTK(1). MOVI ECODE , RC = <<RC'
COWPUTE | =| +1;

ENDREPEAT

END

The output is:

RC SHOULD BE 1 WHERE MOVl ECODE EXI STS IN BOTH FI LES
FOR MOVI ECODE = 001MCA, RC =1

FOR MOVl ECODE = 387PLA, RC = 0

FOR MOVl ECODE = 963CBS, RC = 1
TRANSACTI ONS: COMWM TS = 1 ROLLBACKS
SEGVENTS : INCLUDED = 0 UPDATED

0
0 DELETED

1}
o

Example: Verifying the Existence of a Value in the Same Data Source (Maintain)
In the following example, FIND determines if a data value is found in the same data source.

MAI NTAIN FI LE CAR
COVPUTE RETAI L_COST=31500;
COWUTE CHECK/ | 1;
COWUTE CHECK= FI ND (RETAI L_COST) ;

IF CHECK = 1 THEN GOTO FOUNDL

ELSE GOTO NOT1,

CASE FOUND1
TYPE "THERE | S A CAR WTH A RETAI L_COST OF <<RETAI L_COST"

*

ENDCASE
CASE NOT1
TYPE "THERE 1S NO CAR W TH A RETAI L_COST OF <<RETAI L_COST"

*

ENDCASE
*

END

276 Information Builders

10. Data Source and Decoding Functions I

The output is:

THERE | S A CAR WTH A RETAI L_COST OF 31, 500
TRANSACTIONS: COM TS = 1 ROLLBACKS = 0
SEGVENTS : INCLUDED = 0 UPDATED = 0 DELETED = 0

LAST: Retrieving the Preceding Value

Syntax:

Example:

Available Languages: reporting
The LAST function retrieves the preceding value for a field.

The effect of LAST depends on whether it appears in a DEFINE or COMPUTE command:

.4 In a DEFINE command, the LAST value applies to the previous record retrieved from the
data source before sorting takes place.

4 In a COMPUTE command, the LAST value applies to the record in the previous line of the
internal matrix.

Do not use LAST with the -SET command in Dialogue Manager.
How to Retrieve the Preceding Value
LAST £/ el dnane

where:

fi el dnane
Alphanumeric or Numeric

Is the field name.

Note: LAST does not use an output argument.

Retrieving the Preceding Value

LAST retrieves the previous value of the DEPARTMENT field to determine whether to restart the
running total of salaries by department. If the previous value equals the current value,
CURR_SAL is added to RUN_TOT to generate a running total of salaries within each
department.

TABLE FI LE EMPLOYEE

PRI NT LAST NAME CURR SAL AND COMPUTE

RUN_TOT/ D12. 2M = | F DEPARTMENT EQ LAST DEPARTMENT THEN
(RUN_TOT + CURR SAL) ELSE CURR SAL ;

AS ' RUNNI NG, TOTAL, SALARY"

BY DEPARTMENT SKI P- LI NE

END

Using Functions 277

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

The output is:

RUNNI NG

TOTAL

DEPARTMENT LAST_NAME CURR_SAL SALARY
M S SM TH $13, 200. 00 $13, 200. 00
JONES $18, 480. 00 $31, 680. 00

MCCOY $18, 480. 00 $50, 160. 00

BLACKWOOD $21, 780. 00 $71, 940. 00

GREENSPAN $9, 000. 00 $80, 940. 00

CRCSS $27,062. 00 $108, 002. 00

PRODUCTI ON STEVENS $11, 000. 00 $11, 000. 00
SM TH $9, 500. 00 $20, 500. 00

BANNI NG $29, 700. 00 $50, 200. 00

I RVI NG $26, 862. 00 $77,062. 00

ROVANS $21, 120. 00 $98, 182. 00

MCKNI GHT $16, 100. 00 $114, 282. 00

LOOKUP: Retrieving a Value From a Cross-referenced Data Source
Available Languages: MODIFY

The LOOKUP function retrieves a data value from a cross-referenced FOCUS data source in a
MODIFY request. You can retrieve data from a data source cross-referenced statically in a
Master File or a data source joined dynamically to another by the JOIN command. LOOKUP
retrieves a value, but does not activate the field. LOOKUP is required because a MODIFY
request, unlike a TABLE request, cannot read cross-referenced data sources freely.

LOOKUP allows a request to use the retrieved data in a computation or message, but it does
not allow you to modify a cross-referenced data source.

To modify more than one data source in one request, use the COMBINE command or the
Maintain Data facility.

LOOKUP can read a cross-referenced segment that is linked directly to a segment in the host
data source (the host segment). This means that the cross-referenced segment must have a
segment type of KU, KM, DKU, or DKM (but not KL or KLU) or must contain the cross-
referenced field specified by the JOIN command. Because LOOKUP retrieves a single cross-
referenced value, it is best used with unique cross-referenced segments.

The cross-referenced segment contains two fields used by LOOKUP:

- The field containing the retrieved value. Alternatively, you can retrieve all the fields in a
segment at one time. The field, or your decision to retrieve all the fields, is specified in
LOOKUP.

For example, LOOKUP retrieves all the fields from the segment

RTN = LOOKUP(SEG. DATE_ATTEND) ;

278 Information Builders

10. Data Source and Decoding Functions I

Syntax:

Example:

- The cross-referenced field. This field shares values with a field in the host segment called
the host field. These two fields link the host segment to the cross-referenced segment.
LOOKUP uses the cross-referenced field, which is indexed, to locate a specific segment
instance.

When using LOOKUP, the MODIFY request reads a transaction value for the host field. It then
searches the cross-referenced segment for an instance containing this value in the cross-
referenced field:

. If there are no instances of the value, the function sets a return variable to O. If you use
the field specified by LOOKUP in the request, the field assumes a value of blank if
alphanumeric and O if numeric.

. If there are instances of the value, the function sets the return variable to 1 and retrieves
the value of the specified field from the first instance it finds. There can be more than one
if the cross-referenced segment type is KM or DKM, or if you specified the ALL keyword in
the JOIN command.

How to Retrieve a Value From a Cross-referenced Data Source
LOOKUP(fi el d);

where:
field

Is the name of the field to retrieve in the cross-referenced file. If the field name also exists
in the host data source, you must qualify it here. Do not include a space between LOOKUP
and the left parenthesis.

Note: LOOKUP does not use an output argument.

Using a Value in a Host Segment to Search a Data Source

You can use a field value in a host segment instance to search a cross-referenced segment.
Do the following:

4 In the MATCH command that selects the host segment instance, activate the host field
with the ACTIVATE command.

. In the same MATCH command, code LOOKUP after the ACTIVATE command.

Using Functions 279

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

280

This request displays the employee ID, date of salary increase, employee name, and the
employee position after the raise was granted:

-

d
d
;|

The employee ID and name (EMP_ID) are in the root segment.
The date of increase (DAT_INC) is in the descendant host segment.
The job position is in the cross-referenced segment.

The shared field is JOBCODE. You never enter a job code; the values are stored in the data
source.

The request is:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D DAT_I NC
MATCH EMP_I D

ON NOVATCH REJECT
ON MATCH CONTI NUE

MATCH DAT_I NC

ON NOVATCH REJECT
ON MATCH ACTI VATE JOBCODE
ON MATCH COVPUTE

RTN = LOOKUP (JOB_DESC) ;
ON

MATCH TYPE

"EMPLOYEE | D <EMP_I D"

" DATE | NCREASE: <DAT_I NC'

" NAME: <D. FI RST_NAME <D. LAST_NAME"
" PCSI TI ON: <JOB_DESC'

DATA

A sample execution is:

1.

The request prompts you for the employee ID and date of pay increase. Enter the employee
ID 071382660 and the date 820101 (January 1, 1982).

. The request locates the instance containing the ID 071382660, then locates the child

instance containing the date of increase 820101.

. This child instance contains the job code AO7. The ACTIVATE command makes this value

available to LOOKUP.

. LOOKUP locates the job code AO7 in the cross-referenced segment. It returns a 1 the RTN

variable and retrieves the corresponding job description SECRETARY.

. The TYPE command displays the values:

EMPLOYEE | D: 071382660

DATE | NCREASE: 82/ 01/ 01

NAME: ALFRED STEVENS
PCSI TI ON: SECRETARY

Information Builders

10. Data Source and Decoding Functions I

Example:

Fields retrieved by LOOKUP do not require the D. prefix. FOCUS treats the field values as
transaction values.

You may also need to activate the host field if you are using LOOKUP within a NEXT command.
This request displays the latest position held by an employee:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D
MATCH EVP_I D
ON NOVATCH REJECT
ON MATCH CONTI NUE
NEXT DAT_I NC
ON NONEXT REJECT
ON NEXT ACTI VATE JOBCODE
ON NEXT COVPUTE
RTN = LOOKUP (JOB_DESC);
ON MATCH TYPE

"EMPLOYEE | D: <EMP_I D"

"DATE OF PCSITI ON: <DAT_I NC'

" NAME: <D. FI RST_NAME <D. LAST_NAME"
" PCsSI TI ON: <JOB_DESC'

DATA

Using the LOOKUP Function With a VALIDATE Command

When you use LOOKUP, reject transactions containing values for which there is no
corresponding instance in the cross-reference segment. To do this, place the function in a
VALIDATE command. If the function cannot locate the instance in the cross-referenced
segment, it sets the value of the return variable to O, causing the request to reject the
transaction.

The following request updates an employee's classroom hours (ED_HRS). If the employee
enrolled in classes on or after January 1, 1982, the request increases the number of
classroom hours by 10%. The enrollment dates are stored in a cross-referenced segment (field
DATE_ATTEND). The shared field is the employee ID.

The request is as follows:

MODI FY FI LE EMPLOYEE
PROVPT EMP_I D ED_HRS

VALI DATE
TEST_DATE = LOOKUP (DATE_ENROLL) ;
COVWPUTE
ED HRS = | F DATE_ENROLL CE 820101 THEN ED HRS * 1.1
ELSE ED HRS;

MATCH EMP_I D
ON MATCH UPDATE ED HRS
ON NOVATCH REJECT
DATA

Using Functions 281

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

If an employee record is not found in the cross-referenced segment, that employee never
enrolled in a class. The transaction is rejected as an error.

Using the Extended LOOKUP Function

Syntax:

282

If the LOOKUP function cannot locate a value of the host field in the cross-referenced segment,
use extended syntax to locate the next highest or lowest cross-referenced field value in the
cross-referenced segment.

To use this feature, create the index with the INDEX parameter set to NEW (the binary tree
scheme). To determine the type of index used by a data source, enter the FDT command.

How to Use the Extended LOOKUP Function

COVMPUTE
LOOKUP(fi el d action);

where:
field

Is the name of the field in the cross-referenced data source, used in a MODIFY
computation. If the field name also exists in the host data source, you must qualify it here.

action
Specifies the action the request takes. Valid values are:

EQcauses LOOKUP to take no further action if an exact match is not found. If a match is
found, the value of rcode is set to 1; otherwise, it is set to O. This is the default.

GE causes LOOKUP to locate the instance with the next highest value of the cross-
referenced field. The value of rcode is set to 2.

LE causes LOOKUP to locate the instance with the next lowest value of the cross-
referenced field. The value of rcode is set to -2.

Do not include a space between LOOKUP and the left parenthesis.

The following table shows the value of rcode, depending on which instance LOOKUP locates:

Value Action
1 Exact cross-referenced value located.
2 Next highest cross-referenced value located.

Information Builders

10. Data Source and Decoding Functions I

Value Action
-2 Next lowest cross-referenced value located.
0 Cross-referenced value not located.

Using Functions 283

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

284 Information Builders

Chapter

Simplified Date and Date-Time
Functions

Simplified date and date-time functions have streamlined parameter lists, similar to
those used by SQL functions. In some cases, these simplified functions provide slightly
different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

Standard date and date-time formats refer to YYMD and HYYMD syntax (dates that are
not stored in alphanumeric or numeric fields). Dates not in these formats must be
converted before they can be used in the simplified functions. Literal date-time values
can be used with the DT function.

All arguments can be either literals, field names, or amper variables.
Note: The simplified date and date-time functions are not supported in Maintain Data.

In this chapter:

d DT_CURRENT_DATE: Returning the Current Date
DT_CURRENT_DATETIME: Returning the Current Date and Time
DT_CURRENT_TIME: Returning the Current Time

DTADD: Incrementing a Date or Date-Time Component

L U o LU

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time
Values

L

DTIME: Extracting Time Components From a Date-Time Value
DTPART: Returning a Date or Date-Time Component in Integer Format

DTRUNC: Returning the Start of a Date Period for a Given Date

Using Functions 285

DT_CURRENT_DATE: Returning the Current Date

DT_CURRENT_DATE: Returning the Current Date
The DT_CURRENT_DATE function returns the current date-time provided by the running

operating environment in date-time format. The time portion of the date-time is set to zero.

Syntax: How to Return the Current Date

DT_CURRENT_DATE()

Example: Returning the Current Date

The following request returns the current date.

DEFI NE FI LE WE_RETAIL_LITE

CURRDATE/ YYMD W TH COUNTRY_NAME = DT_CURRENT_DATE() ;
END

TABLE FILE WF_RETAIL_LITE

SUM CURRDATE

ON TABLE SET PAGE NOPAGE

END

The output is shown in the following image.

CUEEDATE

|2016f09f08

DT_CURRENT_DATETIME: Returning the Current Date and Time

DT_CURRENT_DATETIME returns the current date and time provided by the running operating
environment in date-time format, with a specified time precision.

Syntax: How to Return the Current Date and Time
DT_CURRENT_DATETI ME(conponent)

where:

conponent
Is one of the following time precisions.

.4 SECOND.
4 MILLISECOND.

.4 MICROSECOND.

286 Information Builders

11. Simplified Date and Date-Time Functions I

Example:

Note: The field to which the value is returned must have a format that supports the time
precision requested.

Returning the Current Date and Time

The following request returns the current date and time, with the time specified in
microseconds.

DEFI NE FI LE WF_RETAIL_LITE

CURRDATE/ HYYNDmM W TH COUNTRY_NAME = DT_CURRENT_DATETI ME(M CROCSECOND) ;
END

TABLE FI LE WF_RETAIL_LITE

SUM CURRDATE

ON TABLE SET PAGE NOPAGE

END

The output is shown in the following image.

|CURRDATE
2016/09/08 17:10:31 605718

DT_CURRENT_TIME: Returning the Current Time

Syntax:

The DT_CURRENT_TIME function returns the current time provided by the running operating
environment in date-time format, with a specified time precision. The date portion of the
returned date-time value is set to zero.

How to Return the Current Time
DT_CURRENT_TI ME(conponent)

where:

conponent
Is one of the following time precisions.

4 SECOND.
.4 MILLISECOND.

.4 MICROSECOND.

Note: The field to which the value is returned must have a format that supports the time
precision requested.

Using Functions 287

DTADD: Incrementing a Date or Date-Time Component

Example:

Returning the Current Time

The following request returns the current time, with the time precision set to milliseconds.

DEFI NE FI LE WE_RETAIL_LITE
CURRTI ME/ HHI Ss~ W TH COUNTRY_NAME = DT_CURRENT_TI ME(M LLI SECOND) ;
END

TABLE FILE WF_RETAIL_LITE

SUM CURRT| ME

ON TABLE SET PAGE NOPAGE

END

The output is shown in the following image.

CUERETIME

172313095

DTADD: Incrementing a Date or Date-Time Component

Syntax:

288

Given a date in standard date or date-time format, DTADD returns a new date after adding the
specified number of a supported component. The returned date format is the same as the
input date format.

How to Increment a Date or Date-Time Component
DTADD(dat e, conponent, [ncremnent)

where:

dat e
Date or date-time

Is the date or date-time value to be incremented.

conponent
Keyword

Is the component to be incremented. Valid components (and acceptable values) are:
d YEAR (1-9999).
Jd QUARTER (1-4).
1 MONTH (1-12).

4 WEEK (1-53). This is affected by the WEEKFIRST setting.

Information Builders

11. Simplified Date and Date-Time Functions I

2 DAY (of the Month, 1-31).
1 HOUR (0-23).
2 MINUTE (0-59).

1 SECOND (0-59).

i ncrenent
Integer

Is the value (positive or negative) to add to the component.

Example: Incrementing the DAY Component of a Date

The following request against the WF_RETAIL data source adds three days to the employee
date of birth:

DEFI NE FI LE WE_RETAI L
NEWDATE/ YYMD = DTADD(DATE_OF BI RTH, DAY, 3);
MGR/ A3 = DI G TS(1 D MANAGER, 3);

END

TABLE FILE WF_RETAI L

SUM MGR NOPRI NT DATE_OF Bl RTH NEWDATE

BY MGR

ON TABLE SET PAGE NOPAGE

END

Using Functions 289

DTADD: Incrementing a Date or Date-Time Component

The output is:

Date
MGR |of Birth NEWDATE
001 |1985/01/29|1985/02/01
101 |1982/04/01 1982/04/04
201 |1976/11/14|1976/11/17
301 |1980/D5/15|1980/05/18
401 |1975/10/19|1975/10/22
501 |1985/04/11|1985/04/14
601 |1967/02/03 |1967/02/06
701 |1977/10/16 |1977/10/19
801 |1970/04/18|1970/04/21
901 |1972/03/29|1972/04/01
099 |1976/10/21|1976/10/24

Reference: Usage Notes for DTADD

.4 Each element must be manipulated separately. Therefore, if you want to add 1 year and 1
day to a date, you need to call the function twice, once for YEAR (you need to take care of
leap years) and once for DAY. The simplified functions can be nested in a single
expression, or created and applied in separate DEFINE or COMPUTE expressions.

.4 With respect to parameter validation, DTADD will not allow anything but a standard date or

a date-time value to be used in the first parameter.

1 The increment is not checked, and the user should be aware that decimal numbers are not
supported and will be truncated. Any combination of values that increases the YEAR beyond
99909 returns the input date as the value, with no message. If the user receives the input

date when expecting something else, it is possible there was an error.

290

Information Builders

11. Simplified Date and Date-Time Functions I

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time
Values

Given two dates in standard date or date-time formats, DTIFF returns the number of given
component boundaries between the two dates. The returned value has integer format for
calendar components or double precision floating point format for time components.

Syntax: How to Return the Number of Component Boundaries
DTDI FF(end_dat e, start_date, conponent)

where:

end _date
Date or date-time

Is the ending date in either standard date or date-time format. If this date is given in
standard date format, all time components are assumed to be zero.

start_date
Date or date-time

Is the starting date in either standard date or date-time format. If this date is given in
standard date format, all time components are assumed to be zero.

conponent
Keyword

Is the component on which the number of boundaries is to be calculated. For example,
QUARTER finds the difference in quarters between two dates. Valid components (and
acceptable values) are:

d YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

WEEK (1-53). This is affected by the WEEKFIRST setting.
DAY (of the Month, 1-31).

HOUR (0-23).

MINUTE (0-59).

L U U U U o U

SECOND (0-59).

Using Functions 291

DTIME: Extracting Time Components From a Date-Time Value

Example: Returning the Number of Years Between Two Dates

The following request against the WF_RETAIL data source calculates employee age when hired:

DEFI NE FI LE WF_RETAI L

YEARS/ 19 = DTDI FF(START_DATE, DATE_OF_BI RTH, YEAR);
END

TABLE FI LE WF_RETAI L

PRI NT START_DATE DATE_OF_BI RTH YEARS AS ' Hire, Age'
BY EMPLOYEE_NUMBER

VWHERE EMPLOYEE_NUMBER CONTAI NS ' AA'

ON TABLE SET PAGE NOPAGE

END

The output is:

Emplovee |Start Date Hire
Number |Date of Birth Age

AAI00 |2008/11/14/1991/06/04 17
AATD 2008/11/19 |1985/07/13 | 23
AA137 |2013/01/15|1988/12/24 | 25
AA1T4 |2013/01/15|1980/08/30 | 33
AA195 |2013/01/15(1977/12/11| 36
AA42T |2008/12/23 1969/08/08 | 39
AAB20 |2013/10/2911983/11/27| 30
AAR92 |2013/10/27 |1981/04/24| 32

DTIME: Extracting Time Components From a Date-Time Value

Given a date-time value and time component keyword as input, DTIME returns the value of all
of the time components up to and including the requested component. The remaining time
components in the value are set to zero. The field to which the time component is returned
must have a time format that supports the component being returned.

Syntax: How to Extract a Time Component From a Date-Time Value

DTI NE(dat et/ me, conponent)

292 Information Builders

11. Simplified Date and Date-Time Functions I

where:

dateti ne
Date-time

Is the date-time value from which to extract the time component. It can be a field name or
a date-time literal.

conponent
Keyword

Valid values are:

4 TIME. The complete time portion is returned. Its smallest component depends on the
input date-time format. Nanoseconds are not supported or returned.

HOUR. The time component up to and including the hour component is extracted.
MINUTE. The time component up to and including the minute component is extracted.

SECOND. The time component up to and including the second component is extracted.

L U o U

MILLISECOND. The time component up to and including the millisecond component is
extracted.

.4 MICROSECOND. The time component up to and including the microsecond component

is extracted.

Example: Extracting Time Components

The following request defines two date-time fields:
4 TRANSTIME contains the extracted time components from TRANSDATE down to the minute.

- TRANSTIME2 extracts all of the time components from the literal date-time value
2018/01/17 05:45:22.777888.

Using Functions 293

DTPART: Returning a Date or Date-Time Component in Integer Format

DEFI NE FI LE VI DEOTR2

TRANSTI ME/ HHI Ssm = DT ME(TRANSDATE, M NUTE) ;
TRANSTI ME2/ HHI Ssm = DTl ME(DT(2018/ 01/ 17 05: 45: 22. 777888),
END

TABLE FI LE VI DEOTR2

SUM TRANSTI ME TRANSTI MVE2

BY Movl ECODE

BY TRANSDATE

WHERE MOVI ECODE CONTAI NS ' MGM

ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

TI MVE) ;

ENDSTYLE
END

The output is shown in the following image.

MOVIECODE TEANSDATE

TRANSTIME

TEANSTIMEZ2

145MGM 1999/11/06 02:12 02:12:00.000000
243MGM 1991/06/19 04:11 04:11:00.000000
259MGM 1991/06/19 07:18 07:18:00.000000
284MGM 1999/06/18 03:30 03:30:00.000000
505MGM 1996/06/21 01:16 01:16:00.000000
518MGM 1991/06/24 04:45 04:43:00.000000

1998/10/03 02:41 02:41:00.000000

1999/11/18 10:27 10:27:00.000000
68EMGM 1998/03/19 07:25 07:23:00.000000

1999/04/22 06:19
1999/10/22 06:25
1999/10/30 06:29
1999/11/19 10:26

06:19:00.000000
06:25:00.000000
06:29:00.000000
10:26:00.000000

05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888
05:45:22.777888

DTPART: Returning a Date or Date-Time Component in Integer Format

Syntax:

294

Given a date in standard date or date-time format and a component, DTPART returns the

component value in integer format.

How to Return a Date or Date-Time Component in Integer Format

DTPART(dat e, conponent)

Information Builders

11. Simplified Date and Date-Time Functions I

Example:

where:

dat e
Date or date-time

Is the date in standard date or date-time format.

conponent
Keyword

Is the component to extract in integer format. Valid components (and values) are:
1 YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

WEEK (of the year, 1-53). This is affected by the WEEKFIRST setting.

DAY (of the Month, 1-31).

DAY_OF_YEAR (1-366).

HOUR (0-23).
MINUTE (0-59).
SECOND (0-59).

1
d
1
1
1
4 WEEKDAY (day of the week, 1-7). This is affected by the WEEKFIRST setting.
d
1
1
Jd MILLISECOND (0-999).

1

MICROSECOND (0-999999).

Extracting the Quarter Component as an Integer

The following request against the WF_RETAIL data source extracts the QUARTER component
from the employee start date:

DEFI NE FI LE WF_RETAI L
QTR/ | 2 = DTPART(START DATE, QUARTER);
END

TABLE FILE WF_RETAI L

PRI NT START _DATE QTR AS Quarter

BY EMPLOYEE_ NUVBER

WHERE EMPLOYEE_NUMBER CONTAI NS ' AH
ON TABLE SET PAGE NOPAGE

END

Using Functions 295

DTRUNC: Returning the Start of a Date Period for a Given Date

DTRUNC: Returning the Start of a Date Period for a Given Date

Syntax:

296

The output is:

Emplovee |Start
Number (Date

AHI118 |2013/01/15
AH2E88 |2013/11/11
AH42 2008/11/13
AHO2E 20090411

Quarter

1
1
1

[B

Given a date or timestamp and a component, DTRUNC returns the first date within the period

specified by that component.
How to Return the First or Last Date of a Date Period

DTRUNC(dat e_or_t i nest anp,

where:

date or_tinestanp
Date or date-time

Is the date or timestamp of interest.

dat e _period

dat e_peri od)

Is the period whose starting or ending date you want to find. Can be one of the following:

4 DAY, returns the date that represents the input date (truncates the time portion, if

there is one).

L U o U

YEAR, returns the date of the first day of the year.
MONTH, returns the date of the first day of the month.

QUARTER, returns the date of the first day in the quarter.

WEEK, returns the date that represents the first date of the given week.

By default, the first day of the week will be Sunday, but this can be changed using the

WEEKFIRST parameter.

Information Builders

11. Simplified Date and Date-Time Functions I

-1 YEAR_END, returns the last date of the year.
d QUARTER_END, returns the last date of the quarter.
4 MONTH_END, returns the last date of the month.

1 WEEK_END, returns the last date of the week.

Example: Returning the First Date in a Date Period

In the following request against the WF_RETAIL data source, DTRUNC returns the first date of
the quarter given the start date of the employee:

DEFI NE FI LE WF_RETAI L

QIRSTART/ YYND = DTRUNC(START_DATE, QUARTER);
END

TABLE FI LE WF_RETAI L

PRI NT START_DATE QIRSTART AS ' Start, of Quarter’
BY EMPLOYEE_NUVBER

VWHERE EMPLOYEE_NUMBER CONTAI NS ' AH

ON TABLE SET PAGE NOPAGCE

END

The output is:

Emplovee |Start Start
Number Date of Quarter

AHI18 |2013/01/152013/01/01
AHI8E |2013/11/11 |2013/10/01
AH42 |2008/11/13 |2008/10/01
AH928 |2009/04/11 2009/04/01

Using Functions 297

DTRUNC: Returning the Start of a Date Period for a Given Date

Example:

Example:

298

Using the Start of Week Parameter for DTRUNC

The following request returns the date that is the start of the week for the start date of certain

employees:

DEFI NE FI LE WF_RETAI L

DAY1/ W = DTRUNC(START DATE, DAY):

WKSTART/ YYMD = DTRUNC(START_DATE, WEEK);
DAY2/ WI' = DTRUNC(VWKSTART, DAY);

END

TABLE FI LE WF_RETAI L

PRI NT START_DATE
DAYl AS ' DOW 1'

WKSTART AS ' Start, of Wek'

DAY2 AS ' DOW 2'

BY EMPLOYEE_NUMBER
VHERE START_DATE GT ' 20130101

VHERE EMPLOYEE_NUMBER CONTAINS ' AH

ON TABLE SET PAGE NOPAGE

END

The output is:

Enpl oyee Start Start

Nunber Dat e DOW1 of Wek DOW 2
AH118 2013/01/15 TUE 2013/01/13 SUN
AH2272 2013/01/17 THU 2013/01/13 SUN
AH288 2013/11/11 MON 2013/ 11/10 SUN
AH3520 2013/ 09/ 23 MON 2013/09/22 SUN
AH3591 2013/ 09/ 22 SUN 2013/09/22 SUN
AH5177 2013/ 07/21 SUN 2013/ 07/ 21 SUN

Returning the Date of the First and Last Days of a Week

The following request returns the dates that correspond to the first day of the week and the

last day of the week for the given date.

DEFI NE FI LE WF_RETAI L

WEEKSTART/ YYMD = DTRUNC(START_DATE, WEEK);
WEEKEND/ YYMD = DTRUNC(START_DATE, WEEK_END) ;
END

TABLE FI LE WF_RETAI L

PRI NT START_DATE WEEKSTART AS ' Start, of Week'
WEEKEND AS ' End, of Week'

BY EMPLOYEE_NUMBER

WHERE EMPLOYEE_NUMBER CONTAI'NS ' AHL'

ON TABLE SET PAGE NOPAGE

END

Information Builders

11. Simplified Date and Date-Time Functions I

The output is shown in the following image.

Emplovee |Start Start End
Humber |[Date of Weel of Weel:

AH113 [2013/01/152013/01/13 |2013/01/19
\4TT1348 |[2009/11/19|2009/11/15 |2009/11/21
|4H1398 [2009/11/11 |2009/11/08 [2009/11/14
41994 |2006/01/01 [2006/01/01 [2006/01/07

Using Functions 299

DTRUNC: Returning the Start of a Date Period for a Given Date

300 Information Builders

Chapter

Date Functions

Date functions manipulate date values. There are two types of date functions:

Id Standard date functions for use with non-legacy dates.

Id Legacy date functions for use with legacy dates.

In this chapter:

d
d

Overview of Date Functions
Using Standard Date Functions

DATEADD: Adding or Subtracting a Date
Unit to or From a Date

DATECVT: Converting the Format of a
Date

DATEDIF: Finding the Difference Between
Two Dates

DATEMOV: Moving a Date to a
Significant Point

DATETRAN: Formatting Dates in
International Formats

DPART: Extracting a Component From a
Date

FIQTR: Obtaining the Financial Quarter
FIYR: Obtaining the Financial Year

FIYYQ: Converting a Calendar Date to a
Financial Date

L U v d u

L

If a date is in an alphanumeric or numeric field that contains date display options (for
example, I6YMD), you must use the legacy date functions.

TODAY: Returning the Current Date
Using Legacy Date Functions

AYM: Adding or Subtracting Months
AYMD: Adding or Subtracting Days

CHGDAT: Changing How a Date String
Displays

DA Functions: Converting a Legacy Date
to an Integer

DMY, MDY, YMD: Calculating the
Difference Between Two Dates

DOWK and DOWKL: Finding the Day of
the Week

DT Functions: Converting an Integer to a
Date

GREGDT: Converting From Julian to
Gregorian Format

JULDAT: Converting From Gregorian to
Julian Format

YM: Calculating Elapsed Months

Using Functions

301

Overview of Date Functions

Overview of Date Functions

302

The following explains the difference between the types of date functions:

. Standard date functions are for use with standard date formats, or just date formats. A

date format refers to internally stored data that is capable of holding date components,
such as century, year, quarter, month, and day. It does not include time components. A
synonym does not specify an internal data type or length for a date format. Instead, it
specifies display date components, such as D (day), M (month), Q (quarter), Y (2-digit year),
or YY (4-digit year). For example, format MDYY is a date format that has three date
components; it can be used in the USAGE attribute of a synonym. A real date value, such
as March 9, 2004, described by this format is displayed as 03/09/2004, by default. Date
formats can be full component and non-full component. Full component formats include all
three letters, for example, D, M, and Y. JUL for Julian can also be included. All other date
formats are non-full component. Some date functions require full component arguments for
date fields, while others will accept full or non-full components. A date format was formerly

called a smart date.

4 Legacy date functions are for use with legacy dates only. A legacy date refers to formats
with date edit options, such as I6YMD, A6MDY, ISYYMD, or ASBMDYY. For example, AGMDY
is a 6-byte alphanumeric string. The suffix MDY indicates the order in which the date
components are stored in the field, and the prefix | or A indicates a numeric or
alphanumeric form of representation. For example, a value '030599' can be assigned to a
field with format AGMDY, which will be displayed as 03/05/99.

Date formats have an internal representation matching either numeric or alphanumeric format.
For example, AGMDY matches alphanumeric format, YYMD and I6DMY match numeric format.
When function output is a date in specified by output, it can be used either for assignment to
another date field of this format, or it can be used for further data manipulation in the
expression with data of matching formats. Assignment to another field of a different date
format, will yield a random result.

In addition to the functions discussed in this topic, there are date and time functions that are
available only in the Maintain language. For information on these functions, see Maintain-
specific Date and Time Functions on page 419.

For many functions, the output argument can be supplied either as a field name or as a format

enclosed in single quotation marks. However, if a function is called from a Dialogue Manager
command, this argument must always be supplied as a format, and if a function is called from
a Maintain procedure, this argument must always be supplied as a field name. For detailed
information about calling a function and supplying arguments, see Accessing and Calling a
Function on page 61.

Information Builders

12. Date Functions I

Using Standard Date Functions

When using standard date functions, you need to understand the settings that alter the
behavior of these functions, as well as the acceptable formats and how to supply values in
these formats.

You can affect the behavior of date functions in the following ways:

.4 Defining which days of the week are work days and which are not. Then, when you use a
date function involving work days, dates that are not work days are ignored. For details, see
Specifying Work Days on page 303.

.4 Determining whether to display leading zeros when a date function in Dialogue Manager
returns a date. For details, see Enabling Leading Zeros For Date and Time Functions in
Dialogue Manager on page 309.

For detailed information on each standard date function, see:

DATEADD: Adding or Subtracting a Date Unit to or From a Date on page 311
DATECVT: Converting the Format of a Date on page 314

DATEDIF: Finding the Difference Between Two Dates on page 316
DATEMOV: Moving a Date to a Significant Point on page 319

DATETRAN: Formatting Dates in International Formats on page 326

DPART: Extracting a Component From a Date on page 342

FIYR: Obtaining the Financial Year on page 346

FIQTR: Obtaining the Financial Quarter on page 344

FIYYQ: Converting a Calendar Date to a Financial Date on page 348

TODAY: Returning the Current Date on page 351

Specifying Work Days

You can determine which days are work days and which are not. Work days affect the
DATEADD, DATEDIF, and DATEMOV functions. You identify work days as business days or
holidays.

Specifying Business Days

Business days are traditionally Monday through Friday, but not every business has this
schedule. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday, and Saturday, you can tailor business day units to reflect that schedule.

Using Functions 303

Using Standard Date Functions

Syntax:

Example:

Syntax:

Reference:

304

How to Set Business Days
SET BUSDAYS = smtutfs

where:

smwfs
Is the seven character list of days that represents your business week. The list has a
position for each day from Sunday to Saturday:

d To identify a day of the week as a business day, enter the first letter of that day in that
day's position.

d To identify a non-business day, enter an underscore (_) in that day's position.

If a letter is not in its correct position, or if you replace a letter with a character other than
an underscore, you receive an error message.

Setting Business Days to Reflect Your Work Week
The following designates work days as Sunday, Tuesday, Wednesday, Friday, and Saturday:

SET BUSDAYS = S TWFS

How to View the Current Setting of Business Days

? SET BUSDAYS

Specifying Holidays

You can specify a list of dates that are designated as holidays in your company. These dates
are excluded when using functions that perform calculations based on working days. For
example, if Thursday in a given week is designated as a holiday, the next working day after
Wednesday is Friday.

To define a list of holidays, you must:

1. Create a holiday file using a standard text editor.

2. Select the holiday file by issuing the SET command with the HDAY parameter.

Rules for Creating a Holiday File
- Dates must be in YYMD format.

-l Dates must be in ascending order.

Information Builders

12. Date Functions I

- Each date must be on its own line.

.4 Each year for which data exists must be included or the holiday file is considered invalid.

Calling a date function with a date value outside the range of the holiday file returns a zero
for business day requests.

If you are subtracting two dates in 2005, and the latest date in the holiday file is
20041231, the subtraction will not be performed. One way to avoid invalidating the holiday
file is to put a date very far in the future in any holiday file you create (for example,
29991231), and then it will always be considered valid.

4 You may include an optional description of the holiday, separated from the date by a space.

By default, the holiday file has a file hame of the form HDAYxxxx.err and is on your path, or on
z/0S under PDS deployment, is a member named HDAYxxxx of a PDS allocated to DDNAME
ERRORS. In your procedure or request, you must issue the SET HDAY=xxxx command to
identify the file or member name. Alternatively, you can define the file to have any name and
be stored anywhere or, on z/0S under PDS deployment, allocate the holiday file as a
sequential file of any name or as member HDAYxxxx of any PDS. For information about using
non-default holiday file names, see How to FILEDEF or DYNAM the Holiday File on page 306.

Procedure: How to Create a Holiday File

1.

Using Functions

In a text editor, create a list of dates designated as holidays using the Rules for Creating a
Holiday File on page 304.

Save the file.

If you are not using the default naming convention, see How to FILEDEF or DYNAM the
Holiday File on page 306. If you are using the default naming convention, use the
following instructions:

In Windows and UNIX: The file must be HDAYxxxx.ERR

In z/0S: The file must be a member of ERRORS named HDAYxxxx.
where:

XXXX

Is a string of text four characters long.

305

Using Standard Date Functions

Syntax:

Example:

Syntax:

306

How to Select a Holiday File
SET HDAY = Xxxx

where:

XXXX

Is the part of the name of the holiday file after HDAY. This string must be four characters

long.

Creating and Selecting a Holiday File

The following is the HDAYTEST file, which establishes holidays:

19910325 TEST HOLI DAY
19911225 CHRI STVAS

The following sets HDAYTEST as the holiday file:

SET BUSDAYS = SMIWIFS
SET HDAY = TEST

This request uses HDAYTEST in its calculations:

TABLE FI LE MOVl ES

PRI NT TI TLE RELDATE

COVWPUTE NEXTDATE/ YMD = DATEADD(RELDATE, 'BD, 1);
VWHERE RELDATE CE '19910101';

END

The output is:
TI TLE RELDATE

TOTAL RECALL 91/ 03/ 24

How to FILEDEF or DYNAM the Holiday File

NEXTDATE

91/ 03/ 26

In all environments except z/0S under PDS deployment, use the following syntax.

FI LEDEF HDAYxxxx DI SK { appl | pat by ! il ename. ext

where:

HDAY xx xx

Is the logical name (DDNAME) for the holiday file, where xxxx is any four characters. You
establish this logical name by issuing the SET HDAY=xxxx command in your procedure or

request.

Information Builders

12. Date Functions I

Example:

app
Is the name of the application in which the holiday file resides.
pat h
Is the path to the holiday file.
filenane. ext
Is the name of the holiday file.
On z/0S under PDS deployment, use the following to allocate a sequential holiday file.
DYNAM ALLOC {DD| FI LE} HDAYxxxx DA qualif.filenanme. suffix SHR REU
On z/0S under PDS deployment, use the following to allocate a holiday file that is a member of
a PDS.

DYNAM ALLOC {DD| FI LE} HDAYxxxx DA qualif.filename. suffix(HDAYxxx) SHR REU

where:
HDAY xx Xx X

Is the DDNAME for the holiday file. Your FOCEXEC or request must set the HDAY
parameter to xxxx, where xxxx is any four characters you choose. If your holiday file is a
member of a PDS, HDAYxxxx must also be the member name.

qual i f. filename. suffix
Is the fully-qualified name of the sequential file that contains the list of holidays or the PDS
with member HDAYxxxx that contains the list of holidays.

Defining a Holiday File

The following holiday file, named holiday.data in the c:\temp directory on Windows, defines
November 3, 2011 and December 24, 2011 as holidays:

20111103
20111224

Using Functions 307

Using Standard Date Functions

Example:

308

The following request against the MOVIES data source uses the FILEDEF command to define
this file as the holiday file. The logical name in the FILEDEF command is HDAYMMMM, and the
procedure issues the SET HDAY=MMMM command. It then defines the date November 2,
2011 and calculates the next business day:

FI LEDEF HDAYMVWMM DI SK c: \i bi \ hol i day. dat a
SET HDAY = MVIWM

SET BUSDAYS = MIWIF_

DEFI NE FI LE MOVI ES

NEWDATE/ YYMD = ' 20111102 ;

NEXTDATE/ YYMD = DATEADD(NEWDATE, 'BD , 1):
END

TABLE FILE MOVI ES

SUM COPI ES NEWDATE NEXTDATE

ON TABLE SET PAGE NOPAGE

END

The output shows that the next business day after November 2 is November 4 because
November 3 is a holiday:

COPIES WEWDATE NEXTDATE
117 |2011/11/02 |2011/11/04

Allocating the Holiday File to a Sequential File on z/OS Under PDS Deployment

The following sequential file, named USER1.HOLIDAY.DATA, defines November 3, 2011 and
December 24, 2011 as holidays:

20111103
20111224

The following request against the MOVIES data source uses the DYNAM command to allocate
this file as the holiday file. The DDNAME in the DYNAM command is HDAYMMMM, and the
procedure issues the SET HDAY=MMMM command. It then defines the date November 2,
2011 and calculates the next business day:

DYNAM ALLOC DD HDAYMMWM DA USERL. HCOLI DAY. DATA SHR REU
SET HDAY = MVW

SET BUSDAYS = _MIWIF_

DEFI NE FI LE MOVI ES

NEWDATE/ YYMD = ' 20111102';

NEXTDATE/ YYND = DATEADD(NEWDATE, 'BD, 1);
END

TABLE FI LE MOVI ES

SUM COPI ES NEWDATE NEXTDATE

ON TABLE SET PAGE NOPAGE

END

Information Builders

12. Date Functions I

The output shows that the next business day after November 2 is November 4 because
November 3 is a holiday:

COPI ES NEWDATE NEXTDATE

117 2011/11/02 2011/11/04

Example: Allocating the Holiday File to a PDS Member on z/OS Under PDS Deployment

The following holiday file, member HDAYMMMM in a PDS named USER1.HOLIDAY.DATA,
defines November 3, 2011 and December 24, 2011 as holidays:

20111103
20111224

The following request against the MOVIES data source uses the DYNAM command to allocate
this file as the holiday file. The DDNAME in the DYNAM command is HDAYMMMM, the member
name is also HDAYMMMM, and the procedure issues the SET HDAY=MMMM command. It
then defines the date November 2, 2011 and calculates the next business day:

DYNAM ALLOC DD HDAYMMMM DA USERL. HOLI DAY. DATA(HDAYMVWM) SHR REU
SET HDAY = MVWM

SET BUSDAYS = _MIWTF_

DEFI NE FI LE MOVI ES

NEWDATE/ YYMD = ' 20111102 ;

NEXTDATE/ YYMD = DATEADD(NEWDATE, 'BD , 1);
END

TABLE FILE MOVI ES

SUM COPI ES NEWDATE NEXTDATE

ON TABLE SET PAGE NOPAGE

END

The output shows that the next business day after November 2 is November 4 because
November 3 is a holiday:

COPI ES NEWDATE NEXTDATE

117 2011/11/02 2011/11/04

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager

If you use a date and time function in Dialogue Manager that returns a numeric integer format,
Dialogue Manager truncates any leading zeros. For example, if a function returns the value
000101 (indicating January 1, 2000), Dialogue Manager truncates the leading zeros,
producing 101, an incorrect date. To avoid this problem, use the LEADZERO parameter.

Using Functions 309

Using Standard Date Functions

LEADZERO only supports an expression that makes a direct call to a function. An expression
that has nesting or another mathematical function always truncates leading zeros. For
example,

-SET &OUT = AYM & N, 1, '14')/100;

truncates leading zeros regardless of the LEADZERO parameter setting.
Syntax: How to Set the Display of Leading Zeros

SET LEADZERO = { ON| OFF}

where:
ON
Displays leading zeros if present.
OFF
Truncates leading zeros. OFF is the default value.
Example: Displaying Leading Zeros
The AYM function adds one month to the input date of December 1999:
-SET & N = '9912";

-SET &OUT = AYM &N, 1, '14");

Using the default LEADZERO setting, this yields:

1

This represents the date January 2000 incorrectly. Setting the LEADZERO parameter in the
request as follows:

SET LEADZERO = ON

-SET &N = '9912";

-SET &OUT = AYM &N, 1, '14");
- TYPE &QOUT

results in the following:

0001

This correctly indicates January 2000.

310 Information Builders

12. Date Functions I

DATEADD: Adding or Subtracting a Date Unit to or From a Date
Available Languages: reporting, Maintain

The DATEADD function adds a unit to or subtracts a unit from a full component date format. A
unit is one of the following:

- Year.

.4 Month. If the calculation using the month unit creates an invalid date, DATEADD corrects it
to the last day of the month. For example, adding one month to October 31 yields
November 30, not November 31, since November has 30 days.

- Day.

d Weekday. When using the weekday unit, DATEADD does not count Saturday or Sunday. For
example, if you add one day to Friday, first DATEADD moves to the next weekday, Monday,
then it adds a day. The result is Tuesday.

.d Business day. When using the business day unit, DATEADD uses the BUSDAYS parameter
setting and holiday file to determine which days are working days and disregards the rest. If
Monday is not a working day, then one business day past Sunday is Tuesday. See
Specifying Holidays on page 304 for more information.

Note that when the DATEADD function calculates the next or previous business day or work
day, it always starts from a business day or work day. So if the actual day is Saturday or
Sunday, and the request wants to calculate the next business day, the function will use
Monday as the starting day, not Saturday or Sunday, and will return Tuesday as the next
business day. Similarly, when calculating the previous business day, it will use the starting day
Friday, and will return Thursday as the previous business day. You can use the DATEMOV
function to move the date to the correct type of day before using DATEADD. For more
information, see DATEMOV: Moving a Date to a Significant Point on page 319.

DATEADD requires a date to be in date format. Since Dialogue Manager interprets a date as
alphanumeric or numeric, and DATEADD requires a standard date stored as an offset from the
base date, do not use DATEADD with Dialogue Manager unless you first convert the variable
used as the input date to an offset from the base date.

For more information, see Calling a Function From a Dialogue Manager Command on page 70.

You add or subtract non day-based dates (for example, YM or YQ) directly without using
DATEADD.

DATEADD works only with full component dates.

Using Functions 311

DATEADD: Adding or Subtracting a Date Unit to or From a Date

Syntax: How to Add or Subtract a Date Unit to or From a Date
DATEADD(dat e, ' conponent', [ncrenent)

where:

dat e
Date

Is a full component date.

conponent
Alphanumeric

Is one of the following enclosed in single quotation marks:
Y indicates a year component.

Mindicates a month component.

Dindicates a day component.

WD indicates a weekday component.

BD indicates a business day component.

i ncrenment
Integer

Is the number of date units added to or subtracted from date. If this number is not a whole
unit, it is rounded down to the next largest integer.

Note: DATEADD does not use an output argument. It uses the format of the date argument for
the result. As long as the result is a full component date, it can be assighed only to a full
component date field or to integer field.

Example: Truncation With DATEADD

The number of units passed to DATEADD is always a whole unit. For example

DATEADD(DATE, 'M, 1.999)

adds one month because the number of units is less than two.

312 Information Builders

12. Date Functions I

Example: Using the Weekday Unit

If you use the weekday unit and a Saturday or Sunday is the input date, DATEADD changes the

input date to Monday. The function
DATEADD(' 910623', 'WD , 1)

in which DATE is either Saturday or Sunday yields Tuesday; Saturday and Sunday are not

weekdays, so DATEADD begins with Monday and adds one.

Note that the single quotes around the number in the first argument, ‘910623’, causes it to

be treated as a natural date literal.

Example: ~ Adding Weekdays to a Date (Reporting)

DATEADD adds three weekdays to NEW_DATE. In some cases, it adds more than three days
because HIRE_DATE_PLUS_THREE would otherwise be on a weekend.

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAVE AND HI RE_DATE AND COVPUTE

NEW DATE/ YYMD = HI RE_DATE;

HI RE_DATE_PLUS_THREE/ YYMD = DATEADD (NEW_DATE, 'WD', 3);

BY LAST NAME
WHERE DEPARTMENT EQ 'M S' ;
END

The output is:

LAST_NAME FI RST_NAME HI RE_DATE
BLACKWOOD ROSEMARI E 82/ 04/ 01
CRCSS BARBARA 81/11/02
GREENSPAN MARY 82/ 04/ 01
JONES DI ANE 82/ 05/ 01
MCCOY JOHN 81/ 07/ 01
SM TH MARY 81/07/01

Using Functions

1982/ 04/ 01
1981/ 11/ 02
1982/ 04/ 01
1982/ 05/ 01
1981/ 07/ 01
1981/ 07/ 01

HI RE_DATE_PLUS_THREE

1982/ 04/ 06
1981/ 11/ 05
1982/ 04/ 06
1982/ 05/ 06
1981/ 07/ 06
1981/ 07/ 06

313

DATECVT: Converting the Format of a Date

Example: Determining If a Date Is a Work Day (Reporting)

DATEADD determines which values in the TRANSDATE field do not represent work days by
adding zero days to TRANSDATE using the business day unit. If TRANSDATE does not
represent a business day, DATEADD returns the next business day to DATEX. TRANSDATE is
then compared to DATEX, and the day of the week is printed for all dates that do not match
between the two fields, resulting in a list of all non-work days.

DEFI NE FI LE VI DEOTRK

DATEX/ YMD = DATEADD (TRANSDATE, 'BD', 0);

DATEI NT/ | 8YYMD = DATECVT(TRANSDATE, 'YMD ,'18YYMD);

END

TABLE FI LE VI DEOTRK

SUM TRANSDATE NOPRI NT

COVWPUTE DAYNAMVE/ A8 = DOWKL(DATEI NT, DAYNAME); AS 'Day of Week'
BY TRANSDATE AS ' Dat e’

VWHERE TRANSDATE NE DATEX

END

The output is:
Dat e Day of Wek

91/ 06/ 22 SATURDAY
91/ 06/ 23 SUNDAY
91/ 06/ 30 SUNDAY
Example: Adding Months to a Date (Maintain)

DATEADD adds months to the DATE1 field:

MAI NTAI' N

conput e DATELl/yynd = '20000101'

conput e DATE2/ yynd=dateadd (datel, 'M', 2, date2);
type "DATEl = <<DATEl + 2 MONTHS = DATE2 = <<DATE2"
END

The result is:

DATE1 = 2000/01/01+ 2 MONTHS = DATE2 = 2000/ 03/01

DATECVT: Converting the Format of a Date
Available Languages: reporting, Maintain

The DATECVT function converts the field value of any standard date format or legacy date
format into a date format (offset from the base date), in the desired standard date format or
legacy date format. If you supply an invalid format, DATECVT returns a zero or a blank.

DATECVT turns off optimization and compilation.

314 Information Builders

12. Date Functions I

Note: You can use simple assignment instead of calling this function.
Syntax: How to Convert a Date Format

DATECVT(date, 'in_fornmat', output)

where:

dat e

Date

Is the date to be converted. If you supply an invalid date, DATECVT returns zero. When the
conversion is performed, a legacy date obeys any DEFCENT and YRTHRESH parameter
settings supplied for that field.

/i n_fornat
Alphanumeric
Is the format of the date enclosed in single quotation marks. It is one of the following:
- A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).
4 A legacy date format (for example, IBYMD or ASMDYY).

.4 A non-date format (such as I8 or AB). A non-date format in in_format functions as an
offset from the base date of a YYMD field (12/31/1900).

out put
Alphanumeric

Is the output format enclosed in single quotation marks or a field containing the format. It
is one of the following;:

4 A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).
4 A legacy date format (for example, IGYMD or ASMDYY).

. A non-date format (such as I8 or AB). This format type causes DATECVT to convert the
date into a full component date and return it as a whole number in the format provided.

Example: Converting a YYMD Date to DMY

DATECVT converts 19991231 to 311299 and stores the result in CONV_FIELD:
CONV_FI ELD/ DMWY = DATECVT(19991231, 'I18YYMD , 'DW');

or

Using Functions 315

DATEDIF: Finding the Difference Between Two Dates

Example:

ONV_FI ELD/ DMY = DATECVT(' 19991231', ' ASYYMD , 'DW');
Converting a Legacy Date to Date Format (Reporting)

DATECVT converts HIRE_DATE from I6YMD legacy date format to YYMD date format:

TABLE FI LE EMPLOYEE
PRI NT FI RST_NAVE AND HI RE_DATE AND COVPUTE

NEW HI RE_DATE/ YYMD = DATECVT (HIRE DATE, 'I6YMD', 'YYMD');
BY LAST_NAME

VWHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAMVE FIRST_NAME H RE_DATE NEW H RE_DATE
BLACKWOOD ROSEMARI E 82/04/01 1982/ 04/ 01
CROSS BARBARA 81/11/02 1981/ 11/ 02
GREENSPAN MARY 82/04/01 1982/ 04/ 01
JONES DI ANE 82/05/01 1982/ 05/ 01
MCCOY JOHN 81/07/01 1981/ 07/ 01
SM TH MARY 81/07/01 1981/07/01

DATEDIF: Finding the Difference Between Two Dates

316

Available Languages: reporting, Maintain

The DATEDIF function returns the difference between two full component standard dates in
units of a specified component. A component is one of the following:

4 Year. Using the year unit with DATEDIF yields the inverse of DATEADD. If subtracting one
year from date X creates date Y, then the count of years between X and Y is one.
Subtracting one year from February 29 produces the date February 28.

4 Month. Using the month component with DATEDIF yields the inverse of DATEADD. If
subtracting one month from date X creates date Y, then the count of months between X
and Y is one. If the to-date is the end-of-month, then the month difference may be rounded
up (in absolute terms) to guarantee the inverse rule.

If one or both of the input dates is the end of the month, DATEDIF takes this into account.
This means that the difference between January 31 and April 30 is three months, not two
months.

4 Day.
d Weekday. With the weekday unit, DATEDIF does not count Saturday or Sunday when

calculating days. This means that the difference between Friday and Monday is one day.

Information Builders

12. Date Functions I

Syntax:

-l Business day. With the business day unit, DATEDIF uses the BUSDAYS parameter setting
and holiday file to determine which days are working days and disregards the rest. This
means that if Monday is not a working day, the difference between Friday and Tuesday is
one day. See Rules for Creating a Holiday File on page 304 for more information.

DATEDIF returns a whole number. If the difference between two dates is not a whole number,
DATEDIF truncates the value to the next largest integer. For example, the number of years
between March 2, 2001, and March 1, 2002, is zero. If the end date is before the start date,
DATEDIF returns a negative number.

You can find the difference between non-day based dates (for example YM or YQ) directly
without using DATEDIF.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEDIF requires a
standard date stored as an offset from the base date, do not use DATEDIF with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the base
date.

For more information, see Calling a Function From a Dialogue Manager Command on page 70.

DATEDIF works only with full component dates.
How to Find the Difference Between Two Dates
DATEDI F(from date, to _date, 'conponent')

where:

from date
Date

Is the start date from which to calculate the difference. Is a full component date.

to _date
Date

Is the end date from which to calculate the difference.

Using Functions 317

DATEDIF: Finding the Difference Between Two Dates

conponent
Alphanumeric

Is one of the following enclosed in single quotation marks:
Y indicates a year unit.

Mindicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

Note: DATEDIF does not use an output argument because for the result it uses the format 'I8'.

Example: Truncation With DATEDIF
DATEDIF calculates the difference between March 2, 1996, and March 1, 1997, and returns a
zero because the difference is less than a year:

DATEDI F(' 19960302', '19970301', 'Y')

Example: Using Month Calculations

The following expressions return a result of minus one month:

DATEDI F(' 19990228', '19990128',
DATEDI F(' 19990228', '19990129',
DATEDI F(' 19990228', '19990130',
DATEDI F(' 19990228', '19990131',

<=L

Additional examples:
DATEDI F(' March 31 2001', 'May 31 2001', 'M) yields 2.

DATEDI F(' March 31 2001', 'May 30 2001', 'M) yields 1 (because May 30 is not the
end of the month).

DATEDI F(' March 31 2001', 'April 30 2001', 'M) yields 1.

318 Information Builders

12. Date Functions I

Example:

Example:

Finding the Number of Weekdays Between Two Dates (Reporting)

DATECVT converts the legacy dates in HIRE_DATE and DAT_INC to the date format YYMD.
DATEDIF then uses those date formats to determine the number of weekdays between
NEW_HIRE_DATE and NEW_DAT_INC:

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAVE AND

COMPUTE NEW HI RE_DATE/ YYMD = DATECVT(H RE_DATE, 'I6YMD, 'YYMD); AND
COMPUTE NEW DAT_I NC/ YYMD = DATECVT(DAT_INC, 'I6YMD, 'YYMD); AND
COVPUTE WDAYS_HI RED/ | 8 = DATEDIF (NEW_HIRE DATE, NEW_DAT INC, 'WD');
BY LAST_NAME

| F WDAYS_HI RED NE 0

VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME NEW H RE_DATE NEWDAT_INC WDAYS H RED
I RVI NG JOAN 1982/ 01/ 04 1982/ 05/ 14 94
MCKNI GHT ROCGER 1982/ 02/ 02 1982/ 05/ 14 73
SM TH RI CHARD 1982/ 01/ 04 1982/ 05/ 14 94
STEVENS ALFRED 1980/ 06/ 02 1982/ 01/01 414
ALFRED 1980/ 06/ 02 1981/ 01/ 01 153

Finding the Number of Years Between Two Dates (Maintain)
DATEDIF determines the number of years between DATE2 and DATE1:

MAI NTAI N

Case Top

conput e DATEl/yynd = '20020717';

conput e DATE2/yynd = ' 19880705 ;

conput e DI FF/ | 3= DATEDI F(DATE2, DATEl, 'Y', DI FF);
type "<<DATE1 - <<DATE2 = <DIFF YEARS"
ENDCASE

END

The result is:

2002/ 07/17 - 1988/07/05 = 14 YEARS

DATEMOV: Moving a Date to a Significant Point

Available Languages: reporting, Maintain

The DATEMOV function moves a date to a significant point on the calendar.

Using Functions 319

DATEMOV: Moving a Date to a Significant Point

Syntax:

320

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEMOV requires
a standard date stored as an offset from the base date, do not use DATEMOV with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the base
date. For example, the following converts the integer legacy date 20050131 to a smart date,
adds one month, and converts the result to an alphanumeric legacy date:

- SET &STRT=DATECVT(20050131,"'18YYMD , 'YYMD);
- SET &NMI=DATEADD(&STRT, ' M, 1) ;

- SET &NMTA=DATECVT(&NMT, ' YYMD' , ' ABMIDYY") ;
-TYPE A MONTH FROM 20050131 | S &NMIA

The output shows that the DATEADD function added the actual number of days in the month of
February to get to the end of the month from the end of January:

A MONTH FROM 20050131 | S 02282005

For more information, see Calling a Function From a Dialogue Manager Command on page 70.

DATEMOV works only with full component dates.
How to Move a Date to a Significant Point
DATEMOV(dat e, ' nove-poi nt')

where:

dat e
Date

Is the date to be moved. It must be a full component format date (for example, MDYY or
YYJUL).

nove- poi nt
Alphanumeric

Is the significant point the date is moved to enclosed in single quotation marks ('). An
invalid point results in a return code of zero. Valid values are:

.4 EOM, which is the end of month.

4 BOM, which is the beginning of month.
4 EOQ, which is the end of quarter.

4 BOQ, which is the beginning of quarter.
d

EOQY, which is the end of year.

Information Builders

12. Date Functions I

Example:

BOY, which is the beginning of year.
EOW, which is the end of week.
BOW, which is the beginning of week.
NWD, which is the next weekday.
NBD, which is the next business day.
PWD, which is the prior weekday.
PBD, which is the prior business day.
WD-, which is a weekday or earlier.

BD-, which is a business day or earlier.

L U U U v J uJ oJ oo

WD+, which is a weekday or later.

-1 BD+, which is a business day or later.
A business day calculation is affected by the BUSDAYS and HDAY parameter settings.

Note that when the DATEADD function calculates the next or previous business day or work
day, it always starts from a business day or work day. So if the actual day is Saturday or
Sunday, and the request wants to calculate the next business day, the function will use
Monday as the starting day, not Saturday or Sunday, and will return Tuesday as the next
business day. Similarly, when calculating the previous business day, it will use the starting day
Friday, and will return Thursday as the previous business day.

To avoid skipping a business day or work day, use DATEMOV. To return the next business or
work day, use BD- or WD- to first move to the previous business or work day (if it is already a
business day or work day, it will not be moved). Then use DATEADD to move to the next
business or work day. If you want to return the previous business or work day, first use BD+ or
WD+ to move to the next business or work day (if it is already the correct type of day, it will not
be moved). Then use DATEADD to return the previous business or work day.

Note: DATEMOV does not use an output argument. It uses the format of the date argument for
the result. As long as the result is a full component date, it can be assigned only to a full
component date field or to an integer field.

Returning the Next Business Day

This example shows why you may need to use DATEMOV to get the correct result.

Using Functions 321

DATEMOV: Moving a Date to a Significant Point

322

The following request against the GGSALES data source uses the BD (Business Day) move
point against the DATE field. First DATE is converted to a smart date, then DATEADD is called
with the BD move-point:

DEFI NE FI LE GGSALES
DT1/ WWDYY=DATE;
DT2/ WWDYY = DATEADD(DT1 ,'BD , 1);
DAY/ Dt = DT1,;
END

TABLE FI LE GGSALES

SUM DTl

D12

BY DT1 NOPRI NT

VWHERE RECORDLIM T EQ 10
END

When the date is on a Saturday or Sunday on the output, the next business day is returned as
a Tuesday. This is because before doing the calculation, the original date was moved to a
business day:

DTl D12

SUN, 09/01/1996 TUE, 09/03/1996
FRI, 11/01/1996 MON, 11/04/1996
SUN, 12/01/1996 TUE, 12/03/1996
SAT, 03/01/1997 TUE, 03/04/1997
TUE, 04/01/1997 WED, 04/02/1997
THU, 05/01/1997 FRI, 05/02/1997
SUN, 06/01/1997 TUE, 06/03/1997
MON, 09/01/1997 TUE, 09/02/1997
WED, 10/01/1997 THU, 10/02/1997

In the following version of the request, DATEMOV is called to make sure the starting day is a
business day. The move point specified in the first call is BD- which only moves the date to the
prior business day if it is not already a business day. The call to DATEADD then uses the BD
move point to return the next business day:

DEFI NE FI LE GGSALES
DT1/ WWDYY=DATE;
DT1A/ WWDYY=DATEMOV(DT1, 'BD-');
DT2/ WWDYY = DATEADD(DT1A,' BD , 1);
DAY/ Dt = DT1;

END

TABLE FI LE GGSALES

SUM DT1 DT1A DT2

BY DT1 NOPRI NT

VWHERE RECORDLIM T EQ 10
END

Information Builders

12. Date Functions I

Example:

On the output, the next business day after a Saturday or Sunday is now returned as Monday:

DTl DT1A D12
SUN, 09/01/1996 FRI, 08/30/1996 MON, 09/02/1996
FRI, 11/01/1996 FRI, 11/01/1996 MON, 11/04/1996
SUN, 12/01/1996 FRI, 11/29/1996 MON, 12/02/1996
SAT, 03/01/1997 FRI, 02/28/1997 MON, 03/03/1997
TUE, 04/01/1997 TUE, 04/01/1997 WED, 04/02/1997
THU, 05/01/1997 THU, 05/01/1997 FRI, 05/02/1997
SUN, 06/01/1997 FRI, 05/30/1997 MON, 06/02/1997
MON, 09/01/1997 MON, 09/01/1997 TUE, 09/02/1997
WED, 10/01/1997 WED, 10/01/1997 THU, 10/02/1997

Using a DEFINE FUNCTION to Move a Date to the Beginning of the Week

The following DEFINE FUNCTION named BOWK takes a date and the name of the day you want
to consider the beginning of the week and returns a date that corresponds to the beginning of
the week:

DEFI NE FUNCTI ON BOWK(THEDATE/ MDYY, VEEKSTART/ A10)

DAYOFVEEK/ W=THEDATE;

DAYNO | 1=I F DAYOFVEEEK EQ 7 THEN 0 ELSE DAYOFWEEK;

FI RSTOFWK/ | 1=DECODE WEEKSTART(' SUNDAY' 0O ' MONDAY' 1 ' TUESDAY' 2
' VEDNESDAY' 3 ' THURSDAY' 4 ' FRI DAY' 5 ' SATURDAY' 6

"SUN O "MON 1 'TUE 2 "WED 3 '"THU 4 "FRI' 5 'SAT" 6);

BOWK/ MDYY=I F DAYNO GE FI RSTOFWK THEN THEDATE- DAYNO+FI RSTOFVK
ELSE THEDATE- 7- DAYNO+FI RSTOFVK;

END

The following request uses the BOWK function to use return a date (DT2) that corresponds to
the beginning of the week for each value of the DT1 field:

DEFI NE FI LE GGSALES
DT1/ WWDYY=DATE;

DT2/ WWDYY = BOWK(DT1 ,' SUN);
END

TABLE FI LE GGSALES

SUM DTl

D12

BY DT1 NOPRI NT

VWHERE RECORDLIM T EQ 10
ON TABLE SET PAGE NOLEAD
END

The output is shown in the following image:

Using Functions 323

DATEMOV: Moving a Date to a Significant Point

Example:

324

[DT1 DT2

ST, 09/01/1996 [SUN, 09/01/1996
[FRI, 11/01/1996 ||SUN, 10/27/1996
ST, 1210141996 [SUN, 12/01/1996
|SAT, 0310171997 |[SUN, 02/23/1997
ITUE, 04/01/1997 |[SUN, 03/30/1997
ITHT, 05/01/1997 ||SUN, 04/27/1997
ST, 06/01/1997 [SUN, 06/01/1997
MO, 09/01/1997 [SUN, 08/31/1997
[WED, 10/01/1997 [SUN, 09/28/1997

Determining Significant Points for a Date (Reporting)

The BUSDAYS parameter sets the business days to Monday, Tuesday, Wednesday, and
Thursday. DATECVT converts the legacy date HIRE_DATE to the date format YYMD and provides
date display options. DATEMOV then determines significant points for HIRE_DATE.

SET BUSDAY = _MI'WI__
TABLE FI LE EMPLOYEE

PRI NT

COVPUTE NEW DATE/ YYND = DATECVT(H RE_DATE, 'I6YMD, 'YYMD); AND
COVPUTE NEW DATE/ WI' = DATECVT(H RE_DATE, 'I6YMD, '"WI'); AS 'DON AND
COVPUTE NWO/ WI' = DATEMOV (NEW_DATE, 'NWD'); AND

COVPUTE PWD/ WI DATEMOV (NEW_DATE, 'PWD'); AND

COVPUTE V\DP/ WI' DATEMOV (NEW_DATE, 'WD+'); AS 'WD+' AND

COVPUTE WDM WI DATEMOV (NEW_DATE, 'WD-'); AS 'WD-' AND

COVPUTE NBD/ WI DATEMOV (NEW_DATE, 'NBD'); AND

COVPUTE PBD/ WI DATEMOV (NEW_DATE, 'PBD'); AND

COVPUTE W\BP/ WI' DATEMOV (NEW_DATE, 'BD+'); AS 'BD+ AND

COVPUTE V\BM WI DATEMOV (NEW_DATE, 'BD-'); AS 'BD-' BY LAST_NAME NOPRI NT
HEADI NG

"Exanpl es of DATEMOV"

"Busi ness days are Monday, Tuesday, Wednesday, + Thursday "

"START DATE.. | MOVE PONTS. "
VWHERE DEPARTMENT EQ 'M S';
END

Information Builders

12. Date Functions I

The output is:

Exanpl es of DATEMOV

Busi ness days are Monday, Tuesday, Wdnesday, + Thursday
START DATE.. | MOVE PONTS.
NEW DATE DOV ND PW W+ WD- NBD PBD BD+ BD
1982/04/01 THU FRI WED THU THU MON WED THU THU
1981/11/02 MON TUE FRI MON MON TUE THU MON MON
1982/04/01 THU FRI WED THU THU MON WED THU THU
1982/05/01 SAT TUE THU MON FRI TUE WED MON THU
1981/07/01 WED THU TUE WED WED THU TUE WED WED
1981/07/01 WED THU TUE WD WED THU TUE WED WED

Example: Determining the End of the Week (Reporting)

DATEMOV determines the end of the week for each date in NEW_DATE and stores the result in
EOW:

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAME AND

COVWPUTE NEW DATE/ YYNDWI = DATECVT(H RE_DATE, 'I6YMD , 'YYNMDWI'); AND
COVPUTE EOW YYNDWI = DATEMOV (NEW_DATE, 'EOW');

BY LAST_NAME

WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME NEW DATE EOW

BANNI NG JOHN 1982 AUG 1, SUN 1982 AUG 6, FRI
I RVI NG JOAN 1982 JAN 4, MON 1982 JAN 8, FRI
MCKNI GHT ROCGER 1982 FEB 2, TUE 1982 FEB 5, FR
ROVANS ANTHONY 1982 JUL 1, THU 1982 JUL 2, FRI
SM TH Rl CHARD 1982 JAN 4, MON 1982 JAN 8, FR
STEVENS ALFRED 1980 JUN 2, MON 1980 JUN 6, FRI

Example: Determining the End of the Week (Maintain)

DATEMOV determines the end of the week for each date:

MAI NTAI'N

COVPUTE X/ YYNDWI=' 20020717" ;

COWUTE Y/ YYNDWI=DATEMOV (X, 'EOW', Y);
TYPE "<<X <<Y END OF WEEK "

END

The result is:

2002/ 07/ 17, WD 2002/07/19, FRI END OF VEEEK

Using Functions 325

DATETRAN: Formatting Dates in International Formats

DATETRAN: Formatting Dates in International Formats
Available Languages: reporting, Maintain

The DATETRAN function formats dates in international formats.

Syntax: How to Format Dates in International Formats
DATETRAN (/ ndate, '(intype)', '([formatops))', '/lang , outlen, output)
where:
I ndat e

Is the input date (in date format) to be formatted. Note that the date format cannot be an
alphanumeric or numeric format with date display options (legacy date format).
i ntype

Is one of the following character strings indicating the input date components and the
order in which you want them to display, enclosed in parentheses and single quotation
marks.

The following table shows the single component input types:

Single Component Input Type Description

(W Day of week component only (original format
must have only W component).

(M’ Month component only (original format must
have only M component).

The following table shows the two-component input types:

Two-Component Input Type Description

(YYM' Four-digit year followed by month.

(YM! Two-digit year followed by month.

(MY Month component followed by four-digit year.

326 Information Builders

12. Date Functions I

Two-Component Input Type

Description

(M)

Month component followed by two-digit year.

The following table shows the three-component input types:

Three-Component Input Type

Description

"(YYMD)' Four-digit year followed by month followed by
day.

"(YMD)' Two-digit year followed by month followed by
day.

" (DwYY) ! Day component followed by month followed by
four-digit year.

" (DWY) Day component followed by month followed by
two-digit year.

" (MDYY) ' Month component followed by day followed by
four-digit year.

" (MDY)' Month component followed by day followed by
two-digit year.

(M) Month component followed by day (derived from
three-component date by ignoring year
component).

(DM Day component followed by month (derived from

three-component date by ignoring year
component).

Using Functions

327

DATETRAN: Formatting Dates in International Formats

328

format ops

Is a string of zero or more formatting options enclosed in parentheses and single quotation
marks. The parentheses and quotation marks are required even if you do not specify
formatting options. Formatting options fall into the following categories:

.4 Options for suppressing initial zeros in month or day numbers.

Note: Zero suppression replaces initial zeros with blanks spaces.

.4 Options for translating month or day components to full or abbreviated uppercase or
default case (mixed-case or lowercase depending on the language) names.

. Date delimiter options and options for punctuating a date with commas.

Valid options for suppressing initial zeros in month or day numbers are listed in the
following table. Note that the initial zero is replaced by a blank space:

Format Option

Description

m

Zero-suppresses months (displays numeric
months before October as 1 through 9 rather
than 01 through 09).

Displays days before the tenth of the month as 1
through 9 rather than 01 through 09.

dp

Displays days before the tenth of the month as 1
through 9 rather than 01 through 09 with a
period after the number.

do

Displays days before the tenth of the month as 1
through 9. For English (langcode EN) only,
displays an ordinal suffix (st, nd, rd, or th) after
the number.

The following table shows valid month and day name translation options:

Format Option

Description

T

Displays month as an abbreviated name, with no
punctuation, all uppercase.

Information Builders

12. Date Functions I

Format Option

Description

TR

Displays month as a full name, all uppercase.

Tp

Displays month as an abbreviated name,
followed by a period, all uppercase.

Displays month as an abbreviated name with no
punctuation. The name is all lowercase or initial
uppercase, depending on language code.

tr

Displays month as a full name. The name is all
lowercase or initial uppercase, depending on
language code.

tp

Displays month as an abbreviated name,
followed by a period. The name displays in the
default case of the specified language (for
example, all lowercase for French and Spanish,
initial uppercase for English and German).

Includes an abbreviated day-of-the-week name at
the start of the displayed date, all uppercase
with no punctuation.

Includes a full day-of-the-week name at the start
of the displayed date, all uppercase.

Includes an abbreviated day-of-the-week name at
the start of the displayed date, all uppercase,
followed by a period.

Includes an abbreviated day-of-the-week name at
the start of the displayed date with no
punctuation. The name displays in the default
case of the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

Using Functions

329

DATETRAN: Formatting Dates in International Formats

Format Option

Description

wr

Includes a full day-of-the-week name at the start
of the displayed date. The name displays in the
default case of the specified language (for
example, all lowercase for French and Spanish,
initial uppercase for English and German).

Includes an abbreviated day-of-the-week name at
the start of the displayed date followed by a
period. The name displays in the default case of
the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

Includes an abbreviated day-of-the-week name at
the end of the displayed date, all uppercase with
no punctuation.

XR

Includes a full day-of-the-week name at the end
of the displayed date, all uppercase.

Xp

Includes an abbreviated day-of-the-week name at
the end of the displayed date, all uppercase,
followed by a period.

Includes an abbreviated day-of-the-week name at
the end of the displayed date with no
punctuation. The name displays in the default
case of the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

Xr

Includes a full day-of-the-week name at the end
of the displayed date. The name displays in the
default case of the specified language (for
example, all lowercase for French and Spanish,
initial uppercase for English and German).

330

Information Builders

12. Date Functions I

Using Functions

Format Option

Description

Xp

Includes an abbreviated day-of-the-week name at
the end of the displayed date followed by a
period. The name displays in the default case of
the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

The following table shows valid date delimiter options:

Format Option

Description

B

Uses a blank as the component delimiter. This is
the default if the month or day of week is
translated or if comma is used.

Uses a period (.) as the component delimiter.

Uses a minus sign (-) as the component
delimiter. This is the default when the conditions
for a blank default delimiter are not satisfied.

Uses a slash (/) as the component delimiter.

Omits component delimiters.

Uses appropriate Asian characters as component
delimiters.

Places a comma (,) after the month name
(following T, Tp, TR, t, tp, or tr).

Places a comma and blank after the day name
(following W, Wp, WR, w, wp, or wr).

Places a comma and blank before the day name
(following X, XR, X, or xr).

331

DATETRAN: Formatting Dates in International Formats

Format Option Description

e Displays the Spanish or Portuguese word de or
DE between the day and month, and between the
month and year. The case of the word de is
determined by the case of the month name. If the
month is displayed in uppercase, DE is displayed.
Otherwise, de is displayed. Useful for formats
DMY, DMYY, MY, and MYY.

D Inserts a comma (,) after the day number and
before the general delimiter character specified.

Y Inserts a comma (,) after the year and before the
general delimiter character specified.

| ang

Is the two-character standard 1SO code for the language into which the date should be
translated, enclosed in single quotation marks ('). Valid language codes are:

4 'AR' Arabic
'CS' Czech
'DA' Danish
'DE' German
'EN' English
'ES' Spanish
'FI' Finnish
'FR' French
'EL' Greek
'IW' Hebrew

'IT" Italian

L U U U U v J uJd o dod

'JA' Japanese

332 Information Builders

12. Date Functions I

Reference:

'KO" Korean
'LT' Lithuanian
'NL' Dutch

'NO' Norwegian
'PO’ Polish

'PT' Portuguese
'RU" Russian
'SV' Swedish
'TH' Thai

'TR" Turkish

L U U U U v J uJ oJ dod

'TW' Chinese (Traditional)
.4 'ZH' Chinese (Simplified)
outlen
Numeric

Is the length of the output field in bytes. If the length is insufficient, an all blank result is
returned. If the length is greater than required, the field is padded with blanks on the right.

out put
Alphanumeric
Is the name of the field that contains the translated date, or its format enclosed in single

quotation marks.

Usage Notes for the DATETRAN Function

. The output field, though it must be type A, and not AnV, may in fact contain variable length
information, since the lengths of month names and day names can vary, and also month
and day numbers may be either one or two bytes long if a zero-suppression option is
selected. Unused bytes are filled with blanks.

.4 All invalid and inconsistent inputs result in all blank output strings. Missing data also
results in blank output.

Using Functions 333

DATETRAN: Formatting Dates in International Formats

334

-l The base dates (1900-12-31 and 1900-12 or 1901-01) are treated as though the

DATEDISPLAY setting were ON (that is, not automatically shown as blanks). To suppress
the printing of base dates, which have an internal integer value of O, test for O before
calling DATETRAN. For example:

RESULT/ A0 = |F DATE EQ O THEN ' ' ELSE
DATETRAN (DATE, '(YYMD)', '(.t)', '"FR, 40, 'A40');

Valid translated date components are contained in files named DTLNGIng where Ing is a
three-character code that specifies the language. These files must be accessible for each
language into which you want to translate dates.

For these NLS characters to appear correctly, the Server and Client must be configured with
the correct code pages.

.4 The DATETRAN function is not supported in Dialogue Manager.

Information Builders

12. Date Functions I

Example: Using the DATETRAN Function

The following request prints the day of the week in the default case of the specific language:

DEFI NE FI LE VI DEOTRK
TRANS1/ YYMD=20050104;
TRANS2/ YYMD=20051003;

DATEW WETRANS1 ;
DATEWR/ WETRANS2 ;
DATEYYMD YYNDWETRANSL ;
DATEYYMD2/ YYNDWETRANS2 ;

QUT1A/ AB=DATETRAN(DATEW '
QUT1B/ AB=DATETRAN(DATEW2,
QUT1C/ AB=DATETRAN(DATEW "'(W', '(w)', "ES', 8 , "A8") ;

(W', "(w)", "EN, 8, "A8") ;
OUT1D/ AS=DATETRAN(DATEV®, '((W , '(w)', 'ES, 8, 'A8') ;
(
(

W', "(w)', "EN, 8, "A8") ;

OUT1E/ AS=DATETRAN(DATEW ' (W', '(wr)', 'FR, 8, 'A8') :
OUT1F/ AS=DATETRAN(DATEV®, ' :
OUT1G A8=DATETRAN(DATEW ' (W'
OUT1H A8=DATETRAN(DATEW®, ' (W', '(w)', 'DE, 8, 'A8') ;
END

TABLE FI LE VI DEOTRK

HEADI NG

"FORVAT wr "

"Full day of week nane at beginning of date, default case (w)"
"English / Spanish / French / Gernan"

SUM OQUT1A AS '' QOUT1B AS '' TRANSDATE NOPRI NT
OVER QUT1C AS '' QUT1D AS "'

OVER QUT1E AS '' QOUT1F AS "'

OVER QUT1G AS '' QUT1H AS "'

ON TABLE SET PAGE- NUM OFF

ON TABLE SET STYLE *

GRI D=CFF, $

END

Using Functions 335

DATETRAN: Formatting Dates in International Formats

336

The output is:

FOEMAT wr

Full day of week name at beginning of date, default casze (wt)
English / Spatush / French / German

Tueszday Idonday
mattes lunes
matdh lundi
Dienstag Ilontag

The following request prints a blank delimited date with an abbreviated month name in English.
Initial zeros in the day number are suppressed, and a suffix is added to the end of the number:

DEFI NE FI LE VI DEOTRK
TRANS1/ YYMD=20050104;
TRANS2/ YYMD=20050302;

DATEW WETRANS1 ;
DATEWR/ WETRANS2 ;
DATEYYMD/ YYNDWETRANSL ;
DATEYYNMD2/ YYNDWETRANS2 ;

OUT2A/ A15=DATETRAN(DATEYYMD, ' (MDYY)', '(Btdo)', 'EN, 15, 'Al5') ;
OUT2B/ A15=DATETRAN(DATEYYMD2, ' (MDYY)', '(Btdo)', 'EN, 15, 'Al5') ;
END

TABLE FI LE VI DEOTRK

HEADI NG

"FORVAT Bt do"

"Bl ank-delinmted (B)"

"Abbrevi ated nonth nanme, default case (t)"

"Zer o-suppress day nunber, end with suffix (do)"
"English"

SUM QUT2A AS '' QUT2B AS '' TRANSDATE NOPRI NT
ON TABLE SET PAGE- NUM OFF

END

Information Builders

12. Date Functions I

The output is:

FORMAT Btdo

Blank-delimited (B)
Abbreviated month name, default case (t)
Zero-suppress day number, end with suffiz (do)

English

|Ian 4th 2005 Ilar 2nd 2005

The following request prints a blank delimited date, with an abbreviated month name in
German. Initial zeros in the day number are suppressed, and a period is added to the end of
the number:

DEFI NE FI LE VI DEOTRK
TRANS1/ YYMD=20050104;
TRANS2/ YYMD=20050302;

DATEW WETRANS1 ;
DATEV2/ WETRANS2 ;
DATEYYMD YYNDWETRANS1 ;
DATEYYMD2/ YYNDWETRANS2 ;

OUT3A/ AL2=DATETRAN(DATEYYMD, ' (DWYY)', '(Btdp)', 'DE, 12, 'Al2');
OUT3B/ AL2=DATETRAN(DATEYYMD2, ' (DWYY)', '(Btdp)', 'DE, 12, 'Al2');
END

TABLE FI LE VI DEOTRK
HEADI NG
"FORVAT Bt dp”

"Bl ank-delimted (B)"

" Abbrevi ated nonth nane, default case (t)"

"Zer o-suppress day nunber, end with period (dp)"
" Cer man"

SUM QUT3A AS '' QUT3B AS '' TRANSDATE NOPRI NT

ON TABLE SET PAGE- NUM OFF
END

Using Functions 337

DATETRAN: Formatting Dates in International Formats

The output is:

FOBRMAT Btdp

Blank-delimited (B)

Abbreviated month name, default case (t)
Zero-suppress day number, end with pentod (dp)
(Jertnat

4, Jan 2005 2, Mar 2005

The following request prints a blank delimited date in French, with a full day name at the
beginning and a full month name, in lowercase (the default for French):

DEFI NE FI LE VI DEOTRK
TRANS1/ YYMD=20050104;
TRANS2/ YYMD=20050302;

DATEW WETRANS1 ;
DATEVR2/ WETRANS2 ;
DATEYYMD YYNDWETRANS1 ;
DATEYYMD2/ YYNDWETRANS2 ;

OUT4A/ A30 = DATETRAN(DATEYYMD, ' (DWYY)', '(Bwrtr)', 'FR, 30, 'A30');
OUT4B/ A30 = DATETRAN(DATEYYMD2, ' (DWYY)', '(Bwrtr)', 'FR, 30, 'A30');
END

TABLE FI LE VI DEOCTRK
HEADI NG
"FORVAT Bwrtr"

"Bl ank-delimted (B)"

"Full day of week nane at beginning of date, default case (w)"
"Full nonth nanme, default case (tr)"

"English"

SUM OUT4A AS '' QOUT4B AS '' TRANSDATE NOPRI NT

ON TABLE SET PAGE- NUM OFF

END

338 Information Builders

12. Date Functions I

The output is:

FORMAT Bwrtr

Blanl-delinited (B)
Full day of week namne at beginmng of date, default case (wt)
Full month name, default caze (i)

English

imardi 04 janvier 2005 mercredi 02 mars 2005

The following request prints a blank delimited date in Spanish with a full day name at the
beginning in lowercase (the default for Spanish), followed by a comma, and with the word “de”
between the day number and month and between the month and year:

DEFI NE FI LE VI DEOTRK
TRANS1/ YYMD=20050104;
TRANS2/ YYMD=20050302;

DATEW WETRANS1 ;
DATEV2/ WETRANS2 ;
DATEYYMD YYNDWETRANS1 ;
DATEYYMD2/ YYNDWETRANS2 ;

OUT5A/ A30=DATETRAN(DATEYYMD, ' (DMYY)', '(Bwrctrde)', 'ES, 30, 'A30');
OUT5B/ A30=DATETRAN(DATEYYMD2, ' (DMYY)', '(Bwrctrde)', 'ES, 30, 'A30');
END

TABLE FI LE VI DEOTRK
HEADI NG
"FORVAT Bwr ctrde"

"Bl ank-delimted (B)"

"Full day of week nane at beginning of date, default case (w)"
"Conma after day nanme (c)"

"Full nmonth nane, default case (tr)"

"Zer o- suppress day nunber (d)"

"de between day and nonth and between nonth and year (e)"

" Spani sh"

SUM OQUT5A AS '' QOUT5B AS '' TRANSDATE NOPRI NT

ON TABLE SET PAGE- NUM OFF

END

Using Functions 339

DATETRAN: Formatting Dates in International Formats

The output is:

FORMAT Bwrctrde

Blank-delimited (B)

Full day of week name at beginning of date, default caze (wrt)
Comma after day name ()

Full month name, default case (tr)

Zero-suppress day number {d)

de between day and meonth and between month and year (&)
=patish

martes, 4 de enero de 2005 |[mufrcoles, 2 de marzo de 2005

The following request prints a date in Japanese characters with a full month name at the
beginning, in the default case and with zero suppression:

DEFI NE FI LE VI DEOTRK
TRANS1/ YYMD=20050104;
TRANS2/ YYMD=20050302;

DATEW WETRANS1 ;
DATEWR/ WETRANS2 ;
DATEYYMD YYNDWETRANSL ;
DATEYYMD2/ YYNDWETRANS2 ;

OUT6A/ A30=DATETRAN(DATEYYMD , ' (YYMD)', '(Ktrd)', 'JA, 30, 'A30');
OUT6B/ A30=DATETRAN(DATEYYMD2, ' (YYMD)', '(Ktrd)', 'JA, 30, 'A30');
END

TABLE FI LE VI DEOTRK
HEADI NG
"FORMAT Ktrd"

"Japanese characters (K in conjunction with the | anguage code JA)"
"Full nonth nane at beginning of date, default case (tr)"

" Zer o- suppress day nunber (d)"

"Japanese"

SUM QUT6A AS '' QUT6B AS '' TRANSDATE NOPRI NT

ON TABLE SET PAGE- NUM OFF
END

340 Information Builders

12. Date Functions I

The output is:
FORMAT Kird

Japanese characters (K in conjunction with the language code JA)
Full month name at heginning of date, default case (tr)
Zero—suppress day number (d)

Japanese

200591 H4H 20053 2 H

The following request prints a blank delimited date in Greek with a full day name at the
beginning in the default case, followed by a comma, and with a full month name in the default
case:

DEFI NE FI LE VI DEOTRK
TRANS1/ YYMD=20050104;
TRANS2/ YYMD=20050302;

DATEW WETRANS1 ;
DATEWR/ WETRANS2 ;
DATEYYMD YYNDWETRANSL ;
DATEYYNMD2/ YYNDWETRANS2 ;

OUT7A/ A30=DATETRAN(DATEYYMD , ' (DWYY)', '(Bwrctr)', 'GR, 30, 'A30');
OUT7B/ A30=DATETRAN(DATEYYMD2, ' (DWYY)', '(Bwrctr)', 'GR, 30, 'A30');
END

TABLE FI LE VI DEOTRK

HEADI NG

"FORVAT Bwrctrde”

"Bl ank-delinted (B)"

"Full day of week nane at begi nning of date, default case (w)"
"Comua after day nane (c)"

"Full nonth nane, default case (tr)"

"G eek"”

SUM QUT7A AS '' OUT7B AS '' TRANSDATE NOPRI NT

ON TABLE SET PAGE- NUM OFF
END

Using Functions 341

DPART: Extracting a Component From a Date

The output is:

FOERMAT Bwrctr

Blank-delimited (B)

Full day of week name at begmning of date, default casze (wi)
Comma after day name ()

Full month natme, default caze (t)

Greek

Tpity, 04 Tevovdpiog 2005 Tetdpon, 02 Maéprog 2005

DPART: Extracting a Component From a Date

Syntax:

342

The DPART function extracts a specified component from a date field and returns it in numeric
format.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DPART requires a
standard date stored as an offset from the base date, do not use DPART with Dialogue

Manager unless you first convert the variable used as the input date to an offset from the base
date.

For more information, see Calling a Function From a Dialogue Manager Command on page 70.

Available Languages: reporting, Maintain
How to Extract a Date Component and Return It in Integer Format
DPART (dat eval ue, ' conponent' , output)

where:
dat eval ue

Date

Is a full component date.
conponent

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. Valid
values are:

Information Builders

12. Date Functions I

For year: YEAR, YY
For month: MONTH, MM

For day: DAY, For day of month: DAY-OF-MONTH, DD.

For weekday: WEEKDAY, WW.
For quarter: QUARTER, QQ
out put

Integer

Is the field that contains the result, or the integer format of the output value enclosed in

single quotation marks.

Example: Extracting Date Components in Integer Format

The following request against the VIDEOTRK data source uses the DPART function to extract

the year, month, and day component from the TRANSDATE field:

DEFI NE FI LE
VI DEOTRK
YEAR/ | 4 = DPART(TRANSDATE, ' YEAR , '111');
MONTH/ | 4 = DPART(TRANSDATE, 'MM, '111");
DAY/ | 4 = DPART(TRANSDATE, 'DAY', '111");

END

TABLE FI LE VI DECTRK

PRI NT TRANSDATE YEAR MONTH DAY

BY LASTNAME BY FI RSTNAME
VWHERE LASTNAME LT ' DI AZ'
END

The output is:

LASTNAME FI RSTNAMVE
ANDREVS NATALIA
BAKER VARI E
BERTAL MARCI A
CHANG ROBERT
COLE ALLI SON
CRUZ VY

DAVI S JASON

Using Functions

TRANSDATE YEAR MONTH
91/ 06/ 19 1991
91/ 06/ 18 1991
91/ 06/ 19 1991
91/ 06/ 17 1991
91/ 06/ 23 1991
91/ 06/ 18 1991
91/ 06/ 28 1991
91/ 06/ 27 1991
91/ 06/ 26 1991
91/ 06/ 24 1991
91/ 06/ 23 1991
91/ 06/ 27 1991
91/ 06/ 24 1991

[N N NeNo NeNoNeNe)NeNe)Neor el

343

FIQTR: Obtaining the Financial Quarter

FIQTR: Obtaining the Financial Quarter

Syntax:

344

The FIQTR function returns the financial quarter corresponding to a given calendar date based
on the financial year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIQTR requires a
standard date stored as an offset from the base date, do not use FIQTR with Dialogue

Manager unless you first convert the variable used as the input date to an offset from the base
date.

For more information, see Calling a Function From a Dialogue Manager Command on page 70.
How to Obtain the Financial Quarter
FI QTR(/ nput dat e, [owconponent, startnonth, startday, yrnumbering, output)

where:
/ nput dat e

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

/ owconponent
Alphanumeric
Is one of the following:
4 Dif the date contains a D or JUL component.
4 Mif the date contains an M component, but no D component.
d Qif the date contains a Q component.
startnonth
Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

Information Builders

12. Date Functions I

startday
Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumberi ng
Alphanumeric
Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

out put
lorQ

The result will be in integer format, or Q. This function will return a value of 1 through 4. In
case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Example: Obtaining the Financial Quarter

The following request against the CENTHR data source obtains the financial quarter
corresponding to an employee starting date (field START_DATE, format YYMD) and returns the
values in each of the supported formats: Q and I1.

DEFI NE FI LE CENTHR

FI SCALQ Q=FI QTR(START DATE, ' D , 10, 1,' FYE' , FI SCALQ) ;
FI SCALI / | 1=FI QTR(START_DATE, ' D' , 10, 1, FYE', FI SCALI) ;
END

TABLE FILE CENTHR

PRI NT START_DATE FI SCALQ FI SCALI

BY LNAVE BY FNAVE

WHERE LNAMVE LI KE ' C%

END

Using Functions 345

FIYR: Obtaining the Financial Year

On the output, note that the date November 12, 1998 (1998/11/12) is in fiscal quarter Q1
because the starting month is October (10):

Last First Starting

Nane Nane Dat e FI SCALQ FI SCALI
CHARNEY ROSS 1998/ 09/12 4 4
CHI EN CHRI STI NE 1997/10/01 Q 1
CLEVELAND PHI LI P 1996/ 07/30 &4 4
CLI NE STEPHEN 1998/ 11/12 QA 1
COHEN DANI EL 1997/10/05 QL 1
CORRI VEAU RAYMOND 1997/12/05 QA 1
COSSVAN MARK 1996/ 12/19 QA 1
CRONI' N CHRI S 1996/ 12/03 QL 1
CRONDER WESLEY 1996/ 09/ 17 &4 4
CULLEN DENNI S 1995/09/05 &4 4
CUWM NGS JAMES 1993/07/11 &4 4
CUTLI P GREGG 1997/03/26 @ 2

FIYR: Obtaining the Financial Year

Syntax:

346

The FIYR function returns the financial year, also known as the fiscal year, corresponding to a
given calendar date based on the financial year starting date and the financial year numbering
convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIYR requires a
standard date stored as an offset from the base date, do not use FIYR with Dialogue Manager
unless you first convert the variable used as the input date to an offset from the base date.

For more information, see Calling a Function From a Dialogue Manager Command on page 70.
How to Obtain the Financial Year

FI YR(/ nput dat e, | owconponent, startnonth, startday, yrnunbering, output)
where:

/ nput dat e

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

[owconponent

Alphanumeric

Information Builders

12. Date Functions I

Is one of the following:
4 Dif the date contains a D or JUL component.
4 Mif the date contains an M component, but no D component.

d Qif the date contains a Q component.
startnonth
Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday
Numeric

Is the starting day of the starting month, usually 1. If the low componentis M or Q, 1 is
required.

yrnunberi ng
Alphanumeric
Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

out put
I,Y,orYY

The result will be in integer format, or Y or YY. This function returns a year value. In case
of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Using Functions 347

FIYYQ: Converting a Calendar Date to a Financial Date

Example: Obtaining the Financial Year

The following request against the CENTSTMT data source obtains the financial year
corresponding to an account period (field PERIOD, format YYM) and returns the values in each
of the supported formats: Y, YY, and 14.

DEFI NE FI LE CENTSTMI

FI SCALYY/ YY=FI YR(PERI OD,' M, 4,1,' FYE', FI SCALYY);
FI SCALY/ Y=FI YR(PERI OD,' M, 4,1,' FYE', FI SCALY);

FI SCALI /| 4=FI YR(PERI OD,' M, 4,1,' FYE', FI SCALI);
END

TABLE FI LE CENTSTMI

PRI NT PERI OD FI SCALYY FI SCALY FI SCALI

BY GL_ACCOUNT

WHERE GL_ACCOUNT LT ' 2100’

END

On the output, note that the period April 2002 (2002/04) is in fiscal year 2003 because the
starting month is April (4), and the FYE numbering convention is used:

Ledger

Account PERI OD FI SCALYY FI SCALY FI SCALI

1000 2002/ 01 2002 02 2002
2002/ 02 2002 02 2002
2002/ 03 2002 02 2002
2002/ 04 2003 03 2003
2002/ 05 2003 03 2003
2002/ 06 2003 03 2003

2000 2002/ 01 2002 02 2002
2002/ 02 2002 02 2002
2002/ 03 2002 02 2002
2002/ 04 2003 03 2003
2002/ 05 2003 03 2003
2002/ 06 2003 03 2003

FIYYQ: Converting a Calendar Date to a Financial Date

The FIYYQ function returns a financial date containing both the financial year and quarter that
corresponds to a given calendar date. The returned financial date is based on the financial
year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIYYQ requires a
standard date stored as an offset from the base date, do not use FIYYQ with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the base
date.

For more information, see Calling a Function From a Dialogue Manager Command on page 70.

348 Information Builders

12. Date Functions I

Syntax: How to Convert a Calendar Date to a Financial Date
FI YYQ / nput dat e, | owconponent, startnonth, startday, yrnunbering, output)

where:
/ nput dat e
Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

| owconponent
Alphanumeric
Is one of the following:
. Dif the date contains a D or JUL component.
4 Mif the date contains an M component, but no D component.
d Qif the date contains a Q component.
startnonth
Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday
Numeric

Is the starting day of the starting month, usually 1. If the low componentis M or Q, 1 is
required.

yrnumberi ng
Alphanumeric

Valid values are:

Using Functions 349

FIYYQ: Converting a Calendar Date to a Financial Date

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

out put
Y[YIQ or QY[Y]
In case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Example: Converting a Calendar Date to a Financial Date

The following request against the CENTHR data source converts each employee starting date
(field START_DATE, format YYMD) to a financial date containing year and quarter components
in all the supported formats: YQ, YYQ, QY, and QYY.

DEFI NE FI LE CENTHR

FI SYQ YQ=FI YYQ(START DATE,' D , 10, 1,' FYE', FI SYQ ;

FI SYYQ YYQ=FI YYQ START_DATE, ' D , 10, 1,"' FYE' , FI SYYQ ;
FI SQY/ QY=FI YYQ(START DATE, ' D , 10, 1,' FYE', FI SQY) ;

FI SQYY/ QYY=FI YYQ START_DATE, ' D' , 10, 1, ' FYE' , FI SQYY) ;
END

TABLE FILE CENTHR

PRI NT START_DATE FI SYQ FI SYYQ FI SQY FI SQvY

BY LNAVE BY FNAVE

WHERE LNAMVE LI KE ' C%

END

350 Information Builders

12. Date Functions I

On the output, note that the date November 12, 1998 (1998/11/12) is converted to Q1 1999
because the starting month is October (10), and the FYE numbering convention is used:

Last First Starting

Nane Nane Dat e FISYQ FISYYQ FISQY FISQrY
CHARNEY ROSS 1998/09/12 98 Q4 1998 Q4 4 98 (4 1998
CHI EN CHRI STI NE 1997/10/01 98 QL 1998 QL QL 98 QL 1998
CLEVELAND PHI LI P 1996/07/30 96 Q4 1996 4 4 96 4 1996
CLI NE STEPHEN 1998/11/12 99 QL 1999 QL QL 99 QL 1999
COHEN DANI EL 1997/10/05 98 QL 1998 QL QL 98 QL 1998
CORRI VEAU RAYMOND 1997/12/05 98 QL 1998 QL Q1 98 QL 1998
COSSVAN MARK 1996/12/19 97 QL 1997 QL QL 97 QL 1997
CRONIN CHRI S 1996/12/03 97 QL 1997 QL QL 97 QL 1997
CROWDER WESLEY 1996/09/17 96 4 1996 4 4 96 4 1996
CULLEN DENNI S 1995/09/05 95 Q4 1995 4 4 95 4 1995
CUWM NGS JAMES 1993/07/11 93 Q4 1993 Q4 4 93 4 1993
CUTLI P GREGG 1997/03/26 97 @@ 1997 @ @ 97 @ 1997

TODAY: Returning the Current Date

Syntax:

Available Languages: reporting

The TODAY function retrieves the current date from the operating system in the format
MM/DD/YY or MM/DD/YYYY. It always returns a date that is current. Therefore, if you are
running an application late at night, use TODAY. You can remove the default embedded
slashes with the EDIT function.

You can also retrieve the date in the same format (separated by slashes) using the Dialogue
Manager system variable &DATE. You can retrieve the date without the slashes using the
system variables &YMD, &MDY, and &DMY. The system variable &DATEfmt retrieves the date
in a specified format.

How to Retrieve the Current Date
TODAY(out put)

where:
out put
Alphanumeric, at least A8

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

The following apply:

. If DATEFNS=0ON and the format is A8 or A9, TODAY returns the 2-digit year.

Using Functions 351

Using Legacy Date Functions

- If DATEFNS=0ON and the format is A10 or greater, TODAY returns the 4-digit year.

.4 If DATEFNS=O0FF, TODAY returns the 2-digit year, regardless of the format of output.

Example: Retrieving the Current Date

TODAY retrieves the current date and stores it in the DATE field. The request then displays the
date in the page heading.
DEFI NE FI LE EMPLOYEE

DATE/ A10 WTH EMP_I D = TODAY (DATE);
END

TABLE FI LE EMPLOYEE

SUM CURR_SAL BY DEPARTMENT
HEADI NG

" PAGE <TABPAGENO

"SALARY REPORT RUN ON <DATE
END

The output is:

SALARY REPORT RUN ON 12/13/2006
DEPARTMVENT CURR_SAL

M S $108, 002. 00
PRODUCTI ON $114, 282. 00

Using Legacy Date Functions

The legacy date functions were created for use with dates in integer, packed decimal, or
alphanumeric format.

For detailed information on each legacy date function, see:

AYM: Adding or Subtracting Months on page 355

AYMD: Adding or Subtracting Days on page 356

CHGDAT: Changing How a Date String Displays on page 358

DA Functions: Converting a Legacy Date to an Integer on page 361

DMY, MDY, YMD: Calculating the Difference Between Two Dates on page 362
DOWK and DOWKL: Finding the Day of the Week on page 364

DT Functions: Converting an Integer to a Date on page 365

GREGDT: Converting From Julian to Gregorian Format on page 366

JULDAT: Converting From Gregorian to Julian Format on page 368

352 Information Builders

12. Date Functions I

YM: Calculating Elapsed Months on page 369

Using Old Versions of Legacy Date Functions

The functions described in this section are legacy date functions. They were created for use
with dates in integer or alphanumeric format. They are no longer recommended for date
manipulation. Standard date and date-time functions are preferred.

All legacy date functions support dates for the year 2000 and later. The old versions of these
functions may not work correctly with dates after December 31, 1999. However, in some
cases you may want to use the old version of a function, for example, if you do not use year
2000 dates. You can "turn off" the current version with the DATEFNS parameter.

Syntax: How to Activate Old Legacy Date Functions
SET DATEFNS = {ON| OFF}

where:
ON

Activates the function that supports dates for the year 2000 and later. ON is the default
value.

OFF

Deactivates a function that supports dates for the year 2000 and later.

Using Dates With Two- and Four-Digit Years

Legacy date functions accept dates with two- or four-digit years. Four-digit years that display
the century, such as 2000 or 1900, can be used if their formats are specified as I8YYMD,
P8YYMD, D8YYMD, F8YYMD, or A8YYMD. Two-digit years can use the DEFCENT and
YRTHRESH parameters to assign century values if the field has a length of six (for example,
I6YMD). For information on these parameters, see Customizing Your Environment in Developing
Reporting Applications.

Using Functions 353

Using Legacy Date Functions

Example:

Example:

354

Using Four-Digit Years

The EDIT function creates dates with four-digit years. The functions JULDAT and GREGDT then
convert these dates to Julian and Gregorian formats.

DEFI NE FI LE EMPLOYEE

DATE/ | 8YYMD = EDI T(' 19' | EDI T(H RE_DATE)) ;
JDATE/ | 7 = JULDAT(DATE, '17');

GDATE/ | 8 = GREGDT(JDATE, '18');

END

TABLE FI LE EMPLOYEE

PRI NT DATE JDATE GDATE

END

The output is:
DATE JDATE GDATE

1980/ 06/ 02 1980154 19800602
1981/07/01 1981182 19810701
1982/ 05/01 1982121 19820501
1982/ 01/ 04 1982004 19820104
1982/ 08/ 01 1982213 19820801
1982/ 01/ 04 1982004 19820104
1982/ 07/01 1982182 19820701
1981/07/01 1981182 19810701
1982/ 04/01 1982091 19820401
1982/ 02/ 02 1982033 19820202
1982/ 04/01 1982091 19820401
1981/11/02 1981306 19811102
1982/ 04/01 1982091 19820401
1982/ 05/ 15 1982135 19820515

Using Two-Digit Years

The AYMD function returns an eight-digit date when the input argument has a six-digit legacy
date format. Since DEFCENT is 19 and YRTHRESH is 83, year values from 83 through 99 are
interpreted as 1983 through 1999, and year values from 0O through 82 are interpreted as
2000 through 2082.

SET DEFCENT=19, YRTHRESH=83

DEFI NE FI LE EMPLOYEE
NEW DATE/ | 8YYMD = AYMD(EFFECT_DATE, 30, '18");
END

TABLE FI LE EMPLOYEE

PRI NT EFFECT_DATE NEW DATE BY EMP_I D
END

Information Builders

12. Date Functions I

The output is:

EMP_I D EFFECT_DATE NEW DATE
071382660
112847612
117593129 82/11/01 2082/12/01
119265415
119329144 83/01/01 1983/01/31
123764317 83/03/01 1983/03/31
126724188
219984371
326179357 82/12/01 2082/12/31
451123478 84/09/01 1984/10/01
543729165
818692173 83/05/01 1983/05/31

AYM: Adding or Subtracting Months

Syntax:

Available Languages: reporting, Maintain

The AYM function adds months to or subtracts months from a date in year-month format. You
can convert a date to this format using the CHGDAT or EDIT function.

How to Add or Subtract Months to or From a Date

AYM / ndat e, nonths, output)

where:
/ ndat e
14, 14YM, 16, or IBYYM

Is the legacy date in year-month format, the name of a field that contains the date, or an
expression that returns the date. If the date is not valid, the function returns the value O
(zero).

nont hs
Integer

Is the number of months you are adding to or subtracting from the date. To subtract
months, use a negative number.

out put
14YM or I6YYM

Is the resulting legacy date. Is the name of the field that contains the result, or the format
of the output value enclosed in single quotation marks.

Using Functions 355

AYMD: Adding or Subtracting Days

Example:

Tip: If the input date is in integer year-month-day format (I6YMD or I8YYMD), divide the
date by 100 to convert to year-month format and set the result to an integer. This drops
the day portion of the date, which is now after the decimal point.

Adding Months to a Date

The COMPUTE command converts the dates in HIRE_DATE from year-month-day to year-month
format and stores the result in HIRE_MONTH. AYM then adds six months to HIRE_MONTH and
stores the result in AFTER6MONTHS:

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND COVPUTE

H RE_MONTH | 4YM = Hl RE_DATE/ 100 ;

AFTER6MONTHS/ | 4YM = AYM(HIRE MONTH, 6, AFTER6MONTHS);
BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ "M S';

END

The output is:

LAST_NAME FI RST_NAVE HI RE_DATE H RE_MONTH AFTER6MONTHS
BLACKWOOD ROSENVARI E 82/ 04/ 01 82/ 04 82/ 10
CRCSS BARBARA 81/11/02 81/ 11 82/ 05
GREENSPAN MARY 82/ 04/ 01 82/ 04 82/ 10
JONES DI ANE 82/ 05/ 01 82/ 05 82/ 11
MCCOY JOHN 81/07/01 81/ 07 82/ 01
SM TH MARY 81/ 07/ 01 81/ 07 82/ 01

AYMD: Adding or Subtracting Days

Syntax:

356

Available Languages: reporting, Maintain

The AYMD function adds days to or subtracts days from a date in year-month-day format. You
can convert a date to this format using the CHGDAT or EDIT function.

How to Add or Subtract Days to or From a Date
AYMX(/ ndat e, days, output)

where:
/ ndat e
16, IBYMD, 18, ISYYMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns the
value O (zero).

Information Builders

12. Date Functions I

days
Integer

Is the number of days you are adding to or subtracting from indate. To subtract days, use a
negative number.

out put
16, I6YMD, I8, or IBYYMD

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. If indate is a field, output must have the same format.

If the addition or subtraction of days crosses forward or backward into another century, the
century digits of the output year are adjusted.

Example: ~ Adding Days to a Date

AYMD adds 35 days to each value in the HIRE_DATE field, and stores the result in
AFTER35DAYS:

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE AND COWPUTE

AFTER35DAYS/ | 6YND = AYMD (HIRE DATE, 35, AFTER35DAYS);
BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME H RE_DATE AFTER35DAYS
BANNI NG JOHN 82/ 08/ 01 82/ 09/ 05
I RVI NG JOAN 82/ 01/ 04 82/ 02/ 08
MCKNI GHT ROGER 82/ 02/ 02 82/ 03/ 09
ROVANS ANTHONY 82/ 07/ 01 82/ 08/ 05
SM TH Rl CHARD 82/ 01/ 04 82/ 02/ 08
STEVENS ALFRED 80/ 06/ 02 80/ 07/ 07

Using Functions 357

CHGDAT: Changing How a Date String Displays

CHGDAT: Changing How a Date String Displays
Available Languages: reporting, Maintain

The CHGDAT function rearranges the year, month, and day portions of an input character string
representing a date. It may also convert the input string from long to short or short to long date
representation. Long representation contains all three date components: year, month, and day;
short representation omits one or two of the date components, such as year, month, or day.
The input and output date strings are described by display options that specify both the order
of date components (year, month, day) in the date string and whether two or four digits are
used for the year (for example, 04 or 2004). CHGDAT reads an input date character string and
creates an output date character string that represents the same date in a different way.

Note: CHGDAT requires a date character string as input, not a date itself. Whether the input is
a standard or legacy date, convert it to a date character string (using the EDIT or DATECVT
functions, for example) before applying CHGDAT.

The order of date components in the date character string is described by display options
comprised of the following characters in your chosen order:

Character Description

D Day of the month (01 through 31).

M Month of the year (01 through 12).

YLY] Year. Y indicates a two-digit year (such as 94); YY indicates
a four-digit year (such as 1994).

To spell out the month rather than use a number in the resulting string, append one of the
following characters to the display options for the resulting string:

Character Description
T Displays the month as a three-letter abbreviation.
X Displays the full name of the month.

Display options can consist of up to five display characters. Characters other than those
display options are ignored.

358 Information Builders

12. Date Functions I

For example: The display options 'DMYY"' specify that the date string starts with a two digit

day, then two digit month, then four digit year.

Note: Display options are not date formats.

Reference: Short to Long Conversion

If you are converting a date from short to long representation (for example, from year-month to
year-month-day), the function supplies the portion of the date missing in the short
representation, as shown in the following table:

Portion of Date Missing

Portion Supplied by Function

Day (for example, from YM to YMD)

Last day of the month.

Month (for example, from Y to YM)

Last month of the year (December).

Year (for example, from MD to YMD)

The year 99.

Converting year from two-digit to four-digit
(for example, from YMD to YYMD)

If DATEFNS=0N, the century will be
determined by the 100-year window defined by
DEFCENT and YRTHRESH.

See Customizing Your Environment in
Developing Reporting Applications or Working
With Cross-Century Dates in the iBase archive
for details on DEFCENT and YRTHRESH.

If DATEFNS=0FF, the year 19xx is supplied,
where xx is the last two digits in the year.

Syntax: How to Change the Date Display String

CHGDAT(' / n_di spl ay_options' ' out_di spl ay_options' , date_string, output)

where:
'in_display_options'

Al to A5

Is a series of up to five display options that describe the layout of date_string. These
options can be stored in an alphanumeric field or supplied as a literal enclosed in single

quotation marks.

Using Functions

359

CHGDAT: Changing How a Date String Displays

Example:

360

"out_di spl ay_options'
Al to A5

Is a series of up to five display options that describe the layout of the converted date
string. These options can be stored in an alphanumeric field or supplied as a literal
enclosed in single quotation marks.

date_string
A2 to A8

Is the input date character string with date components in the order specified by
in_display_options.

Note that if the original date is in numeric format, you must convert it to a date character
string. If date_string does not correctly represent the date (the date is invalid), the function
returns blank spaces.

out put

Axx, where xx is a number of characters large enough to fit the date string specified by
out_display_options. A17 is long enough to fit the longest date string.

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Note: Since CHGDAT uses a date string (as opposed to a date) and returns a date string with
up to 17 characters, use the EDIT or DATECVT functions or any other means to convert the
date to or from a date character string.

Converting the Date Display From YMD to MDYYX

The EDIT function changes HIRE_DATE from numeric to alphanumeric format. CHGDAT then
converts each value in ALPHA_HIRE from displaying the components as YMD to MDYYX and
stores the result in HIRE_MDY, which has the format A17. The option X in the output value
displays the full name of the month.

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE AND COWPUTE

ALPHA HI RE/ A17 = EDI T(HI RE_DATE); NOPRI NT AND COVPUTE

H RE_MDY/ A17 = CHGDAT('YMD', 'MDYYX', ALPHA HIRE, 'Al17');
BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

Information Builders

12. Date Functions I

The output is:

LAST_NAME FI RST_NAME H RE_DATE HI RE_MY

BANNI NG JOHN 82/ 08/ 01 AUGUST 01 1982

I RVI NG JOAN 82/01/04 JANUARY 04 1982
MCKNI GHT ROCER 82/ 02/ 02 FEBRUARY 02 1982
ROVANS ANTHONY 82/07/01 JULY 01 1982

SM TH Rl CHARD 82/ 01/04 JANUARY 04 1982
STEVENS ALFRED 80/06/02 JUNE 02 1980

DA Functions: Converting a Legacy Date to an Integer

Syntax:

Available Languages: reporting, Maintain

The DA functions convert a legacy date to the number of days between it and a base date
(December 31, 1899). By converting a date to the number of days, you can add and subtract
dates and calculate the intervals between them, or you can add to or subtract numbers from
the dates to get new dates.

You can convert the result back to a date using the DT functions discussed in DT Functions:
Converting an Integer to a Date on page 365.

There are six DA functions; each one accepts a date in a different format.
How to Convert a Date to an Integer
function(indate, output)

where:

function
Is one of the following:
DADMY converts a date in day-month-year format.
DADYMconverts a date in day-year-month format.
DANDY converts a date in month-day-year format.
DAMYD converts a date in month-year-day format.
DAYDMconverts a date in year-day-month format.
DAYND converts a date in year-month-day format.

/ ndat e

16xxx or P6xxx, where xxx corresponds to the function DAxxx you are using.

Using Functions 361

DMY, MDY, YMD: Calculating the Difference Between Two Dates

Example:

Is the legacy date to be converted, or the name of a field that contains the date. The date
is truncated to an integer before conversion. If indate is a numeric literal, enter only the
last two digits of the year; the function assumes the century component. If the date is
invalid, the function returns a O.

out put
Integer

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The format of the date returned depends on the function.

Converting Dates and Calculating the Difference Between Them

DAYMD converts the DAT_INC and HIRE_DATE fields to the number of days since December
31, 1899, and the smaller number is then subtracted from the larger number:

TABLE FI LE EMPLOYEE

PRI NT DAT_I NC AS ' RAI SE DATE' AND COVPUTE

DAYS_H RED/ | 8 = DAYMD (DAT_INC, 'I8') - DAYMD (HIRE_DATE, 'I8');
BY LAST_NAME BY FI RST_NAME

I F DAYS H RED NE O

VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME RAI SE DATE DAYS_HI RED
I RVI NG JOAN 82/ 05/ 14 130
MCKNI GHT ROGER 82/ 05/ 14 101
SM TH RI CHARD 82/ 05/ 14 130
STEVENS ALFRED 82/01/01 578

81/01/01 213

DMY, MDY, YMD: Calculating the Difference Between Two Dates

362

Available Languages: reporting, Maintain

The DMY, MDY, and YMD functions calculate the difference between two legacy dates in
integer, alphanumeric, or packed format.

Information Builders

12. Date Functions I

Syntax:

Example:

How to Calculate the Difference Between Two Dates
function(fromdate, to_date)

where:

function
Is one of the following;:
DMY calculates the difference between two dates in day-month-year format.
MDY calculates the difference between two dates in month-day-year format.
YND calculates the difference between two dates in year-month-day format.

from date
I, P, or A format with date display options.

Is the beginning legacy date, or the name of a field that contains the date.

to _date
I, P, or A format with date display options.I6xxx or I8xxx where xxx corresponds to the
specified function (DMY, YMD, or MDY).

Is the end date, or the name of a field that contains the date.

Calculating the Number of Days Between Two Dates

YMD calculates the number of days between the dates in HIRE_DATE and DAT_INC:

TABLE FI LE EMPLOYEE

SUM HI RE_DATE FST. DAT_I NC AS ' FI RST PAY, | NCREASE' AND COVPUTE
DI FF/ 14 = YMD (HIRE DATE, FST.DAT_INC); AS 'DAYS, BETVWVEEN

BY LAST_NAME BY FI RST_NAME

WHERE DEPARTMENT EQ "M S';

END

The output is:

LAST NAME FI RST_NANE H RE DATE Fl RST DAYS
PAY | NCREASE BETWEEN

BLACKWOOD ROSEVARI E 82/ 04/ 01 82/ 04/ 01 0

CRGSS BARBARA 81/11/02 82/ 04/ 09 158

GREENSPAN MARY 82/ 04/ 01 82/ 06/ 11 71

JONES DI ANE 82/ 05/ 01 82/ 06/ 01 31

MCCOY JOHN 81/07/01 82/01/01 184

SM TH MARY 81/07/01 82/01/01 184

Using Functions 363

DOWK and DOWKL: Finding the Day of the Week

DOWK and DOWKL: Finding the Day of the Week

Syntax:

Example:

364

Available Languages: reporting, Maintain

The DOWK and DOWKL functions find the day of the week that corresponds to a date. DOWK
returns the day as a three letter abbreviation; DOWKL displays the full name of the day.

How to Find the Day of the Week
{ DONK| DOVKL} (/ ndat e, out put)

where:
/ ndat e
I6YMD or I8YYMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns
spaces. If the date specifies a two digit year and DEFCENT and YRTHRESH values have not
been set, the function assumes the 20th century.

out put
DOWK: A4. DOWKL: A12

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Finding the Day of the Week

DOWK determines the day of the week that corresponds to the value in the HIRE_DATE field
and stores the result in DATED:

TABLE FI LE EMPLOYEE

PRI NT EMP_I D AND HI RE_DATE AND COVPUTE
DATED/ A4 = DOWK (HIRE_DATE, DATED);
VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:
EMP_I D H RE_DATE DATED

071382660 80/ 06/ 02 MON
119265415 82/01/04 MON
119329144 82/08/01 SUN
123764317 82/01/04 MON
126724188 82/07/01 THU
451123478 82/02/02 TUE

Information Builders

12. Date Functions I

DT Functions: Converting an Integer to a Date
Available Languages: reporting, Maintain

The DT functions convert an integer representing the number of days elapsed since December
31, 1899 to the corresponding date. They are useful when you are performing arithmetic on a
date converted to the number of days (for more information, see DA Functions: Converting a
Legacy Date to an Integer on page 361). The DT functions convert the result back to a date.

There are six DT functions; each one converts a number into a date of a different format.
Note: When USERFNS is set to LOCAL, DT functions only display a six-digit date.
Syntax: How to Convert an Integer to a Date
function(nunber, output)
where:
function
Is one of the following:
DTDMY converts a number to a day-month-year date.
DTDYMconverts a number to a day-year-month date.
DTNMDY converts a number to a month-day-year date.
DTMYD converts a number to a month-year-day date.
DTYDMconverts a number to a year-day-month date.

DTYNMD converts a number to a year-month-day date.

nunber
Integer

Is the number of days since December 31, 1899. The number is truncated to an integer.

out put
18xxx, where xxx corresponds to the function DTxxx in the above list.

Is the name of the field containing the result or the format of the output value enclosed in
single quotation marks. The output format depends on the function being used.

Example: Converting an Integer to a Date

DTMDY converts the NEWF field (which was converted to the number of days by DAYMD) to the
corresponding date and stores the result in NEW_HIRE_DATE:

Using Functions 365

GREGDT: Converting From Julian to Gregorian Format

* THI S PROCEDURE CONVERTS HI RE_DATE, WHICH IS I N | 6YMD FORVAT,
* TO A DATE I N | 8MDYY FORMAT.

* FIRST I T USES THE DAYMD FUNCTI ON TO CONVERT HI RE_DATE

-* TO A NUMBER OF DAYS.

* THEN I T USES THE DTMDY FUNCTI ON TO CONVERT THI S NUMBER OF
-* DAYS TO | 8MDYY FORVAT

DEFI NE FI LE EMPLOYEE

NEWF/ | 8 WTH EMP_I D = DAYMD(Hl RE_DATE, NEWF);

NEW H RE_DATE/ | 8MDYY W TH EMP_I D = DTMDY (NEWF, NEW_HIRE DATE),
END

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE NEW HI RE_DATE

BY FN BY LN

VWHERE DEPARTMENT EQ 'M S

END

The output is:
FI RST_NAME LAST_NAME

H RE_DATE NEW H RE_DATE

BARBARA CRGSS 81/11/02 11/ 02/ 1981
DI ANE JONES 82/ 05/ 01 05/ 01/ 1982
JOHN MCCOY 81/07/01 07/01/1981
MARY GREENSPAN 82/ 04/ 01 04/ 01/ 1982

SM TH 81/07/01 07/01/1981
RCSEMARI E BLACKWOCOD 82/ 04/ 01 04/ 01/ 1982

GREGDT: Converting From Julian to Gregorian Format

Reference:

366

Available Languages: reporting, Maintain

The GREGDT function converts a date in Julian format (year-day) to Gregorian format (year-
month-day).

A date in Julian format is a five- or seven-digit number. The first two or four digits are the year;
the last three digits are the number of the day, counting from January 1. For example, January
1, 1999 in Julian format is either 99001 or 1999001 ; June21, 2004 in Julian format is
2004173.

DATEFNS Settings for GREGDT

GREGDT converts a Julian date to either YMD or YYMD format using the DEFCENT and
YRTHRESH parameter settings to determine the century, if required. GREGDT returns a date as
follows:

DATEFNS Setting 16 or 17 Format I8 Format or Greater

ON YMD YYMD

Information Builders

12. Date Functions I

Syntax:

Example:

DATEFNS Setting 16 or 17 Format I8 Format or Greater

OFF YMD YMD

How to Convert From Julian to Gregorian Format
GREGDT(/ ndat e, out put)

where:
/ ndat e
15 or 17

Is the Julian date, which is truncated to an integer before conversion. Each value must be
a five- or seven-digit number after truncation. If the date is invalid, the function returns a O
(zero).

out put
16, I8, I6YMD, or ISYYMD

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Converting From Julian to Gregorian Format

GREGDT converts the JULIAN field to YYMD (Gregorian) format. It determines the century using
the default DEFCENT and YRTHRESH parameter settings.

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND

COWUTE JULI AN |5 = JULDAT(H RE_DATE, JULI AN); AND
COWUTE GREG DATE/ | 8 = GREGDT (JULIAN, 'I8');

BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME H RE_DATE JULIAN GREG DATE
BANNI NG JOHN 82/ 08/ 01 82213 19820801
I RVI NG JOAN 82/ 01/ 04 82004 19820104
MCKNI GHT ROGER 82/ 02/ 02 82033 19820202
ROVANS ANTHONY 82/07/01 82182 19820701
SM TH RI CHARD 82/ 01/ 04 82004 19820104
STEVENS ALFRED 80/ 06/ 02 80154 19800602

Using Functions 367

JULDAT: Converting From Gregorian to Julian Format

JULDAT: Converting From Gregorian to Julian Format

Reference:

Syntax:

368

Available Languages: reporting, Maintain

The JULDAT function converts a date from Gregorian format (year-month-day) to Julian format
(year-day). A date in Julian format is a five- or seven-digit number. The first two or four digits
are the year; the last three digits are the number of the day, counting from January 1. For
example, January 1, 1999 in Julian format is either 99001 or 1999001.

DATEFNS Settings for JULDAT

JULDAT converts a Gregorian date to either YYNNN or YYYYNNN format, using the DEFCENT
and YRTHRESH parameter settings to determine if the century is required.

JULDAT returns dates as follows:

DATEFNS Setting 16 or 17 Format I8 Format or Greater
ON YYNNN YYYYNNN
OFF YYNNN YYNNN

How to Convert From Gregorian to Julian Format
JULDAT(/ ndat e, out put)

where:
[ndat e
16, 18, I6YMD, ISYYMD

Is the legacy date to convert or the name of the field that contains the date in year-month-
day format (YMD or YYMD).

out put
15 or 17

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Information Builders

12. Date Functions I

Example:

Converting From Gregorian to Julian Format

JULDAT converts the HIRE_DATE field to Julian format. It determines the century using the
default DEFCENT and YRTHRESH parameter settings.

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE AND COVPUTE

JULI AN/ | 7 = JULDAT (HIRE_DATE, JULIAN);
BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME H RE_DATE JULI AN
BANNI NG JOHN 82/08/01 1982213
I RVI NG JOAN 82/ 01/04 1982004
MCKNI GHT ROGER 82/02/02 1982033
ROVANS ANTHONY 82/07/01 1982182
SM TH RI CHARD 82/01/04 1982004
STEVENS ALFRED 80/ 06/ 02 1980154

YM: Calculating Elapsed Months

Syntax:

Available Languages: reporting, Maintain

The YM function calculates the number of months between two dates. The dates must be in
year-month format. You can convert a date to this format by using the CHGDAT or EDIT
function.

How to Calculate Elapsed Months
YM frondat e, todate, output)

where:
frondat e
14YM or I6YYM

Is the start date in year-month format (for example, [4YM). If the date is not valid, the
function returns the value O (zero).

t odat e
14YM or I6YYM

Is the end date in year-month format. If the date is not valid, the function returns the value
0 (zero).

Using Functions 369

YM: Calculating Elapsed Months

Example:

370

out put
Integer

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Tip: If fromdate or todate is in integer year-month-day format (I6YMD or ISYYMD), simply
divide by 100 to convert to year-month format and set the result to an integer. This drops
the day portion of the date, which is now after the decimal point.

Calculating Elapsed Months

The COMPUTE commands convert the dates from year-month-day to year-month format; then
YM calculates the difference between the values in the HIRE_DATE/100 and DAT_INC/100
fields:

TABLE FI LE EMPLOYEE

PRI NT DAT_I NC AS ' RAI SE DATE' AND COVPUTE

H RE_MONTH | 4YM = HI RE_DATE/ 100; NOPRI NT AND COVPUTE
MONTH_| NC/ | 4YM = DAT_I NC/ 100; NOPRI NT AND COVPUTE
MONTHS_HI REDY | 3 = YM(HIRE_MONTH, MONTH_ INC, 'I3');
BY LAST_NAME BY FI RST_NAME BY HI RE_DATE

I F MONTHS_H RED NE O

VWHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAME FI RST_NAME HI RE_DATE RAI SE DATE MONTHS_HI RED
CRCSS BARBARA 81/11/02 82/ 04/ 09 5
GREENSPAN MARY 82/ 04/ 01 82/ 06/ 11 2
JONES DI ANE 82/ 05/ 01 82/ 06/ 01 1
MCCOY JOHN 81/ 07/ 01 82/01/01 6
SM TH MARY 81/ 07/ 01 82/ 01/ 01 6

Information Builders

Chapter

Date-Time Functions

Date-Time functions are for use with timestamps in date-time formats, also known as H
formats. A timestamp value refers to internally stored data capable of holding both date
and time components with an accuracy of up to a nanosecond.

In this chapter:

|
d

Using Functions

Using Date-Time Functions

CVTSTIME: Converting the System Date
and Time (OpenVMS Only)

GETSTIME: Extracting the System Date
and Time (OpenVMS Only)

HADD: Incrementing a Date-Time Value

HCNVRT: Converting a Date-Time Value
to Alphanumeric Format

HDATE: Converting the Date Portion of a
Date-Time Value to a Date Format

HDIFF: Finding the Number of Units
Between Two Date-Time Values

HDTTM: Converting a Date Value to a
Date-Time Value

HEXTR: Extracting Components of a
Date-Time Value and Setting Remaining
Components to Zero

HGETC: Storing the Current Local Date
and Time in a Date-Time Field

HGETZ: Storing the Current Coordinated
Universal Time in a Date-Time Field

i

HHMMSS: Retrieving the Current Time

HHMS: Converting a Date-Time Value to
a Time Value

HINPUT: Converting an Alphanumeric
String to a Date-Time Value

HMIDNT: Setting the Time Portion of a
Date-Time Value to Midnight

HMASK: Extracting Date-Time
Components and Preserving Remaining
Components

HNAME: Retrieving a Date-Time
Component in Alphanumeric Format

HPART: Retrieving a Date-Time
Component as a Numeric Value

HSETPT: Inserting a Component Into a
Date-Time Value

HTIME: Converting the Time Portion of a
Date-Time Value to a Number

HTMTOTS or TIMETOTS: Converting a
Time to a Timestamp

HYYWD: Returning the Year and Week
Number From a Date-Time Value

371

Using Date-Time Functions

- WRTSTIME: Converting Dates to 64-Bit
DEC Date/Time Format (OpenVMS Only)

Using Date-Time Functions

The functions described in this section operate on fields in date-time format (sometimes called
H format).

Date-Time Parameters

Syntax:

Example:

372

The DATEFORMAT parameter specifies the order of the date components for certain types of
date-time values. The WEEKFIRST parameter specifies the first day of the week. The DTSTRICT
parameter determines the extent to which date-time values are checked for validity.

Specifying the Order of Date Components

The DATEFORMAT parameter specifies the order of the date components (month/day/year)
when date-time values are entered in the formatted string and translated string formats
described in Using Date-Time Formats on page 377. It makes the input format of a value
independent of the format of the variable to which it is being assigned.

How to Specify the Order of Date Components in a Date-Time Field
SET DATEFORVMAT = option

where:
option

Can be one of the following: MDY, DMY, YMD, or MYD. MDY is the default value for the
U.S. English format.

Using the DATEFORMAT Parameter

The following request uses a natural date literal with ambiguous numeric day and month
components (APR 04 05) as input to the HINPUT function:

SET DATEFORVAT = MYD

DEFI NE FI LE EMPLOYEE

DTFLDYYMD HYYMDI = HI NPUT(9, "' APR 04 05', 8, DTFLDYYMD);
END

TABLE FI LE EMPLOYEE

SUM CURR_SAL NOPRI NT DTFLDYYND

END

With DATEFORMAT set to MYD, the value is interpreted as April 5, 1904:

Information Builders

13. Date-Time Functions I

Syntax:

DTFLDYYND

1904- 04- 05 00: 00

Specifying the First Day of the Week for Use in Date-Time Functions

The WEEKFIRST parameter specifies a day of the week as the start of the week. This is used in
week computations by the HADD, HDIFF, HNAME, HPART, and HYYWD functions. It is also
used by the DTADD, DTDIFF, DTRUNC, and DTPART functions. The default values are different
for these functions, as described in How to Set a Day as the Start of the Week on page 373.
The WEEKFIRST parameter does not change the day of the month that corresponds to each
day of the week, but only specifies which day is considered the start of the week.

The HPART, DTPART, HYYWD, and HNAME subroutines can extract a week number from a date-
time value. To determine a week number, they can use different definitions. For example, 1SO
8601 standard week numbering defines the first week of the year as the first week in January
with four or more days. Any preceding days in January belong to week 52 or 53 of the
preceding year. The ISO standard also establishes Monday as the first day of the week.

You specify which type of week numbering to use by setting the WEEKFIRST parameter, as
described in How to Set a Day as the Start of the Week on page 373.

Since the week number returned by HNAME, DTPART, and HPART functions can be in the
current year or the year preceding or following, the week number by itself may not be useful.
The function HYYWD returns both the year and the week for a given date-time value.

How to Set a Day as the Start of the Week
SET WEEKFI RST = val ue

where:
val ue

Can be:

4 1 through 7, representing Sunday through Saturday with non-standard week numbering.

Week numbering using these values establishes the first week in January with seven
days as week number 1. Preceding days in January belong to the last week of the
previous year. All weeks have seven days.

. 1SO1 through ISO7, representing Sunday through Saturday with ISO standard week
numbering.

Note: ISO is a synonym for 1SO2.

Using Functions 373

Using Date-Time Functions

Example:

Syntax:

374

Week numbering using these values establishes the first week in January with at least
four days as week number 1. Preceding days in January belong to the last week of the
previous year. All weeks have seven days.

STD1 through STD7, in which the digit 1 (Sunday) through 7 (Saturday) indicates the
starting day of the week.

Note: STD without a digit is equivalent to STD1.

Week numbering using these values is as follows. Week number 1 begins on January 1
and ends on the day preceding the first day of the week. For example, for STD1, the
first week ends on the first Saturday of the year. The first and last week may have
fewer than seven days.

SIMPLE, which establishes January 1 as the start of week 1, January 8 is the start of
week 2, and so on. The first day of the week is, thus, the same as the first day of the
year. The last week (week 53) is either one or two days long.

0 (zero), is the value of the WEEKFIRST setting before the user issues an explicit
WEEKFIRST setting. The date-time functions HPART, HNAME, HYYWD, HADD, and HDIFF
use Saturday as the start of the week, when the WEEKFIRST setting is O. The simplified
functions DTADD, DTDIFF, DTRUNC, and DTPART, as well as printing of dates truncated
to weeks, and recognition of date constant strings that contain week numbers, use
Sunday as the default value, when the WEEKFIRST setting is O. If the user explicitly
sets WEEKFIRST to another value, that value is used by all of the functions.

Setting Sunday as the Start of the Week

The following designates Sunday as the start of the week, using non-standard week
numbering:

SET WEEKFI RST = 1

How to View the Current Setting of WEEKFIRST
? SET VEEKFI RST

This returns the value that indicates the week numbering algorithm and the first day of the
week. For example, the integer 1 represents Sunday with non-standard week numbering.

Information Builders

13. Date-Time Functions I

Controlling Processing of Date-Time Values

Strict processing checks date-time values when they are input by an end user, read from a
transaction file, displayed, or returned by a subroutine to ensure that they represent a valid
date and time. For example, a humeric month must be between 1 and 12, and the day must
be within the number of days for the specified month.

Syntax: How to Enable Strict Processing of Date-Time Values
SET DTSTRICT = {QN| OFF}

where:
ON
Invokes strict processing. ON is the default value.

Strict processing checks date-time values when they are input by an end user, read from a
transaction file, displayed, or returned by a subroutine to ensure that they represent a
valid date and time. For example, a numeric month must be between 1 and 12, and the
day must be within the number of days for the specified month.

If DTSTRICT is ON and the result would be an invalid date-time value, the function returns
the value zero (0).

OFF
Does not invoke strict processing. Date-time components can have any value within the
constraint of the number of decimal digits allowed in the field. For example, if the field is a
two-digit month, the value can be 12 or 99, but not 115.
Supplying Arguments for Date-Time Functions
Date-time functions may operate on a component of a date-time value. This topic lists the valid
component names and abbreviations for use with these functions.
Reference: Arguments for Use With Date and Time Functions

The following component names, valid abbreviations, and values are supported as arguments
for the date-time functions that require them:

Component Name Abbreviation Valid Values

year yy 0001-9999

Using Functions 375

Using Date-Time Functions

376

Component Name Abbreviation Valid Values

quarter qaq 1-4

nont h mm 1-12 or a month name, depending on the
function.

day- of - year dy 1-366

day or day-of-nonth dd 1-31 (The two component hames are
equivalent.)

week wk 1-53

weekday dw 1-7 (Sunday-Saturday)

hour hh 0-23

m nut e mi 0-59

second ss 0-59

mllisecond ns 0-999

mi cr osecond nc 0-999999

nanosecond ns 0-999999999

Note:

4 For an argument that specifies a length of eight, ten, or 12 characters, use eight to include

milliseconds, ten to include microseconds, and 12 to include nanoseconds in the returned

value.

4 The last argument is always a USAGE format that indicates the data type returned by the

function. The type may be A (alphanumeric), | (integer), D (floating-point double precision),
H (date-time), or a date format (for example, YYMD).

Information Builders

13. Date-Time Functions I

Using Date-Time Formats

There are three types of date formats that are valid in date-time values: numeric string format,
formatted-string format, and translated-string format. In each format, two-digit years are
interpreted using the DEFCENT and YRTHRESH parameters.

Time components are separated by colons and may be followed by A.M., P.M., a.m., or p.m.

The DATEFORMAT parameter specifies the order of the date components (month/day/year)
when date-time values are entered in the formatted string and translated string formats. It
makes a value’s input format independent of the format of the variable to which it is being
assigned.

Numeric String Format

The numeric string format is exactly two, four, six, or eight digits. Four-digit strings are
considered to be a year (century must be specified), and the month and day are set to January
1. Six and eight-digit strings contain two or four digits for the year, followed by two for the
month, and two for the day. Because the component order is fixed with this format, the
DATEFORMAT setting is ignored.

If a numeric-string format longer than eight digits is encountered, it is treated as a combined
date-time string in the Hnn format.

Example: Using Numeric String Format

The following are examples of numeric string date constants:

String Date

99 January 1, 1999
1999 January 1, 1999
19990201 February 1, 1999

Using Functions 377

Using Date-Time Functions

Formatted-string Format

The formatted-string format contains a one or two-digit day, a one or two-digit month, and a two
or four-digit year, each component separated by a space, slash, hyphen, or period. All three
components must be present and follow the DATEFORMAT setting. If any of the three fields is
four digits, it is interpreted as the year, and the other two fields must follow the order given by
the DATEFORMAT setting.

Example: Using Formatted-string Format
The following are examples of formatted-string date constants and specify May 20, 1999:
1999/ 05/ 20
5 20 1999

99. 05. 20
1999-05- 20

Translated-string Format

The translated-string format contains the full or abbreviated month name. The year must also

be present in four-digit or two-digit form. If the day is missing, day 1 of the month is assumed;
if present, it can have one or two digits. If the string contains both a two-digit year and a two-

digit day, they must be in the order given by the DATEFORMAT setting.

Example: Using Translated-string Format

The following date is in translated-string format:

January 6 2000

Time Format
Time components are separated by colons and may be followed by A.M., P.M., a.m., or p.m.

Seconds can be expressed with a decimal point or be followed by a colon. If there is a colon
after seconds, the value following it represents milliseconds. There is no way to express
microseconds or nanoseconds using this notation.

A decimal point in the seconds value indicates the decimal fraction of a second. Microseconds
can be represented using six decimal digits. Nanoseconds can be represented using nine
decimal digits.

378 Information Builders

13. Date-Time Functions I

Example: Using Time Formats

The following are examples of acceptable time formats:

14:30: 20: 99

14: 30

14:30: 20. 99
14:30: 20. 999999

(99 mlliseconds)

(99/ 100 seconds)

02: 30: 20: 500pm

(999999 mi croseconds)

Example: Using Universal Date-Time Input Values

With DTSTANDARD settings of STANDARD and STANDARDU, the following date-time values can
be read as input:

Input Value Description

14:30[: 20, 99] Comma separates time components instead of period
14:30[:20.99]Z Universal time

15:30[: 20, 99] +01 Each of these is the same as above in Central European
15: 30[: 20, 99] +0100 Time

15: 30[: 20, 99] +01: 00

09: 30[:20.99]-05 Same as above in Eastern Standard Time

Note that these values are stored identically internally with the STANDARDU setting. With the
STANDARD setting, everything following the Z, +, or - is ignored.

Assigning Date-Time Values

A date-time value is a constant in character format assigned by one of the following:

4 A sequential data source.

. An expression that defines WHERE or IF criteria or creates a temporary field using the
DEFINE or COMPUTE command.

A date-time constant can have blanks at the beginning or end or immediately preceding an
am/pm indicator.

Using Functions

379

Using Date-Time Functions

Syntax:

Example:

380

How to Assign Date-Time Values

In a character file

date string [tinme_string]

or

tinme_string [date_string)

In a COMPUTE, DEFINE, or WHERE expression
DT(date string [tinme_string])
or

DT(t/ne_string [date_string])
In an IF expression

"date string [tine_string]l'
or

"tine_string [date_stringl'

where:

tinme_string

Is a time string in acceptable format. A time string can have a blank immediately preceding

an am/pm indicator.

date_string

Is a date string in numeric string, formatted-string, or translated-string format.

In an IF criteria, if the value does not contain blanks or special characters, the single

quotation marks are not necessary.

Note: The date and time strings must be separated by at least one blank space. Blank
spaces are also permitted at the beginning and end of the date-time string.

Assigning Date-Time Literals

The DT prefix can be used in a COMPUTE, DEFINE, or WHERE expression to assign a date-time

literal to a date-time field. For example:

Information Builders

13. Date-Time Functions I

Example:

Example:

DT2/ HYYMDS = DT(20051226 05: 45);
DT3/ HYYMDS = DT(2005 DEC 26 05: 45);
DT4/ HYYMDS = DT(Decenber 26 2005 05: 45);

Assigning a Date-Time Value in a COMPUTE Command

The following uses the DT function in a COMPUTE command to create a new field containing an
assigned date-time value.

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME FI RST_NAVE AND COVPUTE
NEWSAL/ D12.2M = CURR SAL + (0.1 * CURR SAL);
RAI SETI ME/ HYYMDI A = DT(20000101 09: 00AM ;
WHERE CURR_JOBCCODE LI KE ' B%

END

The output is:

LAST_NAME FI RST_NAME NEWSAL RAI SETI ME

SM TH MARY $14,520. 00 2000/01/01 9: 00AM
JONES DI ANE $20, 328. 00 2000/01/01 9: 00AM
ROVANS ANTHONY $23,232.00 2000/01/01 9: 00AM
MCCOY JOHN $20, 328. 00 2000/01/01 9: 00AM
BLACKWOOD ROSEMARI E $23,958. 00 2000/01/01 9: 00AM
MCKNI GHT ROGER $17,710. 00 2000/01/01 9: 00AM

Assigning a Date-Time Value in WHERE Criteria

The following uses the DT function to create a new field containing an assigned date-time
value. This value is then used as a WHERE criteria.

DEFI NE FI LE EMPLOYEE

NEWBAL/ D12. 2M = CURR_SAL + (0.1 * CURR_SAL);
RAI SETI ME/ HYYMDI A = DT(20000101 09: 00AM ;
END

TABLE FI LE EMPLOYEE
PRI NT LAST NAME FI RST_NAME NEWSAL RAI SETI ME
WHERE RAI SETI ME EQ DT(20000101 09: 00AM

END

Using Functions 381

CVTSTIME: Converting the System Date and Time (OpenVMS Only)

Example:

The output is:
LAST _NANMVE

BARBARA

Assigning a Date-Time Value in IF Criteria

RAI SETI ME
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/01

00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM

The following uses the DT function to create a new field containing an assigned date-time
value. This value is then used in the IF phrase.

DEFI NE FI LE EMPLOYEE
NEWSAL/ D12. 2M = CURR_SAL + (0.1 * CURR_SAL);
RAI SETI ME/ HYYMDI A = DT(20000101 09: 00AM ;

END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME FI RST_NAME NEWSAL RAI SETI MVE
I F RAI SETI VE EQ ' 20000101 09: 00AM

END

The output is:
LAST_NAME

FI RST_NAME

$29, 768. 20

RAI SETI ME
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/ 01
2000/ 01/01

CVTSTIME: Converting the System Date and Time (OpenVMS Only)

The CVTSTIME function converts the retrieved 64-bit DEC Date/Time formatted field to a
printable character string or internal natural date value offset. CVSTIME is generally used with
GETSTIME which actually extracts a 64-bit DEC Date/Time from the system.

382

00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM
00AM

Information Builders

13. Date-Time Functions I

Syntax: How to Convert the System Date and Time

CVTSTI ME(format styl e, infield, output)

where:

formatstyle

Integer

Is a number from O to 5, from the list below, that corresponds to a formatting style for the
output.

0 returns DD-MMM-YYYY HH:MM:SS

1 returns DD-MMM-YYYY

2 returns HH:MM:SS

3 returns DD-MMM-YYYY HH:MM:SS.CC
4 returns YYYY-MM-DD HH:MM:SS.CC

5 indicates a FOCUS natural date format offset, that is, an integer indicating the number of
elapsed days from December 31, 1900.

infield

Alphanumeric

Is the field containing the incoming 64-bit DEC Date/Time formatted string to be
converted.

out put

Using Functions

Alphanumeric, or D4 (or higher) for Format Style 5 (see the table below).

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

Note: Output must specify enough space to accommodate the string size specified by the
formatstyle parameter.

Formatting Style Number Number of Bytes
0 20

1 11

2 8

383

GETSTIME: Extracting the System Date and Time (OpenVMS Only)

Formatting Style Number Number of Bytes
3 23

4 22

5 4

Example: Converting the System Date and Time

This request displays employee department assignments and salaries with a heading that
includes the current date.

DEFI NE FI LE EMPLOYEE

SYSTEM DATE/ A8 = GETSTI ME(' A8') ;
ELAPSED/ D8 = CVTSTI ME(5, SYSTEM DATE, ' D8')
BASE/ MDY = ' 12/ 31/ 00’

THE _DATE/ MDY = BASE + ELAPSED ;

END

TABLE FI LE EMPLOYEE

HEADI NG

"SALARY REPORT RUN ON DATE: <THE_DATE"
PRI NT DEPARTMENT CURR_SAL

BY LAST_NAME BY FI RST_NAME
END

GETSTIME: Extracting the System Date and Time (OpenVMS Only)

The GETSTIME function extracts the current 64-bit DEC Date/Time value from the system.
Syntax: How to Extract the System Date and Time
GETSTI ME(out put)

where:
out put
A8

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

384 Information Builders

13. Date-Time Functions I

Example:

Extracting and Displaying the System Date

This request displays employee department assignments and salaries with a heading that
includes the current date.

DEFI NE FI LE EMPLOYEE

SYSTEM DATE/ A8 = GETSTI ME(' A8') ;

CVTDATE A22 = CVTSTI ME(4, SYSTEM DATE, ' A22") ;
END

TABLE FI LE EMPLOYEE

HEADI NG

"SALARY REPORT RUN ON. <CVTDATE"

PRI NT DEPARTMENT CURR_SAL

BY LAST_NAME BY FI RST_NAME

END

HADD: Incrementing a Date-Time Value

Syntax:

Available Languages: reporting, Maintain

The HADD function increments a date-time value by a given number of units.
How to Increment a Date-Time Value
HADD(dat et i ne, ' conponent', [ncrenment, [ength, output)

where:
dateti ne
Date-time

Is the date-time value to be incremented, the name of a date-time field that contains the
value, or an expression that returns the value.

conponent
Alphanumeric

Is the name of the component to be incremented enclosed in single quotation marks. For a
list of valid components, see Arguments for Use With Date and Time Functions on page
375.

Note: WEEKDAY is not a valid component for HADD.
[ncrenent
Integer

Is the number of units (positive or negative) by which to increment the component, the
name of a numeric field that contains the value, or an expression that returns the value.

Using Functions 385

HADD: Incrementing a Date-Time Value

Example:

Example:

386

/engt h
Integer

Is the number of characters returned. Valid values are:
. 8 indicates a date-time value that includes one to three decimal digits (milliseconds).
4 10 indicates a date-time value that includes four to six decimal digits (microseconds).

.4 12 indicates a date-time value that includes seven to nine decimal digits
(nanoseconds).

out put
Date-time

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This field must be in date-time format (data type H).

Incrementing the Month Component of a Date-Time Field (Reporting)

HADD adds two months to each value in TRANSDATE and stores the result in ADD_MONTH. If
necessary, the day is adjusted so that it is valid for the resulting month.

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE- TI ME' AND COVPUTE

ADD MONTH HYYNMDS = HADD (TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
VWHERE DATE EQ 2000;

END

The output is:
CUSTI D DATE-TI ME ADD_MONTH

1237 2000/ 02/ 05 03:30 2000/04/05 03:30: 00
1118 2000/ 06/ 26 05:45 2000/08/26 05:45:00

Incrementing the Month Component of a Date-Time Field (Maintain)

HADD adds two months to the DT1 field:

MAI NTAI' N FI LE DATETI ME

FOR 1 NEXT I D DT1 I NTO DTSTK

COVPUTE

NEW DATE/ HYYMDS = HADD (DTSTK.DT1, '"MONTH', 2,10, NEW_DATE);
TYPE "DT1 |IS: <DTSTK(1).D11 "

TYPE "NEW DATE | S: <NEW DATE "

Information Builders

13. Date-Time Functions I

The result is:

DT1 I'S: 2000/1/1 02:57:25

NEW DATE |'S: 2000/3/1 02:57: 25

TRANSACTIONS: COMWM TS = 1 ROLLBACKS = 0
SEGMENTS : | NCLUDED = 0 UPDATED = O DELETED = 0

Example: Converting Unix (Epoch) Time to a Date-Time Value

Unix time (also known as Epoch time) defines an instant in time as the number of seconds
that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January
1970, not counting leap seconds.

The following DEFINE FUNCTION takes a number representing epoch time and converts it to a
date-time value by using the HADD function to add the number of seconds represented by the
input value in epoch time to the epoch base date:

DEFI NE FUNCTI ON UNI X2GMT(| NPUT/ | 9)
UNI X2GMT/ HYYMDS = HADD(DT(1970 JAN 1),' SECONDS' , | NPUT, 8, ' HYYMDS') ;
END

The following request uses this DEFINE FUNCTION to convert the epoch time 1449068652 to
a date-time value:

DEFI NE FI LE GGSALES

| NPUT/ |1 9=1449068652;

OQUTDATE/ HMTDYYSb = UNI X2GMT(| NPUT) ;
END

TABLE FI LE GGSALES

PRI NT DATE NOPRI NT | NPUT COUTDATE
VWHERE RECORDLIM T EQ 1

ON TABLE SET PAGE NOLEAD

END

The output is shown in the following image:

| INPUT |OUTDATE
11449068652 [December 02 2015 3:04:12 pm

HCNVRT: Converting a Date-Time Value to Alphanumeric Format
Available Languages: reporting, Maintain

The HCNVRT function converts a date-time value to alphanumeric format for use with operators
such as EDIT, CONTAINS, and LIKE.

Using Functions 387

HCNVRT: Converting a Date-Time Value to Alphanumeric Format

Syntax:

Example:

388

How to Convert a Date-Time Value to Alphanumeric Format
HCNVRT(datetine, ' (format)', [ength, output)

where:
dateti ne
Date-time

Is the date-time value to be converted, the name of a date-time field that contains the
value, or an expression that returns the value.

fornat
Alphanumeric

Is the format of the date-time field enclosed in parentheses and single quotation marks. It
must be a date-time format (data type H, up to H23).

/ engt h
Integer

Is the number of characters in the alphanumeric field that is returned. You can supply the
actual value, the name of a numeric field that contains the value, or an expression that
returns the value. If length is smaller than the number of characters needed to display the
alphanumeric field, the function returns a blank.

out put
Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This field must be in alphanumeric format and must be long enough to
contain all of the characters returned.

Converting a Date-Time Field to Alphanumeric Format (Reporting)

HCNVRT converts the TRANSDATE field to alphanumeric format. The first function does not
include date-time display options for the field; the second function does for readability. It also
specifies the display of seconds in the input field.

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE

ALPHA DATE_TI ME1l/ A20 = HCNVRT (TRANSDATE, '(H17)', 17, 'A20');
ALPHA_DATE_TI ME2/ A20 HCNVRT (TRANSDATE, ' (HYYMDS)', 20, 'A20');
VWHERE DATE EQ 2000

END

Information Builders

13. Date-Time Functions I

Example:

The output is:

CUSTI D DATE-TI ME ALPHA _DATE TI ME1 ALPHA _DATE Tl ME2
1237 2000/ 02/ 05 03:30 20000205033000000 2000/ 02/ 05 03:30: 00
1118 2000/ 06/ 26 05:45 20000626054500000 2000/ 06/ 26 05: 45: 00

Converting a Date-Time Field to Alphanumeric Format (Maintain)

HCNVRT converts the DT1 field to alphanumeric format:

MAI NTAI N FI LE DATETI ME

FOR ALL NEXT ID I NTO STK;

COVPUTE

RESULT_HCNVRT/ A20 = HCNVRT (STK.DT1, ' (HYYMDH) ',20, RESULT HCNVRT);
TYPE "STK(1).DT1 = "STK(1).DT1;

TYPE "RESULT _HCONVRT = " RESULT_HCNVRT;

END

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

Syntax:

Available Languages: reporting, Maintain

The HDATE function converts the date portion of a date-time value to the date format YYMD.
You can then convert the result to other date formats.

How to Convert the Date Portion of a Date-Time Value to a Date Format
HDATE(dat et i ne, out put)

where:
dateti ne
Date-time

Is the date-time value to be converted, the name of a date-time field that contains the
value, or an expression that returns the value.

out put

Date

Is the format in single quotation marks or the field that contains the result.

Using Functions 389

HDIFF: Finding the Number of Units Between Two Date-Time Values

Example:

Example:

Converting the Date Portion of a Date-Time Field to a Date Format (Reporting)
HDATE converts the date portion of the TRANSDATE field to the date format YYMD:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
TRANSDATE_DATE/ YYMD = HDATE (TRANSDATE, 'YYMD');
WHERE DATE EQ 2000;

END

The output is:
CUSTI D DATE-TI ME TRANSDATE_DATE

1237 2000/ 02/ 05 03:30 2000/ 02/ 05
1118 2000/ 06/ 26 05:45 2000/ 06/ 26

Converting the Date Portion of a Date-Time Field to a Date Format (Maintain)

HDATE converts the date portion of DT1 to date format YYMD:

MAI NTAI N FI LE DATETI ME

FOR 1 NEXT ID I NTO STK;

COVPUTE

DTl_DATFJ YYMD = HDATE (STK.DT1, DT1_DATE);
TYPE "STK(1).DT1 = <STK(1).DT1";

TYPE "DT1_DATE = <DT1_DATE';

END

The output is:

STK(1).DT1 = 2000/ 1/1 02:57: 25
DT1_DATE = 2000/ 01/01

HDIFF: Finding the Number of Units Between Two Date-Time Values

Reference:

390

Available Languages: reporting, Maintain

The HDIFF function calculates the number of date or time component units between two date-
time values.

Usage Notes for HDIFF

HDIFF does its subtraction differently from DATEDIF, which subtracts date components stored
in date fields. The DATEDIF calculation looks for full years or full months. Therefore,
subtracting the following two dates and requesting the number of months or years, results in
0:

DATE1 12/ 25/ 2014, DATE2 1/5/2015

Information Builders

13. Date-Time Functions I

Syntax:

Example:

Performing the same calculation using HDIFF on date-time fields results in a value of 1 month
or 1 year as, in this case, the month or year is first extracted from each date-time value, and
then the subtraction occurs.

How to Find the Number of Units Between Two Date-Time Values
HDI FF(end_dt, start_dt, ' conponent', output)

where:
end _dt
Date-time

Is the date-time value to subtract from, the name of a date-time field that contains the
value, or an expression that returns the value.

start_dat
Date-time

Is the date-time value to subtract, the name of a date-time field that contains the value, or
an expression that returns the value.

conponent
Alphanumeric

Is the name of the component to be used in the calculation, enclosed in single quotation
marks. If the component is a week, the WEEKFIRST parameter setting is used in the
calculation.

out put
Floating-point double-precision

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be floating-point double-precision.

Finding the Number of Days Between Two Date-Time Fields (Reporting)

HDIFF calculates the number of days between the TRANSDATE and ADD_MONTH fields and
stores the result in DIFF_PAYS, which has the format D12.2:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE

ADD_MONTH HYYMDS = HADD(TRANSDATE, ' MONTH , 2, 8, 'HYYMDS');
Dl FF_DAYS/ D12. 2 = HDIFF (ADD_MONTH, TRANSDATE, 'DAY', 'D12.2');
VWHERE DATE EQ 2000;

END

Using Functions 391

HDTTM: Converting a Date Value to a Date-Time Value

The output is:

CUSTI D DATE-TI ME ADD_MONTH DI FF_DAYS
1237 2000/ 02/ 05 03:30 2000/04/05 03:30: 00 60. 00
1118 2000/ 06/ 26 05:45 2000/08/26 05:45:00 61. 00

Example: Finding the Number of Days Between Two Date-Time Fields (Maintain)
HDIFF calculates the number of days between ADD_MONTH and DT1:

MAI NTAI N FI LE DATETI ME

FOR 1 NEXT ID I NTO STK;

COVPUTE

NEW DATE/ HYYMDS = HADD(STK. DT1, ' MONTH , 2,10, NEW DATE);
DI FF_DAYS/ D12. 2 HDIFF (NEW_DATE,STK.DTl, "DAY', DIFF_DAYS);
TYPE "STK(1).DT1 = "STK(1).DT1;

TYPE " NEW DATE = " NEW DATE;

TYPE " DI FF_DAYS = "Dl FF_DAYS

END

HDTTM: Converting a Date Value to a Date-Time Value
Available Languages: reporting, Maintain

The HDTTM function converts a date value to a date-time value. The time portion is set to
midnight.

Syntax: How to Convert a Date Value to a Date-Time Value
HDTTM dat e, | ength, output)

where:
dat e
Date

Is the date to be converted, the name of a date field that contains the value, or an
expression that returns the value. It must be a full component format date. For example, it
can be MDYY or YYJUL.

[engt h
Integer

Is the length of the returned date-time value. Valid values are:
.d 8 indicates a time value that includes milliseconds.

4 10 indicates a time value that includes microseconds.

392 Information Builders

13. Date-Time Functions I

- 12 indicates a time value that includes nanoseconds.
out put
Date-time
Is the generated date-time value. It can be a field or the format of the output value
enclosed in single quotation marks. The value must have a date-time format (data type H).
Example: Converting a Date Field to a Date-Time Field (Reporting)
HDTTM converts the date field TRANSDATE_DATE to a date-time field:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
TRANSDATE_DATE/ YYMD = HDATE(TRANSDATE, ' YYMD);
DT2/ HYYMDI A = HDTTM(TRANSDATE_DATE, 8, 'HYYMDIA');
VWHERE DATE EQ 2000;

END

The output is:

CUSTI D DATE-TI ME TRANSDATE_DATE DT2
1237 2000/ 02/ 05 03: 30 2000/ 02/ 05 2000/ 02/ 05 12: 00AM
1118 2000/ 06/ 26 05:45 2000/ 06/ 26 2000/ 06/ 26 12: 00AM

Example: Converting a Date Field to a Date-Time Field (Maintain)
HDTTM converts the date field DT1_DATE to a date-time field:

MAI NTAI N FI LE DATETI ME

FOR 1 NEXT ID I NTO STK;

COVPUTE

DT1_DATE/ YYMD = HDATE(DT1, DT1_DATE);
DT2/ HYYMDI A = I{DTTM(DTl_DATE, 8, DT2);
TYPE "STK(1).DT1 = <STK(1).DT1";

TYPE "DT1_DATE = <DT1_DATE';

TYPE "DT2 = <DT2";

END

HEXTR: Extracting Components of a Date-Time Value and Setting Remaining Components
to Zero

Available Languages: reporting, Maintain

The HEXTR function extracts one or more components from a date-time value and moves them
to a target date-time field with all other components set to zero.

Using Functions 393

HEXTR: Extracting Components of a Date-Time Value and Setting Remaining Components to Zero

Syntax: How to Extract Multiple Components From a Date-Time Value
HEXTR(dat et/ me, ' conponentstring , [ength, output)

where:

dateti ne
Date-time

Is the date-time value from which to extract the specified components.

conponent string
Alphanumeric

Is a string of codes, in any order, that indicates which components are to be extracted and
moved to the output date-time field. The following table shows the valid values. The string
is considered to be terminated by any character not in this list:

Code Description

C century (the two high-order digits only of the four-digit year)

Y year (the two low-order digits only of the four-digit year)

YY Four digit year.

M month

D day

H hour

| minutes

S seconds

s milliseconds (the three high-order digits of the six-digit microseconds value)
u microseconds (the three low-order digits of the six-digit microseconds value)
m All six digits of the microseconds value.

n Low order three digits of nine decimal digits.

394 Information Builders

13. Date-Time Functions I

/engt h

Is the length of the returned date-time value. Valid values are:
- 8 indicates a time value that includes milliseconds.
. 10 indicates a time value that includes microseconds.

4 12 indicates a time value that includes nanoseconds.
out put

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This field must be in date-time format (data type H).

Example: Extracting Hour and Minute Components Using HEXTR

The VIDEOTR2 data source has a date-time field named TRANSDATE of type HYYMDI. The
following request selects all records containing the time 09:18AM, regardless of the value of
the remaining components:

TABLE FI LE VI DEOTR2

PRI NT TRANSDATE

BY LASTNAME

BY FI RSTNAME

VWHERE HEXTR(TRANSDATE, 'H ', 8, 'HYYMDI') EQ DT(09: 18AM
END

The output is:

LASTNAME FI RSTNAME TRANSDATE
DI ZON JANET 1999/ 11/ 05 09: 18
PETERSON GLEN 1999/ 09/ 09 09: 18

HGETC: Storing the Current Local Date and Time in a Date-Time Field
Available Languages: reporting, Maintain

The HGETC function returns the current local date and time in the desired date-time format. If
millisecond or microsecond values are not available in your operating environment, the
function retrieves the value zero for these components.

Using Functions 395

HGETC: Storing the Current Local Date and Time in a Date-Time Field

Syntax:

Example:

Example:

396

How to Store the Current Local Date and Time in a Date-Time Field
HGETC(/ engt h, out put)

where:
/ engt h
Integer
Is the length of the returned date-time value. Valid values are:
d 8 indicates a time value that includes milliseconds.
.d 10 indicates a time value that includes microseconds.

4 12 indicates a time value that includes nanoseconds.

out put
Date-time

Is the returned date-time value. Can be a field that contains the result, or the format of the
output value enclosed in single quotation marks. The format must be in date-time format
(data type H).

Storing the Current Date and Time in a Date-Time Field (Reporting)
HGETC stores the current date and time in DT2:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
DT2/ HYYNDM = HGETC (10, 'HYYMDm');

VHERE DATE EQ 2000;

END

The output is:
CUSTI D DATE-TI ME D12

1237 2000/ 02/ 05 03:30 2000/ 10/03 15:34:24. 000000
1118 2000/ 06/ 26 05:45 2000/10/03 15:34:24. 000000

Storing the Current Local Date and Time in a Date-Time Field (Maintain)
HGETC stores the current date and time in DT2:

MAI NTAI N

COVPUTE DT2/ HYYMDM = HGETC (10, DT2);

TYPE "DT2 = <DT2";
END

Information Builders

13. Date-Time Functions I

HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field
Available Languages: reporting, Maintain

HGETZ provides the current Coordinated Universal Time (UTC/GMT time, often called Zulu
time). UTC is the primary civil time standard by which the world regulates clocks and time.

The value is returned in the desired date-time format. If millisecond or microsecond values are
not available in your operating environment, the function retrieves the value zero for these
components.

Syntax: How to Store the Current Universal Date and Time in a Date-Time Field
HGETZ(/ engt h, out put)

where:
/ engt h
Integer
Is the length of the returned date-time value. Valid values are:
. 8 indicates a time value that includes milliseconds.
. 10 indicates a time value that includes microseconds.

4 12 indicates a time value that includes nanoseconds.
out put
Date-time

Is the returned date-time value. Can be a field that contains the result, or the format of the
output value enclosed in single quotation marks. The format must be in date-time format
(data type H).

Example: Storing the Current Universal Date and Time in a Date-Time Field (Reporting)
HGETZ stores the current universal date and time in DT2:

TABLE FI LE VI DECTRK

PRI NT CUSTI D AND COVPUTE

DT2/ HYYNDM = HGETZ (10, 'HYYMDm');

VWHERE CUSTI D GE ' 2000 AND CUSTID LE ' 3000';
END

Using Functions 397

HHMMSS: Retrieving the Current Time

Example:

The output is:
CUSTID D12

2165 2015/ 05/ 08 14:43:08. 740000
2187 2015/ 05/ 08 14:43:08. 740000
2280 2015/ 05/ 08 14:43:08. 740000
2282 2015/ 05/ 08 14:43:08. 740000
2884 2015/ 05/ 08 14:43:08. 740000

Calculating the Time Zone

The time zone can be calculated as a positive or negative hourly offset from GMT. Locations to
the west of the prime meridian have a negative offset. The following request uses the HGETC
function to retrieve the local time, and the HGETZ function to retrieve the GMT time. The HDIFF
function calculates the number of boundaries between them in minutes. The zone is found by
dividing the minutes by 60:

DEFI NE FI LE EMPLOYEE

LOCALTI ME/ HYYMDS = HGETC(8, LOCALTIME);
UTCTI ME/ HYYNDS = HGETZ(8, UTCTI ME);

M NUTES/ D4= HDI FF(LOCALTI ME, UTCTI ME, ' M NUTES', 'D4');
ZONE/ P3 = M NUTES/ 60;

END

TABLE FI LE EMPLOYEE

PRINT EMP_| D NCPRI NT OVER

LOCALTI ME OVER

UTCTI ME OVER

M NUTES OVER

ZONE

|F RECORDLIMT IS 1

END

The output is:

LOCALTI ME 2015/ 05/ 12 12:47:04
UTCTI ME 2015/ 05/ 12 16:47:04
M NUTES - 240
ZONE -4

HHMMSS: Retrieving the Current Time

398

Available Languages: reporting

The HHMMSS function retrieves the current time from the operating system as an eight
character string, separating the hours, minutes, and seconds with periods.

A compiled MODIFY procedure must use HHMMSS to obtain the time; it cannot use the &TOD
variable, which also returns the time. The &TOD variable is made current only when you
execute a MODIFY, SCAN, or FSCAN procedure.

Information Builders

13. Date-Time Functions I

Syntax:

Example:

There is also an HHMMSS function available in the Maintain language. For information on this
function, see HHMMSS: Retrieving the Current Time (Maintain) on page 419.

How to Retrieve the Current Time
HHWVBS(out put)

where:
out put

Alphanumeric, at least A8

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Retrieving the Current Time

HHMMSS retrieves the current time and displays it in the page footing:

TABLE FI LE EMPLOYEE

SUM CURR_SAL AS ' TOTAL SALARI ES' AND COVPUTE
NOWTI ME/ A8 = HHMMSS (NOWTIME); NOPRI NT

BY DEPARTMENT

FOOTI NG

"SALARY REPORT RUN AT TI ME <NOATI ME"

END

The output is:
DEPARTMENT TOTAL SALARI ES

M S $108, 002. 00
PRODUCT! ON $114, 282. 00

SALARY REPORT RUN AT TI ME 15.21. 14

HHMS: Converting a Date-Time Value to a Time Value

Syntax:

Available Languages: reporting

The HHMS function converts a date-time value to a time value.
How to Convert a Date-Time Value to a Time Value
HHVS(dat et i e, | engt h, out put)

where:

dateti ne

Date-time

Using Functions 399

HINPUT: Converting an Alphanumeric String to a Date-Time Value

Example:

Is the date-time value to be converted.

/ engt h
Numeric

Is the length of the returned time value. Valid values are:
- 8 indicates a time value that includes milliseconds.
4 10 indicates a time value that includes microseconds.

4 12 indicates a time value that includes nanoseconds.

out put
Time

Is the name of the field that contains the result, or the format of the output value enclosed

in single quotation marks.

Converting a Date-Time Value to a Time value

The following example converts the date-time field TRANSDATE to a time field with time format

HHIS,

DEFI NE FI LE VI DECTR2

TRANSYEAR/ | 4 = HPART(TRANSDATE, 'YEAR , '14');
END

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
TRANS_TI ME/ HHI S = HHVS(TRANSDATE, 8, "HHI S);
WHERE TRANSYEAR EQ 2000;

END

The output is:
CUSTI D DATE-TI ME TRANS_TI ME

1118 2000/ 06/ 26 05:45 05:45:00
1237 2000/ 02/ 05 03:30 03:30:00

HINPUT: Converting an Alphanumeric String to a Date-Time Value

400

Available Languages: reporting, Maintain

The HINPUT function converts an alphanumeric string to a date-time value.

Information Builders

13. Date-Time Functions I

Syntax:

Using Functions

How to Convert an Alphanumeric String to a Date-Time Value
H NPUT(source_[| ength, ' source_string , output_Iength, output)

where:

source_l ength

Integer

Is the number of characters in the source string to be converted. You can supply the actual
value, the name of a numeric field that contains the value, or an expression that returns
the value.

source_string

Alphanumeric

Is the string to be converted enclosed in single quotation marks, the name of an
alphanumeric field that contains the string, or an expression that returns the string. The
string can consist of any valid date-time input value.

out put _I engt h

Integer

Is the length of the returned date-time value. Valid values are:
.4 8 indicates a time value that includes one to three decimal digits (milliseconds).
4 10 indicates a time value that includes four to six decimal digits (microseconds).

4 12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

out put

Date-time

Is the returned date-time value. Is a field that contains the result, or the format of the
output value enclosed in single quotation marks. The format must be in date-time format
(data type H).

401

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight

Example: Converting an Alphanumeric String to a Date-Time Value (Reporting)

HCNVRT converts the TRANSDATE field to alphanumeric format, then HINPUT converts the
alphanumeric string to a date-time value:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TIME. AND COMPUTE

ALPHA DATE_TI ME/ A20 = HONVRT(TRANSDATE, ' (HL7)', 17, 'A20');
DT_FROM ALPHA/ HYYMDS = HINPUT (14, ALPHA DATE TIME, 8, 'HYYMDS');
VWHERE DATE EQ 2000;

END

The output is:

CUSTI D DATE-TI ME ALPHA DATE_TI ME DT_FROM_ALPHA
1237 2000/ 02/ 05 03:30 20000205033000000 2000/ 02/ 05 03: 30: 00
1118 2000/ 06/ 26 05:45 20000626054500000 2000/ 06/ 26 05:45: 00

Example: Converting an Alphanumeric String to a Date-Time Value (Maintain)

HINPUT converts the DT1 field to alphanumeric format:

MAI NTAI'N FI LE DATETI ME

COWPUTE

RESULT/ HM DYYmA = HINPUT (20, "19971029133059888999',10,RESULT);
TYPE RESULT;

END

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight
Available Languages: reporting, Maintain

The HMIDNT function changes the time portion of a date-time value to midnight (all zeros by
default). This allows you to compare a date field with a date-time field.

Syntax: How to Set the Time Portion of a Date-Time Value to Midnight
HM DNT(dat et i ne, [ength, output)

where:
datetine
Date-time

Is the date-time value whose time is to be set to midnight, the name of a date-time field
that contains the value, or an expression that returns the value.

402 Information Builders

13. Date-Time Functions I

/engt h
Integer

Is the length of the returned date-time value. Valid values are:

d 8 indicates a time value that includes milliseconds.

. 10 indicates a time value that includes microseconds.

4 12 indicates a time value that includes nanoseconds.
out put

Date-time

Is the date-time return value whose time is set to midnight and whose date is copied from
timestamp. Is the field that contains the result, or the format of the output value enclosed
in single quotation marks. The format must be in date-time format (data type H).

Example: Setting the Time to Midnight (Reporting)

HMIDNT sets the time portion of the TRANSDATE field to midnight first in the 24-hour system
and then in the 12-hour system:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
TRANSDATE_M D_24/ HYYNDS HMIDNT (TRANSDATE, 8, 'HYYMDS');
TRANSDATE_M D_12/ HYYMDSA = HMIDNT (TRANSDATE, 8, "HYYMDSA');
VWHERE DATE EQ 2000;

END

The output is:
CUSTI D DATE-TI ME TRANSDATE_M D_24 TRANSDATE M D_12

1118 2000/ 06/ 26 05:45 2000/06/26 00: 00: 00 2000/06/26 12: 00: 00AM
1237 2000/ 02/ 05 03:30 2000/02/05 00: 00: 00 2000/02/05 12: 00: 00AM

Example: Setting the Time to Midnight (Maintain)

HMIDNT sets the time portion of DT1 to midnight in both the 24-hour and 12-hour systems:

MAI NTAI N FI LE DATETI ME

FOR 1 NEXT ID I NTO STK;

COVPUTE

DT_M D_24/ HYYMDS = HMIDNT (STK(1) .DT1, 8, DT_MID_24);
DT_M D_12/ HYYMDSA= HMIDNT (STK (1) .DT1, 8, DT_MID_12);
TYPE "STK(1).DT1 = "STK(1).DT1;

TYPE "DT_M D 24 = <DT_M D _24";

TYPE "DT_M D _12 = <DT_M D_12";

END

Using Functions 403

HMASK: Extracting Date-Time Components and Preserving Remaining Components

HMASK: Extracting Date-Time Components and Preserving Remaining Components

Syntax:

404

Available Languages: reporting, Maintain

The HMASK function extracts one or more components from a date-time value and moves
them to a target date-time field with all other components of the target field preserved.
How to Move Multiple Date-Time Components to a Target Date-Time Field

HVASK(sour ce, ' conponentstring , [nput, [ength, output)

where:
source

Is the date-time value from which the specified components are extracted.
conponent string

Is a string of codes, in any order, that indicates which components are to be extracted and
moved to the output date-time field. The following table shows the valid values. The string
is considered to be terminated by any character not in this list:

Code Description

C century (the two high-order digits only of the four-digit year)

Y year (the two low-order digits only of the four-digit year)

YY Four digit year.

M month

D day

H hour

| minutes

S seconds

S milliseconds (the three high-order digits of the six-digit microseconds value)
u microseconds (the three low-order digits of the six-digit microseconds value)
m All six digits of the microseconds value.

Information Builders

13. Date-Time Functions I

Code Description

n Low order three digits of nine decimal digits.

i nput

Is the date-time value that provides all the components for the output that are not
specified in the component string.

/ engt h
Is the length of the returned date-time value. Valid values are:
. 8 indicates a time value that includes one to three decimal digits (milliseconds).

.d 10 indicates a time value that includes four to six decimal digits (microseconds).

.4 12 indicates a time value that includes seven to nine decimal digits (nanoseconds).
out put
Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. This field must be in date-time format (data type H).
Reference: Usage Notes for the HMASK Function

HMASK processing is subject to the DTSTRICT setting. Moving the day (D) component without
the month (M) component could lead to an invalid result, which is not permitted if the
DTSTRICT setting is ON. Invalid date-time values cause any date-time function to return zeros.

Using Functions 405

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

Example: Changing a Date-Time Field Using HMASK

The VIDEOTRK data source has a date-time field named TRANSDATE of format HYYMDI. The
following request changes any TRANSDATE value with a time component greater than 11:00 to
8:30 of the following day. First the HEXTR function extracts the hour and minutes portion of the
value and compares it to 11:00. If it is greater than 11:00, the HADD function calls HMASK to
change the time to 08:30 and adds one day to the date:

DEFI NE FI LE VI DECTR2
ORI G_TRANSDATE/ HYYMDI = TRANSDATE
TRANSDATE =
| F HEXTR(TRANSDATE, "HI', 8, "HHI") GTI DT(12:00)
THEN HADD (HVASK(DT(08:30), 'HI Ss', TRANSDATE, 8, 'HYYMDI'), ' DAY
1,8, 'HYYMDI ')
ELSE TRANSDATE
END

TABLE FI LE VI DEOTR2

PRI NT ORI G_TRANSDATE TRANSDATE
BY LASTNAME

BY FI RSTNAME

VWHERE ORI G_TRANSDATE NE TRANSDATE
END

The output is

LASTNAME FI RSTNAVME ORI G_TRANSDATE TRANSDATE

BERTAL MARCI A 1999/ 07/ 29 12:19 1999/07/30 08: 30

GARCI A JCOANN 1998/ 05/ 08 12:48 1998/ 05/09 08: 30
1999/11/30 12:12 1999/12/01 08: 30

PARKER GLENDA 1999/ 01/ 06 12:22 1999/01/07 08:30

RATHER M CHAEL 1998/ 02/ 28 12:33 1998/03/01 08: 30

W LSON KELLY 1999/ 06/ 26 12:34 1999/06/27 08:30

HNAME: Retrieving a Date-Time Component in Alphanumeric Format
Available Languages: reporting, Maintain

The HNAME function extracts a specified component from a date-time value and returns it in
alphanumeric format.

406 Information Builders

13. Date-Time Functions I

Syntax:

Example:

How to Retrieve a Date-Time Component in Alphanumeric Format
HNANVE(dat et/ me, ' conponent' , output)

where:

dateti ne
Date-time

Is the date-time value from which a component value is to be extracted, the name of a
date-time field containing the value that contains the value, or an expression that returns
the value.

conponent
Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. For a list
of valid components, see Arguments for Use With Date and Time Functions on page 375.

out put
Alphanumeric, at least A2

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in alphanumeric format.

The function converts a month argument to an abbreviation of the month name and
converts and all other components to strings of digits only. The year is always four digits,
and the hour assumes the 24-hour system.

Retrieving the Week Component in Alphanumeric Format (Reporting)

HNAME returns the week in alphanumeric format from the TRANSDATE field. Changing the
WEEKFIRST parameter setting changes the value of the component.

SET WEEKFI RST = 7

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
WEEK_COVPONENT/ A10 = HNAME (TRANSDATE, 'WEEK', 'A10');
WHERE DATE EQ 2000;

END

When WEEKFIRST is set to seven, the output is:
CUSTI D DATE-TI ME VEEK _COVPONENT

1237 2000/ 02/ 05 03:30 06
1118 2000/ 06/ 26 05:45 26

Using Functions 407

HPART: Retrieving a Date-Time Component as a Numeric Value

When WEEKFIRST is set to three, the output is:
CUSTI D DATE-TI ME VEEK _COVPONENT

1237 2000/ 02/ 05 03:30 05
1118 2000/ 06/ 26 05:45 25

For details on WEEKFIRST, see the Developing Reporting Applications manual.

Example: Retrieving the Day Component in Alphanumeric Format (Reporting)

HNAME retrieves the day in alphanumeric format from the TRANSDATE field:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
DAY_COVPONENT/ A2 = HNAME (TRANSDATE, 'DAY', 'A2');
WHERE DATE EQ 2000;

END

The output is:
CUSTI D DATE-TI ME DAY_COVPONENT

1237 2000/ 02/ 05 03:30 05
1118 2000/ 06/ 26 05:45 26

Example: Retrieving the Day Component in Alphanumeric Format (Maintain)

HNAME extracts the day in alphanumeric format from DT1:

MAI NTAI N FI LE DATETI ME

FOR 1 NEXT ID I NTO STK;

COVPUTE

DAY_COVPONENT/ A2=HNAME (STK.DT1, '"DAY' ,DAY_COMPONENT) ;
TYPE "STK(1).DT1 = "STK(1).DT1;

TYPE " DAY_COVPONENT = <DAY_COVPONENT"

END

HPART: Retrieving a Date-Time Component as a Numeric Value
Available Languages: reporting, Maintain

The HPART function extracts a specified component from a date-time value and returns it in
numeric format.

408 Information Builders

13. Date-Time Functions I

Syntax:

Example:

How to Retrieve a Date-Time Component in Numeric Format
HPART(dat et/ me, ' conponent' , output)

where:
dateti ne
Date-time

Is the date-time value from which the component is to be extracted, the name of a date-
time field that contains the value, or an expression that returns the value.

conponent
Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. For a list
of valid components, see Arguments for Use With Date and Time Functions on page 375.

out put
Integer
Is the field that contains the result, or the integer format of the output value enclosed in
single quotation marks.

Retrieving the Day Component in Numeric Format (Reporting)

HPART retrieves the day in integer format from the TRANSDATE field:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
DAY_COVPONENT/ | 2 = HPART (TRANSDATE, 'DAY', 'I2');
WHERE DATE EQ 2000;

END

The output is:

CUSTI D DATE- TI ME DAY _COVPONENT
1237 2000/ 02/ 05 03: 30 5
1118 2000/ 06/ 26 05: 45 26

Using Functions 409

HSETPT: Inserting a Component Into a Date-Time Value

Example: Retrieving the Day Component in Numeric Format (Maintain)

HPART extracts the day in integer format from DT1:

MAI NTAI N FI LE DATETI ME

FOR 1 NEXT ID I NTO STK;

COVPUTE

DAY_(I]\/PO\lENT/ 12 HPART (STK.DT1, "DAY', DAY COMPONENT);
TYPE "STK(1).DT1 = <STK(1).DT1";

TYPE " DAY_COMPONENT = <DAY_COVPONENT";

END

HSETPT: Inserting a Component Into a Date-Time Value
Available Languages: reporting, Maintain
The HSETPT function inserts the numeric value of a specified component into a date-time
value.

Syntax: How to Insert a Component Into a Date-Time Value

HSETPT(dat et i ne, ' conponent' , val ue, [ength, output)

where:
datetine
Date-time

Is the date-time value in which to insert the component, the name of a date-time field that
contains the value, or an expression that returns the value.

conponent
Alphanumeric

Is the name of the component to be inserted enclosed in single quotation marks. See
Arguments for Use With Date and Time Functions on page 375 for a list of valid
components.

val ue
Integer

Is the numeric value to be inserted for the requested component, the name of a numeric
field that contains the value, or an expression that returns the value.

410 Information Builders

13. Date-Time Functions I

Example:

/engt h
Integer

Is the length of the returned date-time value. Valid values are:
. 8 indicates a time value that includes one to three decimal digits (milliseconds).
4 10 indicates a time value that includes four to six decimal digits (microseconds).

.4 12 indicates a time value that includes seven to nine decimal digits (nanoseconds).
out put
Date-time

Is the returned date-time value whose chosen component is updated. All other
components are copied from the source date-time value.

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be in date-time format (data type H).

Inserting the Day Component Into a Date-Time Field (Reporting)
HSETPT inserts the day as 28 into the ADD_MONTH field and stores the result in INSERT_DAY:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE

ADD_MONTH HYYMDS = HADD(TRANSDATE, ' MONTH , 2, 8, 'HYYMDS');

| NSERT_DAY/ HYYMDS = HSETPT (ADD_MONTH, 'DAY', 28, 8, 'HYYMDS');
VWHERE DATE EQ 2000;

END

The output is:
CUSTI D DATE-TI ME ADD_MONTH | NSERT_DAY

1118 2000/ 06/ 26 05:45 2000/08/26 05:45:00 2000/08/28 05:45:00
1237 2000/ 02/ 05 03:30 2000/04/05 03:30: 00 2000/04/28 03:30:00

Using Functions 411

HTIME: Converting the Time Portion of a Date-Time Value to a Number

Example: Inserting the Day Component Into a Date-Time Field (Maintain)

HSETPT inserts the day into ADD_MONTH:

MAI NTAI N FI LE DATETI MVE
FOR 1 NEXT ID INTO STK;
COMPUTE
ADD_MONTH HYYMDS = HADD(STK. DT1,' MONTH , 2, 8, ADD_MONTH);
| NSERT_DAY/ HYYMDS = HSETPT (ADD_MONTH, "DAY', 28, 8, INSERT DAY);
TYPE "STK(1).DT1 = <STK(1).DT1";
TYPE " ADD_MONTH = <ADD_MONTH';
TYPE "I NSERT_DAY = <I NSERT_DAY";
END

HTIME: Converting the Time Portion of a Date-Time Value to a Number
Available Languages: reporting, Maintain

The HTIME function converts the time portion of a date-time value to the number of
milliseconds if the length argument is eight, microseconds if the length argument is ten, or
nanoseconds if the length argument is 12.

Syntax: How to Convert the Time Portion of a Date-Time Value to a Number
HTI ME(/ engt h, datetine, output)

where:
[engt h

Integer

Is the length of the input date-time value. Valid values are:

d 8 indicates a time value that includes one to three decimal digits (milliseconds).

.d 10 indicates a time value that includes four to six decimal digits (microseconds).

-1 12 indicates a time value that includes seven to nine decimal digits (nanoseconds).
dat et i ne

Date-time

Is the date-time value from which to convert the time, the name of a date-time field that
contains the value, or an expression that returns the value.

412 Information Builders

13. Date-Time Functions I

Example:

Example:

out put
Floating-point double-precision

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks. The format must be floating-point double-precision.

Converting the Time Portion of a Date-Time Field to a Number (Reporting)

HTIME converts the time portion of the TRANSDATE field to the number of milliseconds:

TABLE FI LE VI DEOTR2

PRI NT CUSTI D TRANSDATE AS ' DATE-TI ME' AND COVPUTE
M LLI SEC/ D12. 2 = HTIME(8, TRANSDATE, 'D12.2');
VHERE DATE EQ 2000;

END

The output is:
CUSTI D DATE-TI ME M LLI SEC

1237 2000/ 02/ 05 03: 30 12, 600, 000. 00
1118 2000/ 06/ 26 05: 45 20, 700, 000. 00

Converting the Time Portion of a Date-Time Field to a Number (Maintain)

HTIME converts the time portion of the DT1 field to the number of milliseconds:

MAI NTAI N FI LE DATETI ME

FOR 1 NEXT ID I NTO STK;

COVPUTE M LLI SEC/ D12. 2 = HTIME(8, STK.DT1, MILLISEC);
TYPE "STK(1).DT1 = <STK(1).DT1";

TYPE "M LLI SEC = <M LLI SEC';

END

HTMTOTS or TIMETOTS: Converting a Time to a Timestamp

Syntax:

The HTMTOTS function returns a timestamp using the current date to supply the date
components of its value, and copies the time components from its input date-time value.

Note: TIMETOTS is a synonym for HTMTOTS.
How to Convert a Time to a Timestamp
HTMTOTS(¢t/ e, [ength, output)

or

TINETOTS(¢/ me, [ength, output)

Using Functions 413

HTMTOTS or TIMETOTS: Converting a Time to a Timestamp

where:
tine

Date-Time

Is the date-time value whose time will be used. The date portion will be ignored.
[engt h

Integer

Is the length of the result. This can be one of the following:
4 8 for input time values including milliseconds.
.4 10 for input time values including microseconds.

. 12 for input time values including nanoseconds.
out put_format
Date-Time
Is the timestamp whose date is set to current date, and whose time is copied from time.

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Example: Converting a Time to a Timestamp

HTMTOTS converts the time portion of the TRANSDATE field to a timestamp, using the current
date for the date portion of the returned value:

DEFI NE FI LE VI DEOTR2
TSTMPSEC/ HYYMDS = HTMTOTS(TRANSDATE, 8, ' HYYMDS');
END
TABLE FI LE VI DEOTR2
PRI NT TRANSDATE TSTMPSEC
BY LASTNAMVE BY FI RSTNAVE
VWHERE DATE EQ ' 1991
END

414 Information Builders

13. Date-Time Functions I

The output is:

MONRCE

SPI VEY
W LLI AMS

FI RSTNAVE
I'VvY

JOHN
GEORG A
EVAN

CHERYL

CATHERI NE
PATRI CK
TOM
KENNETH

TRANSDATE
1991/ 06/ 27
1991/ 06/ 25
1991/ 06/ 24
1991/ 06/ 20
1991/ 06/ 21
1991/ 06/ 21
1991/ 06/ 19
1991/ 06/ 19
1991/ 06/ 25
1991/ 06/ 27
1991/ 11/ 17
1991/ 06/ 24
1991/ 06/ 24

02:
01:
10:
05:
07:
01:
07:
04:
01:
01:
11:
04:
02:

45
19
27
15
11
10
18
11
17
17
28
43
08

TSTMPSEC

2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11
2011/01/11

HYYWD: Returning the Year and Week Number From a Date-Time Value

Syntax:

The week number returned by HNAME and HPART can actually be in the year preceding or

following the input date.

02:
01:
10:
05:
07:
01:
07:
04:
01:
01:
11:
04:
02:

45:
19:
27:
15:
11:
10:
18:
11:
17:
17:
28:
43:
08:

00
00
00
00
00
00
00
00
00
00
00
00
00

The HYYWD function returns both the year and the week number from a given date-time value.

The output is edited to conform to the ISO standard format for dates with week numbers, yyyy-

Www-d.

How to Return the Year and Week Number From a Date-Time Value

HYYWX(dt val ue, out put)

where:
dtval ue

Date-time

Is the date-time value to be edited, the name of a date-time field that contains the value,
or an expression that returns the value.

Using Functions

415

HYYWD: Returning the Year and Week Number From a Date-Time Value

out put
Alphanumeric

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

The output format must be at least 10 characters long. The output is in the following
format:

yyyy- Www d

where:

yyyy
Is the four-digit year.

Is the two-digit week number (01 to 53).

Is the single-digit day of the week (1 to 7). The d value is relative to the current
WEEKFIRST setting. If WEEKFIRST is 2 or ISO2 (Monday), then Monday is represented
in the output as 1, Tuesday as 2.

Using the EDIT function, you can extract the individual subfields from this output.

Example: Returning the Year and Week Number From a Date-Time Value

The following request against the VIDEOTR2 data source calls HYYWD to convert the
TRANSDATE date-time field to the ISO standard format for dates with week numbers.
WEEKFIRST is set to ISO2, which produces ISO standard week numbering:

SET WEEKFI RST = | SC2

TABLE FI LE VI DEOTR2

SUM TRANSTOT QUANTI TY

COVPUTE | SODATE/ A10 = HYYWD(TRANSDATE, ' A10');
BY TRANSDATE

VWHERE QUANTITY GT 1

END

416 Information Builders

13. Date-Time Functions I

The output is:

TRANSDATE TRANSTOT QUANTI TY | SODATE

1991/ 06/ 24 04: 43 16. 00 2 1991-wW6-1
1991/ 06/ 25 01: 17 2.50 2 1991-W6-2
1991/ 06/ 27 02: 45 16. 00 2 1991-W6-4
1996/ 08/ 17 05:11 5.18 2 1996-\WB3-6
1998/ 02/ 04 04: 11 12. 00 2 1998-W6-3
1999/ 01/ 30 04: 16 13. 00 2 1999-W4-6
1999/ 04/ 22 06: 19 3.75 3 1999-W6-4
1999/ 05/ 06 05: 14 1.00 2 1999-Wi8-4
1999/ 08/ 09 03: 17 15. 00 2 1999-WB2-1
1999/ 09/ 09 09: 18 14. 00 2 1999-WB6- 4
1999/10/ 16 09: 11 5.18 2 1999-Wi1-6
1999/ 11/05 11:12 2.50 2 1999-Wi4-5
1999/ 12/ 09 09: 47 5.18 2 1999-W9-4
1999/ 12/ 15 04: 04 2.50 2 1999-Ws0-3

Example: Extracting a Component From a Date Returned by HYYWD

The following request against the VIDEOTR2 data source calls HYYWD to convert the
TRANSDATE date-time field to the ISO standard format for dates with week numbers. It then
uses the EDIT function to extract the week component from this date. WEEKFIRST is set to
ISO2, which produces ISO standard week numbering:

SET WEEKFI RST = | SC2

TABLE FI LE VI DEOTR2

SUM TRANSTOT QUANTI TY

COVPUTE | SODATE/ A10 = HYYWD(TRANSDATE, ' A10');
COVPUTE WEEK/ A2 = EDI T(| SODATE, ' $$$$$$99%%');
BY TRANSDATE

VWHERE QUANTI TY GI' 1 AND DATE EQ 1991

END

The output is:

TRANSDATE TRANSTOT QUANTI TY | SODATE WEEK
1991/ 06/ 24 04: 43 16. 00 2 1991-We6-1 26
1991/ 06/ 25 01: 17 2.50 2 1991-W6-2 26
1991/ 06/ 27 02: 45 16. 00 2 1991-We6-4 26

WRTSTIME: Converting Dates to 64-Bit DEC Date/Time Format (OpenVMS Only)

The WRTSTIME function accepts a date and time in one of five formats and converts the value
to native OpenVMS 64-bit DEC Date/Time format. This allows the storage of native DEC Date/
Time values in data sources such as RMS files and Rdb database tables that use this native
format.

Using Functions 417

WRTSTIME: Converting Dates to 64-Bit DEC Date/Time Format (OpenVMS Only)

Syntax: How to Convert Dates to 64-Bit DEC Date/Time Format
WRTSTI ME(format st yl e, infield, output)

where:

formatstyle
Integer

Is a number from O to 4, from the list below, that corresponds to the desired formatting
styles for infield.

0 denotes DD-MMM-YYYY HH:MM:SS

1 denotes DD-MMM-YYYY

2 denotes HH:MM:SS

3 denotes DD-MMM-YYYY HH:MM:SS.CC

4 denotes YYYY-MM-DD HH:MM:SS.CC
infield

Alphanumeric

Is the name of a field containing the user-supplied date and/or time string to be converted.
The expected length of infield is determined by the formatstyle as listed below.

Format Style Number Byte Length
0 20
1 11
2 8
3 23
4 22
out put
A8

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

418 Information Builders

Chapter

Maintain-specific Date and Time
Functions

Maintain-specific date and time functions manipulate date and time values. These
functions are available only in Maintain Data.

There are additional date and time functions available in both the reporting and Maintain
languages. For more information on these functions, see Date-Time Functions on page
371.

In this chapter:

- Maintain-specific Standard Date and Time Functions

Maintain-specific Standard Date and Time Functions

Standard date and time functions are for use with non-legacy dates. For a definition of
standard dates and times, see Date-Time Functions on page 371.

HHMMSS: Retrieving the Current Time (Maintain)

The HHMMSS function retrieves the current time from the operating system as an 8-character
string, separating the hours, minutes, and seconds with periods.

To use this function, you must import the function library MNTUWS. For information on
importing a function library, see Calling a Function on page 61.

There is also an HHMMSS function available in the reporting language. For information on this
function, see HHMMSS: Retrieving the Current Time on page 398.

Syntax: How to Retrieve the Current Time

HHMVVBS()

Using Functions 419

Maintain-specific Standard Date and Time Functions

Example:

Retrieving the Current Time

HHMMSS retrieves the current time from the operating system:

MAI NTAI' N

Modul e | nport (mtuws);
Case Top

Conput e now al0 = hhmmss () ;
type "Now = <<now'

EndCase

END

The output is:
Now = 14. 25. 33

Initial_HHMMSS: Returning the Time the Application Was Started

Syntax:

The Initial_HHMMSS function returns the time when the Maintain Data application was started
as an 8-character string, with embedded periods separating the hours, minutes, and seconds.

To use this function, you must import the function library MNTUWS. For details on importing
this library, see Calling a Function on page 61.

How to Retrieve the Initial Time

Initial HHWSS()

Initial_TODAY: Returning the Date the Application Was Started

Syntax:

The Initial_TODAY function returns the date in MM/DD/YY format when the Maintain Data
application was started as an 8-character string with embedded slashes.

To use this function, you must import the function library MNTUWS. For details on importing
this library, see Calling a Function on page 61.

How to Retrieve the Initial Date

Initial TODAY()

TODAY: Retrieving the Current Date (Maintain)

420

The TODAY function retrieves the current date from the system in the format MM/DD/YY.
TODAY always returns a date that is current. Therefore, if you are running an application late at
night, use TODAY. You can remove the embedded slashes using the EDIT function.

Information Builders

14. Maintain-specific Date and Time Functions I

Syntax:

Example:

To use this function, you must import the function library MNTUWS. For information on
importing this library, see Calling a Function on page 61.

There is a version of the TODAY function that is available only in the reporting language. For
information on this function, see HTMTOTS or TIMETOTS: Converting a Time to a Timestamp on
page 413.

How to Retrieve the Current Date

TODAY()

Retrieving the Current Date

TODAY retrieves the current date from the system:

MAI NTAI N
Modul e I nport (mMmtuws);

Case Top

Conpute datel/ a8 = today();
type "Datel = <<datel"
Endcase

END

The result is:

Datel = 07/17/02

TODAY2: Returning the Current Date

Syntax:

The TODAY2 function retrieves the current date from the operating system in the format
MM/DD/YYYY. Use format A10 with the TODAY2 function to ensure proper results.

To use this function, you must import the function library MNTUWS. For information on
importing this library, see Calling a Function on page 61.

How to Retrieve the Current Date

TODAY2()

Using Functions 421

Maintain-specific Standard Date and Time Functions

Example:

Retrieving the Current Date
TODAY2 retrieves the current date from the system:

MAI NTAI N
Modul e I nport (Mt uws);

Case Top

Conput e date2/al0 = today2();
type "Date2 = <<date2"
Endcase

END

The result is:
Date2 = 07/17/ 2002

ADD: Adding Days to a Date

Syntax:

Example:

422

The ADD function adds a given number of days to a date.
How to Add Days to a Date
ADD(dat e, val ue)

or

dat e. ADIX val ue)

where:

dat e

Is the date to add days to, or a field containing the date.

val ue
Is the number of days by which to increase the date.

This function changes the value of date.

Adding Days to a Date
ADD adds 10 days to the each value in the DateVar field:
ADD(Dat eVar, 10)

Information Builders

14. Maintain-specific Date and Time Functions I

The following are sample values for DateVar and the corresponding values for

ADD(DateVar, 10):
Dat eVar ADD(Dat eVar, 10);

12/31/1999 01/ 10/ 2000
01/01/2000 01/11/2000
01/02/2000 01/12/2000

DAY: Extracting the Day of the Month From a Date

The DAY function extracts the day of the month from a date and returns the result as an
integer.

Syntax: How to Extract the Day of the Month From a Date
DAY(dat e) ;

where:

dat e
Is the date (in date format) from which to extract the day of the month, or a field
containing the date.

Example: Extracting the Day of the Month From a Date
DAY extracts the day of the month from the DATE field:
DAY(DATE)

The following are sample values for DATE and the corresponding values for DAY(DATE):

DATE DAY(DATE)

01/ 01/ 2000 1
01/ 02/ 2000 2
01/ 03/ 2000 3

JULIAN: Determining How Many Days Have Elapsed in the Year

The JULIAN function determines the number of days that have elapsed in the given year up to a
given date, and returns the result as an integer.

Using Functions 423

Maintain-specific Standard Date and Time Functions

Syntax:

Example:

How to Determine How Many Days Have Elapsed in the Year
JULI AN(dat e) ;

where:

dat e
Is the date (in date format) for which to determine the number of days elapsed in the
given year, or a field containing the date.

Determining How Many Days Have Elapsed in the Year

JULIAN determines the number of days that have elapsed up to the date in the DATE field:
JULI AN(DATE)

The following are sample values for DATE and the corresponding values for JULIAN(DATE):
DATE JULI AN(DATE)

01/ 01/ 2000 1
02/ 01/ 2000 32
03/ 01/ 2000 61

MONTH: Extracting the Month From a Date

Syntax:

Example:

424

The MONTH function extracts the month from a date and returns the result as an integer.
How to Extract the Month From a Date
MONTH(dat e) ;

where:

dat e

Is the date (in date format) from which to extract the month, or a field containing the
date.

Extracting the Month From a Date

MONTH extracts the month from each value in the DATE field:
NVONTH(DATE)

Information Builders

14. Maintain-specific Date and Time Functions I

The following are sample values for DATE and the corresponding values for MONTH(DATE):
DATE MONTH(DATE)

01/ 01/ 2000 1
02/ 01/ 2000 2
03/ 01/ 2000 3

QUARTER: Determining the Quarter

Syntax:

Example:

The QUARTER function determines the quarter of the year in which a date resides, and returns
the result as an integer.

How to Determine the Quarter for a Date
QUARTER(dat e) ;

where:

dat e
Is the date (in date format) for which to determine the quarter, or a field containing the
date.

Determining the Quarter for a Date

QUARTER extracts the quarter component from each value in the DATE field:
QUARTER(DATE)

The following are sample values for DATE and the corresponding values for QUARTER(DATE):
DATE QUARTER(DATE)

01/ 01/ 2000 1
04/ 01/ 2000 2
07/01/2000 3

SETMDY: Setting the Value to a Date

The SETMDY function sets a value to a date based on numeric values representing a day,
month, and year. SETMDY returns a O if the function is successful, and a negative number if
the function fails.

Using Functions 425

Maintain-specific Standard Date and Time Functions

Syntax: How to Set a Value to a Date
SETNDY(dat e, nonth, day, year);

or

dat e. SETNDY(nont h, day, year);

where:

dat e
Is the date, in date format, or a field containing the date.

nont h
Is an integer value representing a month.

day
Is an integer value representing the day of the month.

year
Is an integer value representing a year.

Example: Setting a Value to a Date

SETMDY sets the value of DateVar, which is formatted as a date that appears as wrMtrDYY
(for example, Saturday, January 1, 2000):

SETMDY(Dat evVar, nonth, day, year);

The following are sample values for month, day, and year, and the corresponding dates for
DateVar:

nmont h day year Dat eVar

04 05 1965 Monday, April 5, 1965
02 01 1997 Sat urday, February 1, 1997
01 01 2000 Sat urday, January 1, 2000

SUB: Subtracting a Value From a Date

The SUB function subtracts a given number of days from a date.

426 Information Builders

14. Maintain-specific Date and Time Functions I

Syntax:

Example:

How to Subtract a Value From a Date
SUB(dat e, val ue)

or

dat e. SUB(val ue)

where:

dat e
Is the date from which to subtract the value, or a field containing the date.

val ue
Is the value to subtract from the date.
Subtracting Days From a Date

SUB subtracts 10 days from each value in the DateVar field.
SUB(Dat eVar, 10)

The following are sample values for DateVar and the corresponding values for
SUB(DateVar, 10):

Dat eVar SUB(Dat eVar, 10);
12/ 31/ 1999 12/ 21/ 2000
01/ 01/ 2000 12/ 22/ 2000
01/ 02/ 2000 12/ 23/ 2000

WEEKDAY: Determining the Day of the Week for a Date

Syntax:

The WEEKDAY function determines the day of the week for a date and returns the result as an
integer (1=Monday, 2=Tuesday, and so on).

How to Determine the Day of the Week for a Date
VEEKDAY(dat €) ;

where:

dat e
Is the date (in date format) for which to determine the weekday, or a field containing
the date.

Using Functions 427

Maintain-specific Standard Date and Time Functions

Example: Determining the Day of the Week for a Date

WEEKDAY determines the day of the week for each date in the DATE field, and stores that day
as a number corresponding to a weekday:

V\EEKDAY(DATE)

The following are sample values for DATE and the corresponding values for WEEKDAY(DATE):
DATE VEEKDAY(DATE)

01/01/2000 6
01/02/ 2000 7
01/ 03/ 2000 1

YEAR: Extracting the Year From a Date

The YEAR function extracts the year from a date.
Syntax: How to Extract the Year From a Date
YEAR(dat e) ;

where:

dat e
Is the date from which to extract the year, or a field containing the date.

Example: Extracting a Year From a Date

YEAR extracts the year from the DATE field, and stores that year in the YEAR(DATE) field:
YEAR(DATE)

The following are sample values for DATE and the corresponding values for YEAR(DATE):

DATE YEAR(DATE)

01/ 01/ 2000 2000
02/ 01/ 2001 2001
03/ 01/ 2002 2002

428 Information Builders

Chapter

Simplified Conversion Functions

Simplified conversion functions have streamlined parameter lists, similar to those used
by SQL functions. In some cases, these simplified functions provide slightly different
functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

In this chapter:

'd CHAR: Returning a Character Based on a Numeric Code

CTRLCHAR: Returning a Non-Printable Control Character

EDIT2: Converting a Numeric, Date, or Date-Time Value to a Character String
HEXTYPE: Returning the Hexadecimal View of an Input Value

PHONETIC: Returning a Phonetic Key for a String

TO_INTEGER: Converting a Character String to an Integer Value

L U o o o U

TO_NUMBER: Converting a Character String to a Numeric Value

CHAR: Returning a Character Based on a Numeric Code

Syntax:

The CHAR function accepts a decimal integer and returns the character identified by that
number converted to ASCII or EBCDIC, depending on the operating environment. The output is
returned as variable length alphanumeric. If the number is above the range of valid characters,
a null value is returned.

How to Return a Character Based on a Numeric Code

CHAR(nunber _code)

Using Functions 429

CTRLCHAR: Returning a Non-Printable Control Character

where:

number_code
Integer

Is a field, number, or numeric expression whose whole absolute value will be used as a
number code to retrieve an output character.

For example, a TAB character is returned by CHAR(9) in ASCII environments, or by CHAR(5)
in EBCDIC environments.

Example: Using the CHAR Function to Insert Control Characters Into a String

The following request defines a field with carriage return (CHAR(13)) and line feed (CHAR(10))
characters inserted between the words HELLO and GOODBYE (in an ASCII environment). To
show that these characters were inserted, the output is generated in PDF format and the
StyleSheet attribute LINEBREAK="CRLF' is used to have these characters respected and print
the field value on two lines.

DEFI NE FI LE WF_RETAIL_LITE

MYFI ELDY A20 W TH COUNTRY_NAVE=" HELLO | CHAR(13) | CHAR(10) | ' GOODBYE'

END

TABLE FI LE WF_RETAIL_LITE

SUM MYFI ELD

ON TABLE PCHOLD FORNVAT PDF

ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

TYPE=REPORT, LI NEBREAK=' CRLF' , $

ENDSTYLE
END

The output is shown in the following image.
MYFIELD

HELLO
GOODEYE

CTRLCHAR: Returning a Non-Printable Control Character

The CTRLCHAR function returns a nonprintable control character specific to the running
operating environment, based on a supported list of keywords. The output is returned as
variable length alphanumeric.

Syntax: How to Return a Non-Printable Control Character

CTRLCHAR(ct r/_char)

430 Information Builders

15. Simplified Conversion Functions I

where:

ctrl_char
Is one of the following keywords.

Using Functions

.

L U oJ v v J J Y odJd dJdJdJdduduUJd U od d U doC

NUL returns a null character.

SOH returns a start of heading character.

STX returns a start of text character.

ETX returns an end of text character.

EOT returns an end of transmission character.
ENQ returns an enquiry character.

ACK returns an acknowledge character.

BEL returns a bell or beep character.

BS returns a backspace character.

TAB or HT returns a horizontal tab character.
LF returns a line feed character.

VT returns a vertical tab character.

FF returns a form feed (top of page) character.
CR returns a carriage control character.

SO0 returns a shift out character.

Sl returns a shift in character.

DLE returns a data link escape character.
DC1 or XON returns a device control 1 character.

DC2 returns a device control 2 character.

DC3 or XOFF returns a device control 3 character.

DC4 returns a device control 4 character.
NAK returns a negative acknowledge character.

SYN returns a synchronous idle character.

431

CTRLCHAR: Returning a Non-Printable Control Character

ETB returns an end of transmission block character.
CAN returns a cancel character.

EM returns an end of medium character.

SUB returns a substitute character.

ESC returns an escape, prefix, or altmode character.
FS returns a file separator character.

GS returns a group separator character.

RS returns a record separator character.

US returns a unit separator character.

L U U U UJ U U o U4

DEL returns a delete, rubout, or interrupt character.

Example: Using the CTRLCHAR Function to Insert Control Characters Into a String

The following request defines a field with carriage return (CTRLCHAR(CR)) and line feed
(CTRLCHAR(LF)) characters inserted between the words HELLO and GOODBYE. To show that
these characters were inserted, the output is generated in PDF format and the StyleSheet
attribute LINEBREAK='CRLF' is used to have these characters respected and print the field
value on two lines.

DEFI NE FI LE WE_RETAIL_LITE
MYFI ELD/ A20 W TH COUNTRY_NAME=' HELLO | CTRLCHAR(CR) | CTRLCHAR(LF) |
" GOODBYE' ;

END

TABLE FILE W _RETAIL_LITE

SUM MYFI ELD

ON TABLE PCHOLD FORVAT PDF

ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *
TYPE=REPORT, LI NEBREAK=' CRLF' , $
ENDSTYLE

END

The output is shown in the following image.
MYFIELD

HELLO
GOODBYE

432 Information Builders

15. Simplified Conversion Functions I

EDIT2: Converting a Numeric, Date, or Date-Time Value to a Character String

The EDIT2 function converts a numeric, date, or date-time value to a character string based on
a specified format. The format must be valid for the data supplied. The output is returned as
variable length alphanumeric.

Syntax: How to Convert a Numeric, Date, or Date_Time Value to a Character String
EDI T2(/ n_val ue, ' format")

where:

/i n_val ue
Numeric, date, or date-time

Is any numeric value or a date in either standard date or date-time format. If the date is
given in standard date format, all of its time components are assumed to be zero.

' fornat'

Is a numeric, date, or date-time format enclosed in single quotation marks.

Example: Converting a Date to a Character String

The following request defines a date field as YYMD format and converts it to a character string
(CharDate) in YYMtrD format.

DEFI NE FI LE W-_RETAIL_LITE

DATE1/ YYND = TI ME_DATE_DAY_COVPONENT;
Char Dat e/ A20 = EDI T2(DATEL, ' YYMrD);
END

TABLE FILE WF_RETAIL_LITE

SUM COGS_US

BY Char Dat e

WHERE Tl ME_MIHNAME EQ ' FEB'

ON TABLE SET PAGE NOLEAD

END

Using Functions 433

EDIT2: Converting a Numeric, Date, or Date-Time Value to a Character String

434

The output is shown in the following image.

|CharDate |Cost of Goods
2012, February 1 | $10,511.00
2012, February 2 | $8,393.00
2012, February 3 | $8,194.00
2012, February 4 | $13,928.00
2012, February 5 | $10,756.00
2012, February 6 | $6,704.00
2012, February 7 | $8,195.00
2012, February 8 | $13,625.00
2012, February @ | $9,455.00
2012, February 10| $13,433.00
2012, February 11| $6,320 00
2012, February 12| $8,060 00
2012, February 13| $7,036 00
2012, February 14| $8.799 00
2012, February 15| $2,983.00
2012, February 16| $12,824 00
2012, February 17| $7,368.00
2012, February 18| $2,613.00
2012, February 19| $12,316.00
2012, February 20| $10,335.00
2012, February 21| $2,081.00
2012, February 22| $8,208 00
2012, February 23| $6,755.00
2012, February 24| $10,849 00
2012, February 25| $2,603 .00
2012, February 26| $11,080.00
2012, February 27| $10,684 00
2012, February 28| $8,346 00

Information Builders

15. Simplified Conversion Functions I

HEXTYPE: Returning the Hexadecimal View of an Input Value

Syntax:

Example:

The HEXTYPE function returns the hexadecimal view of an input value of any data type. The
result is returned as variable length alphanumeric. The alphanumeric field to which the
hexidecimal value is returned must be large enough to hold two characters for each input
character. The value returned depends on the running operating environment.

How to Returning the Hexadecimal View of an Input Value
HEXTYPE(/ n_val ue)

where:
i n_val ue

Is an alphanumeric or integer field, constant, or expression.

Returning a Hexadecimal View

The following request returns a hexadecimal view of the country names and the sum of the
days delayed.

DEFI NE FI LE WF_RETAIL_LITE

Days/ | 8 = DAYSDELAYED;

Country/ A20 = COUNTRY_NANE;

HexCount ry/ A30 = HEXTYPE(Country);
END

TABLE FI LE WF_RETAIL_LITE

SUM COUNTRY_NAME NOPRI NT Country HexCountry Days
COWUTE HexDays/ AA0 = HEXTYPE(Days) ;
BY COUNTRY_NAME NOPRI NT

VWHERE COUNTRY_NAME LT ' P

ON TABLE SET PAGE NOPAGE

END

Using Functions 435

HEXTYPE: Returning the Hexadecimal View of an Input Value

436

The output is shown in the following image.

|Countxy |HexCountr3r |Days |HexDays

Argentina |417267656E74696E61202020202020 | 8400000054

\Australia |4175737472616C6961202020202020 | 27 [0000001B

Austria |417573747268612020202020202020 | 798 0000031E

Belginm |42636C6769756D2020202020202020 | 140000000

[Brazi 4272617 A696C202020202020202020 | 204 000000CC
(Canada |43616E616461202020202020202020 | 584 (00000248
|Chile 4368696C6520202020202020202020 | 45(0000002D
|China 4368696E6120202020202020202020 | 1[00000001

(Colombia |436F6CEFEDE2696120202020202020 11400000072

Denmark |44656E6D61726B2020202020202020 | 0[00000000

Egypt 456779707420202020202020202020 | 3[00000003

Finland |46696E6C616E642020202020202020 | 3[00000003

France |4672616E6365202020202020202020 | 4900000031

(Germany 47657266 16E792020202020202020 | 498 [000001F2

Gresce |477265656365202020202020202020 | 9[00000009

Hungary |48736E676172792020202020202020 | 7[00000007

Tndia 496E64696120202020202020202020 | 23 (00000017
Treland |4972656C616E642020202020202020 | 7 (00000007
Tsrael 49737261656C202020202020202020 | 2[00000002
Ttaty 4974616C7920202020202020202020 | 7 (00000007
Tapan 4A6170616E20202020202020202020 | 12 [0000000C

Luxembourg | 4C7578656D626F7572672020202020 | 0[00000000

Malaysia |4D616C617973696120202020202020 | 2000000014

Mezico |4D657869636F202020202020202020 | 17000000044

Metherlands [4E65746865726C6168647320202020 | 8[00000008

Morway |4ESF72776179202020202020202020 | 0[00000000

Information Builders

15. Simplified Conversion Functions I

PHONETIC: Returning a Phonetic Key for a String

Syntax:

PHONETIC calculates a phonetic key for a string, or a null value on failure. Phonetic keys are
useful for grouping alphanumeric values, such as names, that may have spelling variations.
This is done by generating an index number that will be the same for the variations of the
same name based on pronunciation. One of two phonetic algorithms can be used for indexing,
Metaphone and Soundex. Metaphone is the default algorithm, except on z/0S where the
default is Soundex.

You can set the algorithm to use with the following command.
SET PHONETI C_ALGORI THM = { METAPHONE| SOUNDEX}

Most phonetic algorithms were developed for use with the English language. Therefore,
applying the rules to words in other languages may not give a meaningful result.

Metaphone is suitable for use with most English words, not just names. Metaphone algorithms
are the basis for many popular spell checkers.

Note: Metaphone is not optimized in generated SQL. Therefore, if you need to optimize the
request for an SQL DBMS, the SOUNDEX setting should be used.

Soundex is a legacy phonetic algorithm for indexing names by sound, as pronounced in
English.

How to Return a Phonetic Key
PHONETI C(st ri ng)

where:

string
Alphanumeric

Is a string for which to create the key. A null value will be returned on failure.

Using Functions 437

PHONETIC: Returning a Phonetic Key for a String

Example: Generating a Phonetic Key

The following request changes the spelling of the last name for MARY SMITH to SMYTHE and
generates a phonetic key for each last name.

DEFI NE FI LE EMPLOYEE

LAST _NAME2/ A16 = | F LAST_NAME EQ ' SM TH AND FI RST_NAME EQ ' MARY' THEN
" SWTHE' ELSE LAST_NAME;

PKEY/ A10 = PHONETI C(LAST_NAVE2) ;
END

TABLE FI LE EMPLOYEE

PRI NT FI RST_NAVE LAST NAVE2

BY PKEY

ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

The output is shown in the following image. Note that the two spellings for SMITH are assigned
the same index number.

PEEY FIRST NAME LAST NAME2
B423 ROSEMARIE BLACKWOOD

B352 JOHN BANNING
C620 BARBARA CROSS
G652 MAERY GREENSPAN
1615 JOAN IRVING
J520 DIANE JONES
M200 JOHN MCCOY
M252 ROGER MCKNIGHT
R352 ANTHONY ROMANS
5315 ALFRED STEVENS
=530 MARY SMYTHE
RICHARD SMITH

438 Information Builders

15. Simplified Conversion Functions I

TO_INTEGER: Converting a Character String to an Integer Value

Syntax:

Example:

TO_INTEGER converts a character string that contains a valid number consisting of digits and
an optional decimal point to an integer value. If the value contains a decimal point, the value
after the decimal point is truncated. If the value does not represent a valid number, zero (0) is
returned.

How to Convert a Character String to an Integer
TO_I NTEGER(st ri ng)

where:

string
Is a character string enclosed in single quotation marks or a character field that
represents a number containing digits and an optional decimal point.

Converting a Character String to an Integer Value

The following request converts character strings to integers. Digits following the decimal point
are truncated.

DEFI NE FI LE WF_RETAIL_LITE

INT1/18 = TO | NTEGER(' 56.78');
INT2/18 = TO | NTEGER(' . 5678');
INT3/18 = TO | NTEGER(' 5678') ;
END

TABLE FI LE WF_RETAIL_LITE
PRINT | NT1 I NT2 I NT3

BY BUSI NESS_REG ON AS Regi on
WHERE READLIM T EQ 1

ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

The output is shown in the following image.

Region INT1 INT2 [INT3
EMEA 56 0 5678

Using Functions 439

TO_NUMBER: Converting a Character String to a Numeric Value

TO_NUMBER: Converting a Character String to a Numeric Value

TO_NUMBER converts a character string that contains a valid number consisting of digits and
an optional decimal point to the numeric format most appropriate to the context. If the value
does not represent a valid number, zero (0) is returned.

Syntax: How to Convert a Character String to a Number
TO_NUVBER(St 1/ ng)

where:

string
Is a character string enclosed in single quotation marks or a character field that
represents a number containing digits and an optional decimal point. This string will
be converted to a double-precision floating point number.

Example: Converting a Character String to a Number

The following request converts character strings to double-precision floating point numbers.
DEFI NE FI LE WF_RETAIL_LITE

NUML/ D12.1 = TO _NUMBER(' 56.78");
NUMR/ D12. 2 = TO NUMBER(' 0. 5678");
END

TABLE FI LE WF_RETAIL_LITE
PRI NT NUML NUM2

BY BUSI NESS_REG ON AS Regi on
WHERE READLIM T EQ 1

ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

The output is shown in the following image.

Region NUM1 NUM2
EMEA 56.8 57

440 Information Builders

Chapter

Format Conversion Functions

Format conversion functions convert fields from one format to another.

For information on field formats see the Describing Data With WebFOCUS Language
manual

For many functions, the output argument can be supplied either as a field name or as a
format enclosed in single quotation marks. However, if a function is called from a
Dialogue Manager command, this argument must always be supplied as a format, and if
a function is called from a Maintain Data procedure, this argument must always be
supplied as a field name.

In this chapter:

|

d
d

ATODBL: Converting an Alphanumeric
String to Double-Precision Format

EDIT: Converting the Format of a Field

FPRINT: Converting Fields to
Alphanumeric Format

FTOA: Converting a Number to
Alphanumeric Format

HEXBYT: Converting a Decimal Integer to
a Character

ITONUM: Converting a Large Binary
Integer to Double-Precision Format

ITOPACK: Converting a Large Binary
Integer to Packed-Decimal Format

ITOZ: Converting a Number to Zoned
Format

PCKOUT: Writing a Packed Number of
Variable Length

PTOA: Converting a Packed-Decimal
Number to Alphanumeric Format

TSTOPACK: Converting an MSSQL or
Sybase Timestamp Column to Packed
Decimal

UFMT: Converting an Alphanumeric
String to Hexadecimal

XTPACK: Writing a Packed Number With
Up to 31 Significant Digits to an Output
File

ATODBL: Converting an Alphanumeric String to Double-Precision Format

Available Languages: reporting, Maintain

Using Functions

441

ATODBL: Converting an Alphanumeric String to Double-Precision Format

Syntax:

Example:

442

The ATODBL function converts a number in alphanumeric format to decimal (double-precision)
format.

How to Convert an Alphanumeric String to Double-Precision Format
ATODBL(source_string, [ength, output)

where:

source_string
Alphanumeric

Is the string consisting of digits and, optionally, one sign and one decimal point to be
converted, or a field or variable that contains the string.

/ engt h
Alphanumeric

Is the two-character length of the source string in bytes. This can be a numeric constant,
or a field or variable that contains the value. If you specify a numeric constant, enclose it
in single quotation marks, for example '12".

out put
Double precision floating-point

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Converting an Alphanumeric Field to Double-Precision Format

ATODBL converts the EMP_ID field into double-precision format and stores the result in
D_EMP_ID:

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND FI RST_NAME AND

EMP_I D AND

COVMPUTE D_EMP_| D/ D12. 2 = ATODBL (EMP_ID, '09', D_EMP_ID);
WHERE DEPARTMENT EQ 'M S';

END

The output is:

LAST_NAME Fl RST_NAME EMP_I D D EMP ID

SM TH MARY 112847612 112, 847,612. 00
JONES DI ANE 117593129 117,593, 129. 00
MCCOY JOHN 219984371 219, 984, 371. 00
BLACKWOOD ROSEMARI E 326179357 326, 179, 357. 00
GREENSPAN MARY 543729165 543, 729, 165. 00
CRCSS BARBARA 818692173 818, 692, 173. 00

Information Builders

16. Format Conversion Functions I

EDIT: Converting the Format of a Field

Syntax:

Available Languages: reporting

The EDIT function converts an alphanumeric field that contains numeric characters to numeric
format or converts a numeric field to alphanumeric format.

This function is useful for manipulating a field in an expression that performs an operation that
requires operands in a particular format.

When EDIT assigns a converted value to a new field, the format of the new field must
correspond to the format of the returned value. For example, if EDIT converts a numeric field to
alphanumeric format, you must give the new field an alphanumeric format:

DEFI NE ALPHAPRI CE/ A6 = EDI T(PRI CE) ;

EDIT deals with a symbol in the following way:

.4 When an alphanumeric field is converted to numeric format, a sign or decimal point in the
field is stored as part of the numeric value.

Any other non-numeric characters are invalid, and EDIT returns the value zero.

-1 When converting a floating-point or packed-decimal field to alphanumeric format, EDIT
removes the sign, the decimal point, and any number to the right of the decimal point. It
then rightjustifies the remaining digits and adds leading zeros to achieve the specified field
length. Converting a number with more than nine significant digits in floating-point or
packed-decimal format may produce an incorrect result.

EDIT also extracts characters from or add characters to an alphanumeric string. For more
information, see EDIT: Extracting or Adding Characters on page 165.

How to Convert the Format of a Field
EDI T(f/ el dnane) ;

where:

fiel dnanme
Alphanumeric or Numeric

Is the field name.

Using Functions 443

FPRINT: Converting Fields to Alphanumeric Format

Example: Converting From Numeric to Alphanumeric Format

EDIT converts HIRE_DATE (a legacy date format) to alphanumeric format. CHGDAT is then able
to use the field, which it expects in alphanumeric format:

TABLE FI LE EMPLOYEE

PRI NT HI RE_DATE AND COVPUTE

ALPHA HI RE/ A17 = EDIT (HIRE DATE); NOPRI NT AND COVPUTE

HI RE_MDY/ A17 = CHGDAT(' YMD , ' MDYYX , ALPHA HI RE, 'Al7');
BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ 'M S';

END

The output is:
LAST_NAME FI RST_NAME H RE_DATE H RE_MDY

BLACKWOOD ROSEMARIE 82/04/01 APRIL 01 1982

CRCSS BARBARA 81/ 11/ 02 NOVEMBER 02 1981
GREENSPAN MVARY 82/ 04/ 01 APRIL 01 1982
JONES DI ANE 82/ 05/ 01 MAY 01 1982
MCCOY JOHN 81/07/01 JULY 01 1981

SM TH MARY 81/07/01 JULY 01 1981

FPRINT: Converting Fields to Alphanumeric Format

The FPRINT function converts any type of field except for a text field to its alphanumeric
equivalent for display. The alphanumeric representation will include any display options that
are specified in the format of the original field.

Available Languages: reporting
Syntax: How to Convert Fields Using FPRINT
FPRINT(/ n_val ue, ' usagefornat', output)

where:
i n_val ue

Any format except TX

Is the value to be converted.
usagef or nat

Alphanumeric

Is the usage format of the value to be converted, including display options. The format
must be enclosed in single quotation marks.

444 Information Builders

16. Format Conversion Functions I

out put
Alphanumeric
Is the name of the output field or its format enclosed in single quotation marks.

The output format must be long enough to hold the converted number itself, with a sign
and decimal point, plus any additional characters generated by display options, such as
commas, a currency symbol, or a percent sign.

For example, D12.2 format is converted to A14 because it outputs two decimal digits, a
decimal point, a possible minus sign, up to eight integer digits, and two commas. If the
output format is not large enough, excess right-hand characters may be truncated.

Reference: Usage Notes for the FPRINT Function
- The USAGE format must match the actual data in the field.

.4 The output of FPRINT for numeric values is rightjustified within the area required for the
maximum number of characters corresponding to the supplied format. This ensures that all
possible values are aligned vertically along the decimal point or units digit.

.4 By default, the column title is left justified for alphanumeric fields. To right justify the
column title, use the /R reformatting option for the field.

4 Maintain Data does not support the FPRINT function. However, you can do the same type of
conversion in Maintain Data using the COMPUTE command.

Example: Converting Numeric Fields to Alphanumeric Format

The following request against the EMPLOYEE data source uses FPRINT to convert the
CURR_SAL, ED_HRS, and BANK_ACCT fields to alphanumeric for display on the report output.
Then, the STRREP function replaces the blanks in the alphanumeric representation of
CURR_SAL with asterisks. CURR_SAL has format D12.2M, so the alphanumeric representation
has format A15. The ED_HRS field has format F6.2, so the alphanumeric representation has
format A6. The BANK_ACCT field has format I19S, so the alphanumeric representation has
format A9. The alphanumeric representations of the numeric fields are rightjustified. The /R
options in the PRINT command cause the column titles to be right-justified over the values:

Using Functions 445

FPRINT: Converting Fields to Alphanumeric Format

Example:

446

DEFI NE FI LE EMPLOYEE

ASAL/ A15 FPRI NT(CURR_SAL, 'D12.2M, ASAL);
ASAL/ A15 STRREP(15, ASAL, 1, ' ', 1, '*', 15, ASAL);
AEDY A6 = FPRINT(ED_HRS, 'F6.2', AED);

ABANK/ A9 = FPRI NT(BANK_ACCT, '19S', ABANK);
END

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL ASAL

ED HRS AED/ R

BANK_ACCT ABANK/ R

VWHERE BANK_NAME NE ' '

ON TABLE SET PAGE NOPAGE

END

The output is:
CURR_SAL ASAL ED HRS AED BANK_ACCT ABANK

$18,480.00 *****$18, 480. 00 50. 00 50.00 40950036 40950036
$29, 700. 00 *****$29, 700. 00 .00 .00 160633 160633
$26,862. 00 *****$26,862. 00 30. 00 30.00 819000702 819000702
$21,780.00 *****$21,780. 00 75.00 75.00 122850108 122850108
$16, 100. 00 *****$16, 100. 00 50. 00 50.00 136500120 136500120
$27,062. 00 *****$27, 062.00 45.00 45.00 163800144 163800144

Converting Alphanumeric and Numeric Date Fields to Alphanumeric Format

The following request against the EMPLOYEE data source converts the HIRE_DATE field to
alphanumeric format. It also creates an alphanumeric date field named ADATE and converts it
to its alphanumeric representation. The HIRE_DATE field has format I6YMD and the ADATE
field has format AGYMD, so the alphanumeric representations have format A8 to account for
the slashes between the date components. The /R option rightjustifies the column titles over
the field values:

DEFI NE FI LE EMPLOYEE

AHDATE/ A8 = FPRI NT(HI RE_DATE, ' | 6YMD' , AHDATE) ;
ADATE/ A6YMD = EDI T(HI RE_DATE) ;

AADATE/ A8 = FPRI NT(ADATE, ' A6YMD , AADATE) ;

END

TABLE FI LE EMPLOYEE

PRI NT H RE_DATE AHDATE/ R

ADATE AADATE/ R

ON TABLE SET PAGE NOPAGCE

END

The output is:

Information Builders

16. Format Conversion Functions I

Example:

HI RE_DATE AHDATE ADATE AADATE
80/ 06/ 02 80/06/02 80/06/02 80/06/02
81/07/01 81/07/01 81/07/01 81/07/01
82/05/01 82/05/01 82/05/01 82/05/01
82/01/04 82/01/04 82/01/04 82/01/04
82/08/01 82/08/01 82/08/01 82/08/01
82/01/04 82/01/04 82/01/04 82/01/04
82/07/01 82/07/01 82/07/01 82/07/01
81/07/01 81/07/01 81/07/01 81/07/01
82/ 04/ 01 82/04/01 82/04/01 82/04/01
82/ 02/ 02 82/02/02 82/02/02 82/02/02
82/04/01 82/04/01 82/04/01 82/04/01
81/11/02 81/11/02 81/11/02 81/11/02

Converting a Date Field to Alphanumeric Format

The following request against the VIDEOTRK data source converts the TRANSDATE (YMD) field
to alphanumeric format. The alphanumeric representation has format A8 to account for the
slashes between the date components:

DEFI NE FI LE VI DEOTRK

ALPHA_DATE/ A8 = FPRI NT(TRANSDATE, ' YMD' , ALPHA _DATE) ;
END

TABLE FI LE VI DEOTRK

PRI NT TRANSDATE ALPHA DATE

WHERE TRANSDATE LE ' 91/ 06/ 20

ON TABLE SET PAGE NOPAGE

END

The output is:
TRANSDATE ALPHA DATE

91/ 06/ 19 91/ 06/ 19
91/ 06/ 17 91/ 06/ 17
91/ 06/ 20 91/ 06/ 20
91/ 06/ 19 91/ 06/ 19
91/ 06/ 18 91/ 06/ 18
91/ 06/ 17 91/ 06/ 17
91/ 06/ 17 91/ 06/ 17
91/ 06/ 17 91/ 06/ 17
91/ 06/ 20 91/ 06/ 20
91/ 06/ 19 91/ 06/ 19
91/ 06/ 18 91/ 06/ 18
91/ 06/ 19 91/ 06/ 19
91/ 06/ 18 91/ 06/ 18
91/ 06/ 20 91/ 06/ 20
91/ 06/ 18 91/ 06/ 18
91/ 06/ 20 91/ 06/ 20
91/ 06/ 19 91/ 06/ 19
91/ 06/ 17 91/ 06/ 17

Using Functions 447

FPRINT: Converting Fields to Alphanumeric Format

Example:

448

Converting a Date-Time Field to Alphanumeric Format and Creating a HOLD File

The following request against the VIDEOTR2 data source converts the TRANSDATE (HYYMDI)
field to alphanumeric format. The alphanumeric representation has format A16 to account for a
four-digit year, two-digit month, two-digit day, two slashes between the date components, a
space between the date and time, a two-digit hour, a colon between the hour and minute
components, and a two-digit minute:

DEFI NE FI LE VI DECTR2

DATE/ | 4 = HPART(TRANSDATE, 'YEAR , '14");
ALPHA DATE/ A16 = FPRI NT(TRANSDATE, ' HYYMDI ',
END

TABLE FI LE VI DEOTR2

PRI NT TRANSDATE ALPHA DATE/ R

VWHERE DATE EQ ' 1991'

ON TABLE SET PAGE NOPAGE

END

ALPHA_DATE) ;

The output is:
TRANSDATE

ALPHA_DATE

1991/ 06/ 27
1991/ 06/ 20
1991/ 06/ 21
1991/ 06/ 21
1991/ 06/ 19
1991/ 06/ 19
1991/ 06/ 25
1991/ 06/ 24
1991/ 06/ 24
1991/ 06/ 25
1991/ 06/ 27
1991/ 11/ 17
1991/ 06/ 24

1991/ 06/ 27
1991/ 06/ 20
1991/ 06/ 21
1991/ 06/ 21
1991/ 06/ 19
1991/ 06/ 19
1991/ 06/ 25
1991/ 06/ 24
1991/ 06/ 24
1991/ 06/ 25
1991/ 06/ 27
1991/ 11/ 17
1991/ 06/ 24

If you hold the output in a comma-delimited or other alphanumeric output file, you can see that
while the original field propagates only the numeric representation of the value, the converted
field propagates the display options as well:

DEFI NE FI LE VI DECTR2

DATE/ | 4 = HPART(TRANSDATE, 'YEAR , '14");
ALPHA DATE/ A16 = FPRI NT(TRANSDATE, ' HYYMDI ', ALPHA DATE) ;
END

TABLE FI LE VI DEOTR2

PRI NT TRANSDATE ALPHA DATE/ R
VWHERE DATE EQ ' 1991"

ON TABLE HOLD FORVAT COVIVA
END

The HOLD file follows. The first field represents the original data, and the second field contains
the converted values with display options:

Information Builders

16. Format Conversion Functions I

"19910627024500000", "1991/ 06/ 27 02: 45"
"19910620051500000", " 1991/ 06/ 20 05: 15"
"19910621071100000", "1991/ 06/ 21 07: 11"
"19910621011000000", "1991/ 06/ 21 01: 10"
"19910619071800000", "1991/ 06/ 19 07: 18"
"19910619041100000", "1991/ 06/ 19 04: 11"
"19910625011900000", "1991/ 06/ 25 01: 19"
"19910624044300000", "1991/ 06/ 24 04: 43"
"19910624020800000", "1991/ 06/ 24 02: 08"
"19910625011700000", "1991/ 06/ 25 01: 17"
"19910627011700000", "1991/ 06/ 27 01: 17"
"19911117112800000", "1991/11/17 11:28"
"19910624102700000", "1991/ 06/ 24 10: 27"

FTOA: Converting a Number to Alphanumeric Format

Syntax:

Available Languages: reporting, Maintain

The FTOA function converts a number up to 16 digits long from numeric format to alphanumeric
format. It retains the decimal positions of the number and right-justifies it with leading spaces.
You can also add edit options to a number converted by FTOA.

When using FTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a D12.2 format is converted to A14. If the output format
is not large enough, decimals are truncated.

How to Convert a Number to Alphanumeric Format
FTOA(nunber, ' (fornmat)', output)

where:
numnber
Numeric F or D (single and double precision floating-point)

Is the number to be converted, or the name of the field that contains the number.
fornat
Alphanumeric

Is the format of the number to be converted enclosed in parentheses. Only floating point
single-precision and double-precision formats are supported. Include any edit options that
you want to appear in the output. The D (floating-point double-precision) format
automatically supplies commas.

If you use a field name for this argument, specify the name without quotation marks or
parentheses. If you specify a format, the format must be enclosed in single quotation
marks and parentheses.

Using Functions 449

HEXBYT: Converting a Decimal Integer to a Character

Example:

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The length of this argument must be greater than the length of
number and must account for edit options and a possible negative sign.

Converting From Numeric to Alphanumeric Format

FTOA converts the GROSS field from floating point double-precision to alphanumeric format and
stores the result in ALPHA_GROSS:

TABLE FI LE EMPLOYEE

PRI NT GROSS AND COMPUTE

ALPHA_GROSS/ Al5 = FTOA(GROSS, '(D12.2)', ALPHA_GROSS);
BY HI GHEST 1 PAY_DATE NOPRI NT

BY LAST NAME

WHERE (GROSS GT 800) AND (GROSS LT 2300);

END

The output is:

LAST NAMVE GROSS ALPHA_GROSS
BLACKWOOD $1, 815. 00 1, 815. 00
CROSS $2, 255. 00 2, 255. 00
| RVI NG $2, 238. 50 2, 238. 50
JONES $1, 540. 00 1, 540. 00
MCKNI GHT ~ $1, 342. 00 1, 342. 00
ROVANS $1, 760. 00 1, 760. 00
SM TH $1, 100. 00 1, 100. 00
STEVENS $916. 67 916. 67

HEXBYT: Converting a Decimal Integer to a Character

450

Available Languages: reporting, Maintain

The HEXBYT function obtains the ASCII, EBCDIC, or Unicode character equivalent of a decimal
integer, depending on your configuration and operating environment. It returns a single
alphanumeric character in the ASCII, EBCDIC, or Unicode character set. You can use this
function to produce characters that are not on your keyboard, similar to the CTRAN function.

In Unicode configurations, this function uses values in the range:
d 0 to 255 for 1-byte characters.

4 256 to 65535 for 2-byte characters.

d 65536 to 16777215 for 3-byte characters.

d 16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

Information Builders

16. Format Conversion Functions I

Syntax:

Example:

The display of special characters depends on your software and hardware; not all special
characters may appear. For printable ASCIl and EBCDIC characters and their integer
equivalents see the Character Chart for ASCIl and EBCDIC on page 53.

How to Convert a Decimal Integer to a Character
HEXBYT(deci nal _val ue, out put)

where:
deci mal _val ue
Integer

Is the decimal integer to be converted to a single character. In non-Unicode environments,
a value greater than 255 is treated as the remainder of decimal_value divided by 256.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks (').

Converting a Decimal Integer to a Character

HEXBYT converts LAST_INIT_CODE to its character equivalent and stores the result in
LAST_INIT:

TABLE FI LE EMPLOYEE
PRI NT LAST_NAMVE AND

COVPUTE LAST | NI T_CODE/ |3 = BYTVAL(LAST_NAME, '13');
COVPUTE LAST | NI T/ Al = HEXBYT (LAST INIT CODE, LAST INIT);
WWHERE DEPARTMENT EQ 'M S' ;

END

The output for an ASCII platform is:
LAST_NAME LAST INIT_CODE LAST INIT

SM TH 83 S
JONES 74]
MCCOY 77 M
BLACKWOOD 66 B
GREENSPAN 71 G
CROSS 67 C

Using Functions 451

ITONUM: Converting a Large Binary Integer to Double-Precision Format

The output for an EBCDIC platform is:
LAST_NAME LAST INIT_CODE LAST_INIT

SM TH 226 S
JONES 209 J
MCCOY 212 M
BLACKWOOD 194 B
GREENSPAN 199 G
CRCSS 195 C

ITONUM: Converting a Large Binary Integer to Double-Precision Format
Available Languages: reporting, Maintain

The ITONUM function converts a large binary integer in a non-FOCUS data source to double-
precision format.

Some programming languages and some non-FOCUS data storage systems use large binary
integer formats. However, large binary integers (more than 4 bytes in length) are not supported
in the Master File so they require conversion to double-precision format.

You must specify how many of the right-most bytes in the input field are significant. The result
is an 8-byte double-precision field.

Syntax: How to Convert a Large Binary Integer to Double-Precision Format
| TONUM maxbytes, infield, output)

where:
maxbyt es
Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes.

6 ignores the left-most 2 bytes.

7 ignores the left-most byte.
infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of the
field must be A8.

452 Information Builders

16. Format Conversion Functions I

out put
Double precision floating-point (Dn)

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The format must be Dn.

Example: ~ Converting a Large Binary Integer to Double-Precision Format

Suppose a binary number in an external file has the following COBOL format:

PIC 9(8)VO(4) COWP

It is defined in the EUROCAR Master File as a field named BINARYFLD. Its field formats are
USAGE=AS8 and ACTUAL=AS, since its length is greater than 4 bytes.

The following request converts the field to double-precision format:

DEFI NE FI LE EURCCAR

MYFLD/ D14 = ITONUM(6, BINARYFLD, MYFLD);
END

TABLE FI LE EURCCAR

PRI NT MYFLD BY CAR

END

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

Available Languages: reporting, Maintain

The ITOPACK function converts a large binary integer in a non-FOCUS data source to packed-
decimal format.

Some programming languages and some non-FOCUS data storage systems use double-word
binary integer formats. These are similar to the single-word binary integers used by FOCUS, but
they allow larger numbers. However, large binary integers (more than 4 bytes in length) are not
supported in the Master File so they require conversion to packed-decimal format.

You must specify how many of the right-most bytes in the input field are significant. The result
is an 8-byte packed-decimal field of up to 15 significant numeric positions (for example, P15 or
P16.2).

Limit: For a field defined as 'PIC 9(15) COMP' or the equivalent (15 significant digits), the
maximum number that can be converted is 167,744,242,712,576.

Using Functions 453

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

Syntax: How to Convert a Large Binary Integer to Packed-Decimal Format
| TOPACK(maxbytes, infield, output)

where:
maxbyt es
Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign.

Valid values are:

d 5 ignores the leftmost 3 bytes (up to 11 significant positions).

.4 6 ignores the left-most 2 bytes (up to 14 significant positions).

- 7 ignores the left:most byte (up to 15 significant positions).
infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of the
field must be A8.

out put
Numeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The format must be Pn or Pn.d.

Example: ~ Converting a Large Binary Integer to Packed-Decimal Format

Suppose a binary number in an external file has the following COBOL format:

PIC 9(8)V9(4) COW

It is defined in the EUROCAR Master File as a field named BINARYFLD. Its field formats are
USAGE=A8 and ACTUAL=AS, since its length is greater than 4 bytes.

454 Information Builders

16. Format Conversion Functions I

The following request converts the field to packed-decimal format:

DEFI NE FI LE EURCCAR
PACKFLD/ P14. 4 = ITOPACK(6, BINARYFLD, PACKFLD);
END
TABLE FI LE EUROCCAR
PRI NT PACKFLD BY CAR
END
ITOZ: Converting a Number to Zoned Format
Available Languages: reporting, Maintain

The ITOZ function converts a number in humeric format to zoned-decimal format. Although a
request cannot process zoned numbers, it can write zoned fields to an extract file for use by
an external program.

Syntax: How to Convert a Number to Zoned Format
| TQZ(/ engt h, i[n_val ue, output)

where:
/ engt h
Integer

Is the length of in_value in bytes. The maximum number of bytes is 15. The last byte
includes the sign.

/i n_val ue
Numeric

Is the number to be converted, or the field that contains the number. The number is
truncated to an integer before it is converted.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Using Functions 455

PCKOUT: Writing a Packed Number of Variable Length

Example: Converting a Number to Zoned Format
The following request creates an extract file containing employee IDs and salaries in zoned

format for a COBOL program:

DEFI NE FI LE EMPLOYEE
ZONE_SAL/ A8 = ITOZ (8, CURR_SAL, ZONE_SAL);
END

TABLE FI LE EMPLOYEE

PRI NT CURR SAL ZONE_SAL BY EMP_I D

ON TABLE SAVE AS SALARI ES

END

The resulting extract file is:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

ALPHANUMERI C RECORD NAMED SALARI ES

FI ELDNAVE ALl AS FORVAT LENGTH
EMP_I D El D A9 9
CURR_SAL CSAL D12. 2M 12
ZONE_SAL A8 8
TOTAL 29

PCKOUT: Writing a Packed Number of Variable Length
Available Languages: reporting, Maintain

The PCKOUT function writes a packed-decimal number of variable length to an extract file.
When a request saves a packed number to an extract file, it typically writes it as an 8- or 16-
byte field regardless of its format specification. With PCKOUT, you can vary the field's length
between 1 to 16 bytes.

Syntax: How to Write a Packed Number of Variable Length
PCKQUT(/ n_val ue, [ength, output)

where:
i n_val ue
Numeric

Is the input field that contains the values. It can be in packed, integer, single- or double-
precision floating point format. If it is not in integer format, it is rounded to the nearest
whole number.

/engt h

Numeric

456 Information Builders

16. Format Conversion Functions I

Example:

Is the length of the output value, from 1 to 16 bytes.
out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The function returns the field as alphanumeric although it
contains packed data.

Writing a Packed Number of Variable Length

PCKOUT converts the CURR_SAL field to a 5-byte packed field and stores the result in
SHORT_SAL:

DEFI NE FI LE EMPLOYEE

SHORT_SAL/ A5 = PCKOUT (CURR_SAL, 5, SHORT SAL);
END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME SHORT_SAL HI RE_DATE

ON TABLE SAVE

END

The resulting extract file is:

NUVBER OF RECORDS | N TABLE= 12 LI NES= 12
ALPHANUMERI C RECORD NAMED SAVE

FI ELDNAVE ALl AS FORMAT LENGTH
LAST_NAVE LN Al5 15
SHORT_SAL A5 5
HI RE_DATE HDT | 6YMD 6
TOTAL 26

PTOA: Converting a Packed-Decimal Number to Alphanumeric Format

Available Languages: reporting, Maintain

The PTOA function converts a packed-decimal number from numeric format to alphanumeric
format. It retains the decimal positions of the number and rightjustifies it with leading spaces.
You can also add edit options to a number converted by PTOA.

When using PTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a P12.2C format is converted to A14. If the output
format is not large enough, the right-most characters are truncated.

Using Functions 457

PTOA: Converting a Packed-Decimal Number to Alphanumeric Format

Syntax:

458

How to Convert a Packed-Decimal Number to Alphanumeric Format
PTOA(nunmber, ' (fornmat)', output)

where:
number

Numeric P (packed-decimal)

Is the number to be converted, or the name of the field that contains the number.
format

Alphanumeric

Is the format of the number enclosed in both single quotation marks and parentheses.

Only packed-decimal format is supported. Include any edit options that you want to display
in the output.

The format value does not require the same length or number of decimal places as the
original field. If you change the number of decimal places, the result is rounded. If you
make the length too short to hold the integer portion of the number, asterisks appear
instead of the number.

If you use a field name for this argument, specify the name without quotation marks or
parentheses. However, parentheses must be included around the format stored in this
field. For example:

FMI/ A10 = ' (P12.20)";
You can then use this field as the format argument when using the function in your
request:
COWPUTE ALPHA GROSS/ A20 = PTOA(PGRCSS, FMI, ALPHA GROSS);
out put

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The length of this argument must be greater than the length of
number and must account for edit options and a possible negative sign.

Information Builders

16. Format Conversion Functions I

Example:

Converting From Packed to Alphanumeric Format

PTOA is called twice to convert the PGROSS field from packed-decimal to alphanumeric format.
The format specified in the first call to the function is stored in a virtual field named FMT. The
format specified in the second call to the function does not include decimal places, so the
value is rounded when it appears:

DEFI NE FI LE EMPLOYEE
PGROSS/ P18. 2=GROSS;
FMT/ ALO=' (P14.20)" ;
END
TABLE FI LE EMPLOYEE PRI NT PGROSS NOPRI NT
COVPUTE AGROSS/ Al7 = PTOA(PGROSS, FMI, AGROSS); AS '
COVPUTE BGROSS/ A37 = '<- THI'S AMOUNT IS |
PTOA(PGROSS, ' (P5C)', 'A6') |
' WHEN ROUNDED ; AS '' IN +1
BY HI GHEST 1 PAY_DATE NOPRI NT
BY LAST_NAME NOPRI NT
END

The output is:

2,475.00 <- TH' S AMOUNT
1,815.00 <- THI S AMOUNT
2,255.00 <- TH' S AMOUNT

750.00 <- THI S AMOUNT
2,238.50 <- TH' S AMOUNT
1,540.00 <- THI S AMOUNT
1,540.00 <- TH S AMOUNT
1,342.00 <- THI S AMOUNT
1,760.00 <- TH S AMOUNT
1,100. 00 <- THI S AMOUNT

791. 67 <- TH' S AMOUNT

916. 67 <- THI S AMOUNT

2,475 WHEN ROUNDED
1,815 WHEN ROUNDED
2, 255 WHEN ROUNDED

750 WHEN ROUNDED
2,239 WHEN ROUNDED
1, 540 WHEN ROUNDED
1, 540 WHEN ROUNDED
1, 342 WHEN ROUNDED
1, 760 WHEN ROUNDED
1,100 WHEN ROUNDED

792 WHEN ROUNDED

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS 917 WHEN ROUNDED

TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal

Syntax:

This function applies to the Microsoft SQL Server and Sybase adapters only.

Microsoft SQL Server and Sybase have a data type called TIMESTAMP. Rather than containing
an actual timestamp, columns with this data type contain a number that is incremented for
each record inserted or updated in the data source. This timestamp comes from a common
area, so no two tables in the database have the same timestamp column value. The value is
stored in Binary(8) or Varbinary(8) format in the table, but is returned as a double wide
alphanumeric column (A16). You can use the TSTOPACK function to convert the timestamp
value to packed decimal.

How to Convert an MSSQL or Sybase Timestamp Column to Packed Decimal

TSTOPACK(t scol, output);

Using Functions 459

TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal

where:
tscol

A16

Is the timestamp column to be converted.
out put

P21

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks (‘).

Example: Converting a Microsoft SQL Server Timestamp Column to Packed Decimal

The following CREATE TABLE command creates a SQL Server table name TSTEST that contains
an integer counter column named | and a timestamp column named TS:

SQL SQLMSS
CREATE TABLE TSTEST (I INT, TS tinestanp) :
END

The Master File for the TSTEST data source follows. The field TS represents the TIMESTAMP
column:

FI LENAME=TSTEST, SUFFI X=SQLMSS , $
SEGMVENT=TSTEST, SEGTYPE=S0, $
FI ELDNAMVE=I, ALI AS=l, USAGE=I11, ACTUAL=I4,
M SSI NG=ON, $
FI ELDNAVE=TS, ALI AS=TS, USAGE=A16, ACTUAL=A16, FIELDTYPE=R, $

Note: When you generate a synonym for a table with a TIMESTAMP column, the TIMESTAMP
column is created as read-only (FIELDTYPE=R).

TSTOPACK converts the timestamp column TS to packed decimal:

DEFI NE FI LE TSTEST

TSNUM P21=TSTOPACK(TS, ' P21');
END

TABLE FI LE TEST64

PRINT | TS TSNUM

END

460 Information Builders

16. Format Conversion Functions I

The output is:

I'TS TSNUM
1|0000000000007815 | 30741
2/0000000000007816 | 30742
000000000000781T | 30743
0000000000007818 | 30744
5 |0000000000007819 | 30745
6 0000000000007T81A | 30746
7/000000000000781B | 30747
§/000000000000781C | 30748
9 000000000000781D | 30749
10 /0000000000007S81E 0750

Lid

.

L

Ll

UFMT: Converting an Alphanumeric String to Hexadecimal

Syntax:

Available Languages: reporting, Maintain

The UFMT function converts characters in an alphanumeric source string to their hexadecimal
representation. This function is useful for examining data of unknown format. As long as you
know the length of the data, you can examine its content.

How to Convert an Alphanumeric String to Hexadecimal
UFMT(source_string, [ength, output)

where:
source_string
Alphanumeric

Is the alphanumeric string to convert enclosed in single quotation marks ('), or the field
that contains the string.

/ engt h
Integer

Is the number of characters in source_string.

Using Functions 461

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks ('). The format of output must be alphanumeric and its length
must be twice that of length.

Example: Converting an Alphanumeric String to Hexadecimal

UFMT converts each value in JOBCODE to its hexadecimal representation and stores the result
in HEXCODE:

DEFI NE FI LE JOBFI LE

HEXCODE/ A6 = UFMT (JOBCODE, 3, HEXCODE),
END

TABLE FI LE JOBFI LE

PRI NT JOBCODE HEXCODE

END

The output is:

A0l Cl1FOF1
A02 C1FOF2
AO07 C1FOF7
Al2 ClF1F2
Al4 C1F1F4
Al5 C1F1F5
Al6 ClF1F6
Al7 C1F1F7
BO1 C2FOF1
B02 C2FOF2
B03 C2FOF3
B0O4 C2FOF4
B14 C2F1F4

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

The XTPACK function stores packed numbers with up to 31 significant digits in an
alphanumeric field, retaining decimal data. This permits writing a short or long packed field of
any length, 1 to 16 bytes, to an output file.

462 Information Builders

16. Format Conversion Functions I

Syntax: How to Store Packed Values in an Alphanumeric Field
XTPACK(/ n_val ue, outlength, outdec, output)

where:
infield

Numeric

Is the packed value.
out/ ength

Numeric

Is the length of the alphanumeric field that will hold the converted packed field. Can be
from 1 to 16.

out dec

Numeric

Is the number of decimal positions for output.
out put

Alphanumeric

Is the name of the field to contain the result or the format of the field enclosed in single
quotation marks.

Example: ~ Writing a Long Packed Number to an Output File

The following request creates a long packed decimal field named LONGPCK. ALPHAPCK (format
A13) is the result of applying XTPACK to the long packed field. PCT_INC, LONGPCK, and
ALPHAPCK are then written to a SAVE file named XTOUT.

DEFI NE FI LE EMPLOYEE
LONGPCK/ P25.2 = PCT_INC + 1111111121121111111111;
ALPHAPCK/ A13 = XTPACK(LONGPCK, 13, 2,"' A13");
END
TABLE FI LE EMPLOYEE
PRI NT PCT_I NC LONGPCK ALPHAPCK
VWHERE PCT_INC GT 0
ON TABLE SAVE AS XTOUT
END

Using Functions 463

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

The SAVE file has the following fields and formats:
ALPHANUVERI C RECORD NAMED XTOUT

FI ELDNAVE ALl AS FORVAT LENGTH
PCT_I NC Pl F6. 2 6
LONGPCK pP25. 2 25
ALPHAPCK Al13 13
TOTAL 44
SAVED. . .

464 Information Builders

Maintain-specific Light Update Support

Chapter)
Functions

Light update support functions retrieve WebFOCUS parameter or variable data implicitly
from within a Maintain Data procedure.

In this chapter:

4 IWC.FindAppCGlValue: Retrieving a WebFOCUS Parameter or Variable Value

4 IWC.GetAppCGIValue: Importing a WebFOCUS Parameter or Variable

IWC.FindAppCGlValue: Retrieving a WebFOCUS Parameter or Variable Value

The IWC.FindAppCGlValue function retrieves WebFOCUS parameter or variable values by pairing
the WebFOCUS parameter or variable name with the Maintain Data variable name to which the
value is assigned.

Note: Unlike Maintain variables, WebFOCUS parameters and variables are case-sensitive.
Syntax: How to Retrieve a WebFOCUS Parameter or Variable Value
I WC. Fi ndAppCd Val ue(parm mt_var);

where:
parm

Is the WebFOCUS parameter or variable whose value you are retrieving. This value is case-
sensitive, and must be alphanumeric.

mt _var

Is the Maintain Data variable that receives the value of the WebFOCUS parameter or
variable.

Using Functions 465

IWC.GetAppCGlIValue: Importing a WebFOCUS Parameter or Variable

Example: Retrieving a WebFOCUS Variable Value From a Launch Form

IWC.findAppCgiValue retrieves the user name and password from the IBIC_user and IBIC_pass
variables, respectively:

Mai nt ai n

COVWPUTE user nane/ A8;

COVPUTE passwor d/ A8;

I WC. fi ndAppCgi Val ue("1BI C_user", usernane);
I WC. fi ndAppCgi Val ue(" I BI C_pass", password);

Example: Retrieving Parameterized Data From Excel

IWC.findAppCgiValue retrieves the values for fields listed in an Excel file:

MAI NTAI'N FI LE car

MODULE | MPORT (webbase2 errors);

Case Top

conpute x|l sRetail _Cost/a0;

I nfer car. ORI G N. COUNTRY car. COVP. CAR car . CARREC. MODEL
car . BODY. BODYTYPE car . BODY. RETAI L_COST into car_stack;
car _stack. FocCount =1;

car _st ack. Focl ndex=1;

iwec. findAppCgi Val ue(" COUNTRY", car _st ack. country);

iwc. findAppCgi Val ue(" CAR', car _st ack. car);

iwc. findAppCgi Val ue(" MODEL", car _st ack. nodel) ;

i we. findAppCgi Val ue(" BODYTYPE", car _st ack. bodyt ype) ;
iwc. findAppCgi Val ue(" RETAI L_COST", x| sRetai | _Cost);
car_stack.retail _cost = xlsRetail_Cost;

updat e car.BODY. RETAI L_COST from car _st ack;

EndCase

END

IWC.GetAppCGlValue: Importing a WebFOCUS Parameter or Variable

The IWC.GetAppCGlValue function imports the value of a WebFOCUS parameter or variable into
a Maintain Data variable. IWC.GetAppCGIValue returns a value from the HTTP request header if
the name of the variable or parameter is passed. If the name is not found, the function returns
a null value. Therefore, you can check for errors by looking for a null value, then handle the
error as needed.

Note: Unlike Maintain variables, WebFOCUS parameters and variables are case-sensitive.

466 Information Builders

17. Maintain-specific Light Update Support Functions I

Syntax:

Example:

How to Import a WebFOCUS Parameter
Decl are mnt_varl type [ength = | WC. Get AppCA Val ue(parny;

where:
mt_var

Is the Maintain Data variable that receives the ASCII return value of the WebFOCUS
parameter or variable. The value should be unescaped before being passed to the
Maintain variable.

type length
Is the selected type and length of the Maintain Data variable.

parm
Is the WebFOCUS parameter or variable to import. This value is case-sensitive, and must
be alphanumeric.

Importing a WebFOCUS Parameter

IWC.getAppCGIValue imports the WebFOCUS parameter PRODUCT_ID to Maintain Data:

Mai ntain File GGPRODS

Infer Product_ID into prodstk;

Decl are pcode/ a4=|I WC. get AppCd Val ue(" PRODUCT_I D");

For 1 next Product ID into prodstk where Product I|ID eq
pcode;

Using Functions 467

IWC.GetAppCGlIValue: Importing a WebFOCUS Parameter or Variable

468 Information Builders

Chapter

Simplified Numeric Functions

Numeric functions have been developed that make it easier to understand and enter the
required arguments. These functions have streamlined parameter lists, similar to those
used by SQL functions. In some cases, these simplified functions provide slightly
different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

Note:
.4 The simplified numeric functions are supported in Dialogue Manager.

4 The simplified numeric functions are not supported in Maintain Data.

In this chapter:

.4 CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value
EXPONENT: Raising e to a Power

FLOOR: Returning the Largest Integer Less Than or Equal to a Value

MOD: Calculating the Remainder From a Division

L U o U

POWER: Raising a Value to a Power

CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value

CEILING returns the smallest integer value that is greater than or equal to a number.
Syntax: How to Return the Smallest Integer Greater Than or Equal to a Number

CEl LI N& number)

Using Functions 469

CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value

where:

nunber
Numeric

Is the number whose ceiling will be returned. The output data type is the same as the
input data type.

Example: Returning the Ceiling of a Number

In the following request, CEILING returns the smallest integer greater than or equal to the
GROSS_PROFIT_US value.

DEFI NE FI LE WF_RETAIL_LITE

CEl L1/ D7. 2= CEl LI NG GROSS_PROFI T_US) ;
END

TABLE FI LE WF_RETAIL_LITE

PRI NT GROSS_PROFI T_US/ D9.2 CEl L1

ON TABLE SET PAGE NOPAGE

END

470 Information Builders

18. Simplified Numeric Functions I

The partial output follows. Note that even though the value returned is an integer, it is returned
with the same format as the CEIL1 field (D7.2):

Gross Profit CEl L1
165. 00 165. 00
13. 99 14. 00
60. 99 61. 00
225.98 226. 00
79. 99 80. 00
44,59 45. 00
94. 30 95. 00

68. 99 69. 00
63. 58 64. 00
129. 99 130. 00
37.49 38. 00
75.99 76. 00
13.99 14.00
119. 00 119. 00
-30.01 -30. 00
54.99 55. 00
189. 98 190. 00
44.59 45. 00
91. 98 92. 00
89. 00 89. 00
59.50 60. 00
129. 99 130. 00
54. 00 54. 00
109. 98 110. 00
98. 99 99. 00
98. 99 99. 00
99. 99 100. 00
44.59 45. 00

EXPONENT: Raising e to a Power

EXPONENT raises the constant e to a power.
Syntax: How to Raise the Constant e to a Power
EXPONENT(power)

where:

pover
Numeric

Is the power to which to raise e. The output data type is numeric.

Using Functions 471

FLOOR: Returning the Largest Integer Less Than or Equal to a Value

Example: Raising e to a Power
The following request prints the value of e and the value of e raised to the fifth power.

DEFI NE FI LE WF_RETAIL_LITE

EXP1/ D12.5 = EXPONENT(1);
EXP2/ D12.5 = EXPONENT(5);
END

TABLE FI LE WF_RETAIL_LITE

PRI NT EXP1 EXP2

BY BUSI NESS_REG ON AS Regi on
VWHERE BUSI NESS_REG ON EQ ' EMEA'
WHERE RECORDLIM T EQ 1

ON TABLE SET PAGE NOPAGE

END

The output is shown in the following image.

[Region| EXP1| ExP2
[EMEA 271828 (148 41316

FLOOR: Returning the Largest Integer Less Than or Equal to a Value

FLOOR returns the largest integer value that is less than or equal to a number.
Syntax: How to Return the Largest Integer Less Than or Equal to a Number
FLOOR(nunber)

where:

nunber
Numeric

Is the number whose floor will be returned. The output data type is the same as the input
data type.

472 Information Builders

18. Simplified Numeric Functions I

Example: Returning the Floor of a Number

In the following request, FLOOR returns the largest integer less than or equal to the
GROSS_PROFIT_US value.

DEFI NE FI LE WF_RETAIL_LITE
FLOORL/ D7. 2= FLOOR(GROSS_PROFI T_US) ;
END

TABLE FI LE W_RETAIL_LI TE

PRI NT GROSS_PROFI T_US/D9.2 FLOORL
ON TABLE SET PAGE NOPAGE

END

Partial output follows. Note that even though the value returned is an integer, it is returned
with the same format as the FLOOR1 field (D7.2):

Gross Profit FLOORL

13.99 13.00
60. 99 60. 00
225.98 225.00
79.99 79. 00
44.59 44.00
94. 30 94. 00

68. 99 68. 00
63. 58 63. 00
129. 99 129. 00
37. 49 37.00
75.99 75. 00
13.99 13.00
119. 00 119. 00
-30.01 -31.00
54.99 54. 00
189. 98 189. 00
44.59 44.00
91. 98 91. 00
89. 00 89. 00
59.50 59. 00
129. 99 129. 00
54. 00 54. 00
109. 98 109. 00
98. 99 98. 00
98. 99 98. 00
99. 99 99. 00
44.59 44. 00

Using Functions 473

MOD: Calculating the Remainder From a Division

MOD: Calculating the Remainder From a Division
MOD calculates the remainder from a division. The output data type is the same as the input
data type.

Syntax: How to Calculate the Remainder From a Division

MOD(di vi dend, di vi sor)

where:

di vi dend
Numeric

Is the value to divide.
Note: The sign of the returned value will be the same as the sign of the dividend.

di vi sor
Numeric

Is the value to divide by.

If the divisor is zero (0), the dividend is returned.

Example: Calculating the Remainder From a Division

In the following request, MOD returns the remainder of PRICE_DOLLARS divided by
DAYSDELAYED:

DEFINE FI LE WF_RETAIL_LITE

MOD1/ D7. 2= MOD(PRI CE_DCLLARS, DAYSDELAYED);
END

TABLE FILE WF_RETAIL_LITE

PRI NT PRI CE_DOLLARS/ D7.2 DAYSDELAYED/ | 5 MOD1
VWHERE DAYSDELAYED GT 1

ON TABLE SET PAGE NOPAGE

ON TABLE PCHOLD FORVAT WP

END

474 Information Builders

18. Simplified Numeric Functions I

Partial output follows:

Price Days
Dol l ars Del ayed MOD1
399. 00 3 .00
489. 99 3 99
786. 50 2 .50
599. 99 4 3.99

29.99 4 1.99
169. 00 2 1.00
219.99 2 1.99
280. 00 3 1.00

79.99 4 3.99
145. 99 2 1.99
399. 99 3 .99
349. 99 3 1.99
169. 00 3 .00

POWER: Raising a Value to a Power

POWER raises a base value to a power.
Syntax: How to Raise a Value to a Power
POVER(base, power)

where:

base
Numeric

Is the value to raise to a power. The output value has the same data type as the base
value. If the base value is integer, negative power values will result in truncation.

pover
Numeric

Is the power to which to raise the base value.

Using Functions 475

POWER: Raising a Value to a Power

Example: Raising a Base Value to a Power

In the following request, POWER returns the value COGS_US/20.00 raised to the power stored
in DAYSDELAYED:

DEFI NE FI LE WE_RETAIL_LITE
BASE=COGS_US/ 20. 00;

POWERL= PONER(COGS_US/ 20. 00, DAYSDELAYED) ;
END

TABLE FILE WF_RETAIL_LITE

PRI NT BASE I N 15 DAYSDELAYED POWERL

BY PRODUCT CATEGORY

WHERE PRODUCT CATEGORY EQ ' Conput ers'
WHERE DAYSDELAYED NE 0

ON TABLE SET PAGE NOPAGE

END

Partial output follows:

Pr oduct Days
Cat egory BASE Del ayed POVNERL
Conput er s 12.15 3 1,793.61
16. 70 2 278. 89
8.35 1 8.35
8. 10 2 65. 61
4.05 1 4.05
4.05 2 16. 40
4.05 4 269. 04
8.35 1 8.35
16. 70 1 16. 70
8.35 3 582. 18
8.35 1 8.35
4. 05 1 4. 05
4.05 1 4.05
8.35 4 4,861. 23
8.35 -1 .12
8.35 1 8.35
8.35 3 582. 18

476 Information Builders

Chapter

Numeric Functions

Numeric functions perform calculations on humeric constants and fields.

For many functions, the output argument can be supplied either as a field name or as a
format enclosed in single quotation marks. However, if a function is called from a
Dialogue Manager command, this argument must always be supplied as a format, and if
a function is called from a Maintain Data procedure, this argument must always be
supplied as a field name. For detailed information about calling a function and supplying
arguments, see Accessing and Calling a Function on page 61.

Note: With CDN ON, numeric arguments must be delimited by a comma followed by a
space.

In this chapter:

d
|

ABS: Calculating Absolute Value

ASIS: Distinguishing Between a Blank
and a Zero

BAR: Producing a Bar Chart
CHKPCK: Validating a Packed Field

DMOD, FMOD, and IMOD: Calculating
the Remainder From a Division

EXP: Raising e to the Nth Power

EXPN: Evaluating a Number in Scientific
Notation

FMLCAP: Retrieving FML Hierarchy
Captions

FMLFOR: Retrieving FML Tag Values

FMLINFO: Returning FOR Values

I I A =

L

FMLLIST: Returning an FML Tag List
INT: Finding the Greatest Integer
LOG: Calculating the Natural Logarithm

MAX and MIN: Finding the Maximum or
Minimum Value

MIRR: Calculating the Modified Internal
Return Rate

NORMSDST and NORMSINV: Calculating
Normal Distributions

PRDNOR and PRDUNI: Generating
Reproducible Random Numbers

RDNORM and RDUNIF: Generating
Random Numbers

SQRT: Calculating the Square Root

XIRR: Calculating the Modified Internal
Return Rate (Periodic or Non-Periodic)

Using Functions

477

ABS: Calculating Absolute Value

ABS: Calculating Absolute Value

Syntax:

Example:

Available Languages: reporting, Maintain

The ABS function returns the absolute value of a number.
How to Calculate Absolute Value
ABS(/ n_val ue)

where:

i n_val ue
Numeric

Is the value for which the absolute value is returned, the name of a field that contains the
value, or an expression that returns the value. If you use an expression, use parentheses
as needed to ensure the correct order of evaluation.

Calculating Absolute Value

The COMPUTE command creates the DIFF field, then ABS calculates the absolute value of
DIFF:

TABLE FI LE SALES

PRI NT UNI T_SOLD AND DELI VER_AMI' AND

COWUTE DI FF/ 15 = DELI VER AMI - UNI T_SOLD, AND
COWUTE ABS_ DI FF/ |5 = ABS (DIFF) ;BY PROD_CODE
VWHERE DATE LE ' 1017';

END

The output is:
PROD_CODE UNI T_SOLD DELIVER AMI DI FF ABS_DI FF

B10 30 30 0 0
B17 20 40 20 20
B20 15 30 15 15
C17 12 10 -2 2
D12 20 30 10 10
El 30 25 -5 5
E3 35 25 -10 10

ASIS: Distinguishing Between a Blank and a Zero

478

Available Languages: reporting

The ASIS function distinguishes between a blank and a zero in Dialogue Manager. It
differentiates between a numeric string constant or variable defined as a numeric string, and a
field defined simply as numeric.

Information Builders

19. Numeric Functions I

For details on ASIS, see ASIS: Distinguishing Between Space and Zero on page 151.

BAR: Producing a Bar Chart
Available Languages: reporting, Maintain

The BAR function produces a horizontal bar chart using repeating characters to form each bar.
Optionally, you can create a scale to clarify the meaning of a bar chart by replacing the title of
the column containing the bar with a scale.

Syntax: How to Produce a Bar Chart
BAR(bar! engt h, i nfield maxvalue, 'char', output)

where:

barl engt h
Numeric

Is the maximum length of the bar, in characters. If this value is less than or equal to O, the
function does not return a bar.

infield
Numeric

Is the data field plotted as a bar chart.

maxval ue
Numeric

Is the maximum value of a bar. This value must be greater than the maximum value stored
in infield. If infield is larger than maxvalue, the function uses maxvalue and returns a bar of
maximum length.

char'
Alphanumeric

Is the repeating character that creates the bars enclosed in single quotation marks. If you
specify more than one character, only the first character is used.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The output field must be large enough to contain a bar of
maximum length as defined by barlength.

Using Functions 479

BAR: Producing a Bar Chart

Example:

Example:

480

Producing a Bar Chart

BAR creates a bar chart for the CURR_SAL field, and stores the output in SAL_BAR. The bar
created can be no longer than 30 characters long, and the value it represents can be no
greater than 30,000.

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL AND COVPUTE

SAL_BAR/ A30 = BAR(30, CURR_SAL, 30000, '=', SAL BAR);BY LAST_NAME BY
FI RST_NAME

VHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAME FI RST_NAME CURR_SAL SAL_BAR
BANNI NG JOHN $29, 700. 00

I RVI NG JOAN $26, 862. 00

MCKNI GHT ROCER $16, 100. 00

ROVANS ANTHONY $21, 120. 00

SM TH RI CHARD $9,500. 00 ==========
STEVENS ALFRED $11, 000. 00 ===========

Creating a Bar Chart With a Scale

BAR creates a bar chart for the CURR_SAL field. The request then replaces the field name
SAL_BAR with a scale using the AS phrase.

To run this request on a platform for which the default font is proportional, use a non-
proportional font or issue SET STYLE=OFF.

SET STYLE=COFF

TABLE FI LE EMPLOYEE

HEADI NG

"CURRENT SALARI ES OF EMPLOYEES | N PRODUCTI ON DEPARTMENT"
"GRAPHED | N THOUSANDS OF DOLLARS'

PRI NT CURR_SAL AS ' CURRENT SALARY'

AND COVPUTE
SAL_BAR/ A30 = BAR(30, CURR_SAL, 30000, '=', SAL BAR);
AS 5 10 15 20 25 30, ----te-c-cdo-codeao oo

BY LAST_NAME AS ' LAST NAME'

BY FI RST_NAME AS ' FI RST NAME'
VHERE DEPARTMENT EQ ' PRODUCTI ON ;
ON TABLE SET PAGE- NUM OFF

ON TABLE SET STYLE * GRI D=CFF, $
END

Information Builders

19. Numeric Functions I

The output is:

CURRENT SALARI ES OF EMPLOYEES | N PRODUCTI ON DEPARTMENT
GRAPHED | N THOUSANDS OF DOLLARS
5 10 15 20 25 30

LAST NAME FI RST NAME CURRENT SALARY ----4----4----F----d-o-d--- -+
BANNI NG JOHN $29, 700. 00

I RVI NG JOAN $26, 862. 00

MCKNI GHT ROGER $16, 100. 00

ROVANS ANTHONY $21, 120. 00

SM TH Rl CHARD $9, 500. 00 —=—===—=====

STEVENS ALFRED $11, 000. 00 —==========

CHKPCK: Validating a Packed Field

Syntax:

Available Languages: reporting, Maintain

The CHKPCK function validates the data in a field described as packed format (if available on
your platform). The function prevents a data exception from occurring when a request reads a
field that is expected to contain a valid packed number but does not.

To use CHKPCK:

1. Ensure that the Master File (USAGE and ACTUAL attributes) defines the field as
alphanumeric, not packed. This does not change the field data, which remains packed, but
it enables the request to read the data without a data exception.

2. Call CHKPCK to examine the field. The function returns the output to a field defined as
packed. If the value it examines is a valid packed number, the function returns the value; if
the value is not packed, the function returns an error code.

How to Validate a Packed Field
CHKPCK(/ engt h, in_val ue, error, output)

where:

/ engt h
Numeric

Is the length of the packed field. It can be between 1 and 16 bytes.
infield
Alphanumeric

Is the name of the packed field or the value to be verified as packed decimal. The value
must be described as alphanumeric, not packed.

Using Functions 481

CHKPCK: Validating a Packed Field

Example:

482

error
Numeric

Is the error code that the function returns if a value is not packed. Choose an error code
outside the range of data. The error code is first truncated to an integer, then converted to
packed format. However, it may appear on a report with a decimal point depending on the
output format.

out put
Packed-decimal

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Validating Packed Data

1. Prepare a data source that includes invalid packed data. The following example creates
TESTPACK, which contains the PACK_SAL field. PACK_SAL is defined as alphanumeric but
actually contains packed data. The invalid packed data is stored as AAA.

DEFI NE FI LE EMPLOYEE
PACK_SAL/ A8 = | F EMP_I D CONTAI NS ' 123"

THEN ' AAA' ELSE PCKOUT(CURR_SAL, 8, 'A8');
END

TABLE FI LE EMPLOYEE

PRI NT DEPARTMENT PACK_SAL BY EMP_I D
ON TABLE SAVE AS TESTPACK

END

The output is:

NUVBER OF RECORDS | N TABLE= 12 LI NES= 12
ALPHANUMERI C RECORD NAMED TESTPACK

FI ELDNAVE ALl AS FORMAT LENGTH
EMP_I D EI D A9 9
DEPARTMENT DPT A10 10
PACK_SAL A8 8
TOTAL 27

2. Create a Master File for the TESTPACK data source. Define the PACK_SAL field as
alphanumeric in the USAGE and ACTUAL attributes.

FILE = TESTPACK, SUFFIX = FI X

FI ELD = EMP_I D ,ALIAS = EID, USAGE = A9 ,ACTUAL = A9 ,$
FI ELD = DEPARTMENT, ALI AS = DPT, USAGE = Al10, ACTUAL = A10, $
FI ELD = PACK_SAL ,ALIAS = PS ,USAGE = A8 ,ACTUAL = A8 ,$

3. Create a request that uses CHKPCK to validate the values in the PACK_SAL field, and store
the result in the GOOD_PACK field. Values not in packed format return the error code -999.
Values in packed format appear accurately.

Information Builders

19. Numeric Functions I

DEFI NE FI LE TESTPACK
GOOD_PACK/ PBCM = CHKPCK(8, PACK_SAL, -999, GOOD _PACK);
END

TABLE FI LE TESTPACK
PRI NT DEPARTMENT GOOD_PACK BY EMP_I D
END

The output is:

EMP_I D DEPARTMENT GOOD_PACK
071382660 PRODUCTI ON $11, 000
112847612 M S $13, 200
117593129 M S $18, 480
119265415 PRODUCTI ON $9, 500
119329144 PRODUCTI ON $29, 700
123764317 PRODUCTI ON - $999
126724188 PRODUCTI ON $21, 120
219984371 M S $18, 480
326179357 M 'S $21, 780
451123478 PRODUCTI ON - $999
543729165 M S $9, 000
818692173 M S $27, 062

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
Available Languages: reporting, Maintain

The MOD functions calculate the remainder from a division. Each function returns the
remainder in a different format.

The functions use the following formula.

remal nder = dividend - | NT(dividend di visor) * divisor
.4 DMOD returns the remainder as a decimal number.

4 FMOD returns the remainder as a floating-point number.

.4 IMOD returns the remainder as an integer.

For information on the INT function, see INT: Finding the Greatest Integer on page 492.

Using Functions 483

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

Syntax: How to Calculate the Remainder From a Division
function(dividend, divisor, output)

where:

function
Is one of the following;:

DMOD returns the remainder as a decimal number.
FMOD returns the remainder as a floating-point number.
| MOD returns the remainder as an integer.

di vi dend
Numeric

Is the number being divided.
di vi sor
Numeric
Is the number dividing the dividend.

out put
Numeric

Is the result whose format is determined by the function used. Can be the name of the
field that contains the result, or the format of the output value enclosed in single quotation
marks.

If the divisor is zero (0), the dividend is returned.

Example: Calculating the Remainder From a Division

IMOD divides ACCTNUMBER by 1000 and returns the remainder to LAST3_ACCT:

TABLE FI LE EMPLOYEE

PRI NT ACCTNUMBER AND COVPUTE

LAST3_ACCT/ | 3L = IMOD (ACCTNUMBER, 1000, LAST3_ ACCT) ;

BY LAST NAME BY FI RST_NAME

WHERE (ACCTNUMBER NE 000000000) AND (DEPARTMVENT EQ 'M S'):
END

484 Information Builders

19. Numeric Functions I

The output is:

LAST_NAME FI RST_NAME ACCTNUMBER LAST3_ACCT
BLACKWOOD ROSEMARI E 122850108 108
CRCSS BARBARA 163800144 144
GREENSPAN MARY 150150302 302
JONES DI ANE 040950036 036
MCCOY JOHN 109200096 096
SM TH MARY 027300024 024

EXP: Raising eto the Nth Power
Available Languages: reporting, Maintain

The EXP function raises the value "e" (approximately 2.72) to a specified power. This function
is the inverse of the LOG function, which returns the logarithm of the argument.

EXP calculates the result by adding terms of an infinite series. If a term adds less than .
000001 percent to the sum, the function ends the calculation and returns the result as a
double-precision number.

Syntax: How to Raise eto the Nth Power

EXP(pover, out put)

where:

power
Numeric

Is the power to which "e" is raised.

out put
Double-precision floating-point

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Using Functions 485

EXPN: Evaluating a Number in Scientific Notation

Example:

Raising eto the Nth Power

EXP raises "e" to the power designated by the &POW variable, specified here as 3. The result
is then rounded to the nearest integer with the .5 rounding constant and returned to the
variable &RESULT. The format of the output value is D15.3.

-SET &POW = ' 3';

-SET &RESULT = EXP(&POW, 'D15.3') + 0.5;- HTMLFORM BEG N
<HTM_>

<BODY>

E TO THE &POW PONER | S APPROXI MATELY &RESULT

</ BODY>

</ HTM_>

- HTMLFORM END

The output is:
E TO THE 3 PONER | S APPROXI MATELY 20

EXPN: Evaluating a Number in Scientific Notation

Syntax:

486

The EXPN function evaluates a number expressed in scientific notation.
How to Evaluate a Number in Scientific Notation
EXPN(n. nn {E| D} {+|-} p)

where:
n. nn
Numeric

Is a numeric constant that consists of a whole number component, followed by a decimal
point, followed by a fractional component.

E, D

Denotes scientific notation. E and D are interchangeable.

+ -

Indicates if p is positive or negative.

Integer

Is the power of 10 to which to raise n.nn.

Information Builders

19. Numeric Functions I

Example:

Note: EXPN does not use an output argument. The format of the result is floating-point double
precision.

Evaluating a Number in Scientific Notation
EXPN evaluates SCI_DATA.

EXPN(SCI _DATA)

For 1.03E+2, the result is 103.

FMLCAP: Retrieving FML Hierarchy Captions

Syntax:

Example:

Available Languages: reporting

The FMLCAP function returns the caption value for each row in an FML hierarchy request. In

order to retrieve caption values, the Master File must define an FML hierarchy and the request
must use the GET CHILDREN, ADD, or WITH CHILDREN option to retrieve hierarchy data. If the
FOR field in the request does not have a caption field defined, FMLCAP returns a blank string.

FMLCAP is supported for COMPUTE but is not recommended for use with DEFINE.
How to Retrieve Captions in an FML Request Using the FMLCAP Function
FMLCAP(f/ el dnane| ' fornat')

where:
fiel dname

Is the name of the caption field.
' fornat'

Is the format of the caption field enclosed in single quotation marks.

Retrieving FML Hierarchy Captions Using FMLCAP

The following request retrieves and aggregates the FML hierarchy that starts with the parent
value 2000. FMLCAP retrieves the captions, while the actual account numbers appear as the
FOR values.

SET FORMULTI PLE = ON

TABLE FI LE CENTSTMI

SUM ACTUAL_AMT

COVPUTE CAP1/ A30= FM.CAP(GL_ACCOUNT _CAPTI ON) ;
FOR GL_ACCOUNT

2000 W TH CHI LDREN 2 ADD

END

Using Functions 487

FMLFOR: Retrieving FML Tag Values

The output is:
Actual CAP1

2000 313, 611,852. G oss Margin

2100 187, 087,470. Sal es Revenue
2200 98, 710, 368. Retail Sales
2300 13,798,832. Ml Oder Sales
2400 12, 215, 780. | nternet Sal es

2500 100, 885, 159. Cost O Goods Sol d
2600 54,877,250. Variable Material Costs
2700 6,176,900. Direct Labor
2800 3,107,742. Fixed Costs

FMLFOR: Retrieving FML Tag Values

Syntax:

Example:

488

Available Languages: reporting

FMLFOR retrieves the tag value associated with each row in an FML request. If the FML row
was generated as a sum of data records using the OR phrase, FMLFOR returns the first value
specified in the list. If the OR phrase was generated by an FML Hierarchy ADD command,
FMLFOR returns the tag value associated with the parent specified in the ADD command.

The FMLFOR function is supported for COMPUTE but not for DEFINE. Attempts to use it in a
DEFINE result in blank values.
How to Retrieve FML Tag Values

FMLFOR(out put)

where:
out put
Is name of the field that will contain the result, or the format of the output value enclosed

in single quotation marks.

Retrieving FML Tag Values With FMLFOR

SET FORMULTI PLE = ON
TABLE FI LE LEDGER

SUM AMOUNT

COVPUTE RETURNEDFOR/ A8 = FMLFOR(' A8');
FOR ACCOUNT

1010 OVER

1020 OVER

1030 OVER

BAR OVER

1030 OR 1020 OR 1010

END

Information Builders

19. Numeric Functions I

The output is:
AMOUNT RETURNEDFOR

1010 8,784 1010
1020 4,494 1020
1030 7,961 1030

1010 21,239 1030

FMLINFO: Returning FOR Values

Available Languages: reporting

The FMLINFO function returns the FOR value associated with each row in an FML report. With
FMLINFO, you can use the appropriate FOR value in a COMPUTE command to do drill-downs
and sign changes for each row in the report, even when the row is a summary row created
using an OR list or a Financial Modeling Language (FML) Hierarchy ADD command.

Note: You can use the SET parameter FORMULTIPLE=ON to enable an incoming record to be
used on more than one line in an FML report.
Syntax: How to Retain FOR Values in an FML Request

FMLI NFQ(' FORVALUE' , out put)

where:

" FORVALUE'
Alphanumeric

Returns the FOR value associated with each row in an FML report. If the FML row was
generated as a sum of data records using the OR phrase, FMLINFO returns the first FOR
value specified in the list of values. If the OR phrase was generated by an FML Hierarchy
ADD command, FMLINFO returns the FOR value associated with the parent specified in the
ADD command.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Using Functions 489

FMLINFO: Returning FOR Values

Example:

Example:

490

Retrieving FOR Values for FML Hierarchy Rows

The following request creates a field called PRINT_AMT that is the negative of the
NAT_AMOUNT field for account numbers less than 2500 in the CENTSYSF data source. The
CENTGL data source contains the hierarchy information for CENTSYSF. Therefore, CENTGL is

joined to CENTSYSF for the request:

SET FORMULTI PLE = ON

JO N SYS_ACCOUNT I N CENTG. TO ALL SYS_ACCOUNT | N CENTSYSF

TABLE FI LE CENTGL

SUM NAT_AMOUNT/ D10 I N 30

COVWPUTE PRI NT_AMT/ D10 = | F FMLINFO('FORVALUE','A7') LT ' 2500
THEN O- NAT_AMOUNT ELSE NAT_AMOUNT;

COWPUTE FORV/ A4 = FMLINFO ('FORVALUE', 'A4');

COWUTE ACTIONA9 = |F FORV LT ' 2500
THEN ' CHANGED ELSE ' UNCHANGED ;

FOR GL_ACCOUNT

2000 WTH CHI LDREN 2 ADD AS CAPTI ON

END

Note: The parent value specified in the WITH CHILDREN ADD command (2000) is returned for
the first row on the report. Each subsequent row is also a consolidated subsection of the
hierarchy with a parent value that is returned by FMLINFO:

Mont h
Act ual PRI NT_AMI FORV ACTI ON

Gross Margin - 25, 639, 223 25,639,223 2000 CHANGED

Sal es Revenue -62, 362, 490 62,362,490 2100 CHANGED

Retail Sal es -49, 355, 184 49, 355,184 2200 CHANGED

Mai | Order Sal es - 6,899, 416 6,899,416 2300 CHANGED

Internet Sales -6, 107, 890 6,107,890 2400 CHANGED
Cost OF Goods Sold 36, 723, 267 36, 723, 267 2500 UNCHANGED
Variable Material Costs 27,438, 625 27,438,625 2600 UNCHANGED
Direct Labor 6, 176, 900 6,176,900 2700 UNCHANGED
Fi xed Costs 3,107,742 3,107,742 2800 UNCHANGED

Using FMLINFO With an OR Phrase

The FOR value printed for the summary line is 1010, but FMLINFO returns the first value
specified in the OR list, 1030:

SET FORMULTI PLE = ON
TABLE FI LE LEDGER

SUM AMOUNT

COWUTE RETURNEDFOR/ A8 = FMLINFO ('FORVALUE', 'A8");
FOR ACCOUNT

1010 OVER

1020 OVER

1030 OVER

BAR OVER

1030 OR 1020 OR 1010

END

Information Builders

19. Numeric Functions I

The output is:

AMOUNT RETURNEDFOR
1010 8,784 1010
1020 4, 494 1020
1030 7,961 1030
1010 21, 239 1030

FMLLIST: Returning an FML Tag List

Syntax:

Example:

Available Languages: reporting

FMLLIST returns a string containing the complete tag list for each row in an FML request. If a

row has a single tag value, that value is returned.

The FMLLIST function is supported for COMPUTE but not for DEFINE. Attempts to use itin a

DEFINE result in blank values.
How to Retrieve an FML Tag List
FMLLI ST(* A4096V")

where:
' AA096V'

Is the required argument.

Retrieving an FML Tag List With FMLLIST

SET FORMULTI PLE=ON
TABLE FI LE LEDGER
HEADI NG

"TEST OF FMLLI ST"

SUM AMOUNT

COWPUTE LI ST1/ A36 = FM.LI ST(' A4096V') ;
FOR ACCOUNT

‘1010 OVER

'1020' OVER

'1030' OVER

BAR OVER

'1030" OR '1020' OR '1010

END

Using Functions

491

INT: Finding the Greatest Integer

The output is:

TEST OF FMLLI ST
AMOUNT LI ST1
1010
1020
1030 7,961

1010 21,239 1010 OR 1020 OR 1030

INT: Finding the Greatest Integer

Syntax:

Example:

Available Languages: reporting, Maintain

The INT function returns the integer component of a number.
How to Find the Greatest Integer
I NT(/7 n_val ue)

where:
in_val ue
Numeric

Is the value for which the integer component is returned, the name of a field that contains
the value, or an expression that returns the value. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation.

Finding the Greatest Integer
INT finds the greatest integer in the DED_AMT field and stores it in INT_DED_AMT:

TABLE FI LE EMPLOYEE

SUM DED_AMI' AND COVPUTE

I NT_DED_AMT/ 19 = INT(DED_AMT) ;BY LAST_NAME BY FI RST_NAME
VWHERE (DEPARTMENT EQ "M S') AND (PAY_DATE EQ 820730);
END

The output is:

LAST_NAMVE FI RST_NAME DED_AMT | NT_DED_AMT
BLACKWOOD ROSEMARI E $1, 261. 40 1261
CROSS BARBARA $1, 668. 69 1668
GREENSPAN MARY $127. 50 127
JONES DI ANE $725. 34 725
SM TH MARY $334. 10 334

LOG: Calculating the Natural Logarithm

492

Available Languages: reporting, Maintain

Information Builders

19. Numeric Functions I

Syntax:

Example:

The LOG function returns the natural logarithm of a number.
How to Calculate the Natural Logarithm
LOG 7/ n_val ue)

where:

in_val ue
Numeric

Is the value for which the natural logarithm is calculated, the name of a field that contains
the value, or an expression that returns the value. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If in_value is less than or
equal to O, LOG returns O.

Calculating the Natural Logarithm

LOG calculates the logarithm of the CURR_SAL field:

TABLE FI LE EMPLOYEE

PRI NT CURR SAL AND COVPUTE

LOG CURR SAL/ D12.2 = LOG(CURR_SAL) ;BY LAST_NAME BY FI RST_NANE
WHERE DEPARTMENT EQ ' PRODUCTI ON ;

END

The output is:

LAST_NAVE FI RST_NAVE CURR SAL LOG CURR SAL
BANNI NG JOHN $29, 700. 00 10. 30
| RVI NG JOAN $26, 862. 00 10. 20
MCKNI GHT ROGER $16, 100. 00 9. 69
ROVANS ANTHONY $21, 120. 00 9.96
SM TH Rl CHARD $9, 500. 00 9.16
STEVENS ALFRED $11, 000. 00 9.31

MAX and MIN: Finding the Maximum or Minimum Value

Available Languages: reporting, Maintain

The MAX and MIN functions return the maximum or minimum value, respectively, from a list of
values.

Using Functions 493

MIRR: Calculating the Modified Internal Return Rate

Syntax:

Example:

How to Find the Maximum or Minimum Value
{MAX| M N} (val uel, value2, ...)

where:
MAX

Returns the maximum value.
M N

Returns the minimum value.

val uel, val ue?
Numeric

Are the values for which the maximum or minimum value is returned, the name of a field
that contains the values, or an expression that returns the values. If you supply an
expression, use parentheses as needed to ensure the correct order of evaluation.

Determining the Minimum Value

MIN returns either the value of the ED_HRS field or the constant 30, whichever is lower:

TABLE FI LE EMPLOYEE
PRI NT ED_HRS AND COVPUTE

M N_EDHRS_30/ D12. 2 = MIN(ED_HRS, 30);BY LAST_NAME BY FI RST_NAME

VWHERE DEPARTMENT EQ "M S';
END

The output is:

LAST_NAVME FI RST_NAME ED_HRS
BLACKWOOD ROSEMARI E 75. 00
CRCSS BARBARA 45. 00
GREENSPAN MARY 25.00
JONES DI ANE 50. 00
MCCOY JOHN 00
SM TH MARY 36. 00

MIRR: Calculating the Modified Internal Return Rate

494

Available languages: reporting

M N_EDHRS_

30

The MIRR function calculates the modified internal rate of return for a series of periodic cash

flows.

Information Builders

19. Numeric Functions I

Syntax:

How to Calculate the Modified Internal Rate of Return

TABLE FI LE ...

{PRINT| SUM field ...COWUTE rratel fnt = MRR(cashflow finrate,
reinvrate, output);

W THI N { sort_fi el d| TABLE}

where:
field ...
Are fields that appear in the report output.
rrate
Is the field that contains the calculated return rate.
fm
Is the format of the return rate. The data type must be D.
cashf! ow

Is a numeric field. Each value represents either a payment (negative value) or income
(positive value) for one period. The values must be in the correct sequence in order for the
sequence of cash flows to be calculated correctly. The dates corresponding to each cash
flow should be equally spaced and sorted in chronological order. The calculation requires
at least one negative value and one positive value in the cashflow field. If the values are all
positive or all negative, a zero result is returned.

finrate

Is a finance rate for negative cash flows. This value must be expressed as a non-negative
decimal fraction between O and 1. It must be constant within each sort group for which a
return rate is calculated, but it can change between sort groups.

rei nvrate

Is the reinvestment rate for positive cash flows. This value must be expressed as a non-
negative decimal fraction between O and 1. It must be constant within each sort group but
can change between sort groups. It must be constant within each sort group for which a
return rate is calculated, but it can change between sort groups.

out put

Is the name of the field that contains the return rate, or its format enclosed in single
quotation marks.

Using Functions 495

MIRR: Calculating the Modified Internal Return Rate

Reference:

Example:

496

sort_field

Is a field that sorts the report output and groups it into subsets of rows on which the
function can be calculated separately. To calculate the function using every row of the
report output, use the WITHIN TABLE phrase. A WITHIN phrase is required.

Usage Notes for the MIRR Function

- This function is only supported in a COMPUTE command with the WITHIN phrase.

.d The cash flow field must contain at least one negative value and one positive value.
d Dates must be equally spaced.

4 Missing cash flows or dates are not supported.

Calculating the Modified Internal Rate of Return

The following request calculates modified internal return rates for categories of products. It
assumes a finance charge of ten percent and a reinvestment rate of ten percent. The request
is sorted by date so that the correct cash flows are calculated. The rate returned by the
function is multiplied by 100 in order to express it as a percent rather than a decimal value.
Note that the format includes the % character. This causes a percent symbol to display, but it
does not calculate a percent.

In order to create one cash flow value per date, the values are summed. NEWDOLL is defined
in order to create negative values in each category as required by the function:

DEFI NE FI LE GGSALES
SDATE/ YYM = DATE;
SYEAR/'Y = SDATE;
NEWDOLL/ D12.2 = | F DATE LT '19970401' THEN -1 * DOLLARS ELSE DOLLARS;
END
TABLE FI LE GGSALES
SUM NEWDOLL
COWUTE RRATE/ D7. 2% = M RR(NEWDOLL, .1, .1, RRATE) * 100;
W THI N CATEGCORY
BY CATEGORY
BY SDATE
WHERE SYEAR EQ 97
END

Information Builders

19. Numeric Functions I

A separate rate is calculated for each category because of the WITHIN CATEGORY phrase. A
portion of the output is shown:

Cat egory SDATE NEWDOL L RRATE
Cof f ee 1997/ 01 -801, 123. 00 15.11%
1997/ 02 - 682, 340. 00 15.11%
1997/ 03 -765,078. 00 15.11%
1997/ 04 691, 274. 00 15.11%
1997/ 05 720, 444. 00 15.11%
1997/ 06 742, 457. 00 15.11%
1997/ 07 747, 253. 00 15.11%
1997/ 08 655, 896. 00 15.11%
1997/ 09 730, 317. 00 15.11%
1997/ 10 724,412. 00 15.11%
1997/ 11 620, 264. 00 15.11%
1997/ 12 762, 328. 00 15.11%
Food 1997/ 01 -672,727.00 16. 24%
1997/ 02 -699, 073. 00 16. 24%
1997/ 03 - 642, 802. 00 16. 24%
1997/ 04 718,514. 00 16. 24%
1997/ 05 660, 740. 00 16. 24%
1997/ 06 734, 705. 00 16. 24%
1997/ 07 760, 586. 00 16. 24%

To calculate one modified internal return rate for all of the report data, use the WITHIN TABLE
phrase. In this case, the data does not have to be sorted by CATEGORY:

DEFI NE FI LE GGSALES

SDATE/ YYM = DATE;

SYEAR/' Y = SDATE;

NEWDOLL/ D12.2 = | F DATE LT ' 19970401' THEN -1 * DOLLARS ELSE DOLLARS;
END

TABLE FI LE GGSALES
SUM NEWDCOLL
COMPUTE RRATE/ D7. 2% = M RR(NEVWDOLL, .1, .1, RRATE) * 100;
W THI N TABLE
BY SDATE
VWHERE SYEAR EQ 97
END

Using Functions 497

NORMSDST and NORMSINV: Calculating Normal Distributions

The output is:

SDATE NEVDCL L RRATE
1997/ 01 -1, 864, 129. 00 15. 92%
1997/ 02 -1,861, 639. 00 15. 92%
1997/ 03 -1, 874, 439. 00 15. 92%
1997/ 04 1, 829, 838. 00 15. 92%
1997/ 05 1, 899, 494. 00 15. 92%
1997/ 06 1, 932, 630. 00 15. 92%
1997/ 07 2,005, 402. 00 15. 92%
1997/ 08 1, 838, 863. 00 15. 92%
1997/ 09 1, 893, 944. 00 15. 92%
1997/ 10 1, 933, 705. 00 15. 92%
1997/ 11 1, 865, 982. 00 15. 92%
1997/ 12 2,053, 923. 00 15.92%

NORMSDST and NORMSINV: Calculating Normal Distributions

The NORMSDST and NORMSINV functions perform calculations on a standard normal
distribution curve. NORMSDST calculates the percentage of data values that are less than or
equal to a normalized value; NORMSINV is the inverse of NORMSDST, calculates the
normalized value that forms the upper boundary of a percentile in a standard normal
distribution curve.

NORMSDST: Calculating Standard Cumulative Normal Distribution

498

The NORMSDST function performs calculations on a standard normal distribution curve,
calculating the percentage of data values that are less than or equal to a normalized value. A
normalized value is a point on the X-axis of a standard normal distribution curve in standard
deviations from the mean. This is useful for determining percentiles in normally distributed
data.

The NORMSINV function is the inverse of NORMSDST. For information about NORMSINV, see
NORMSINV: Calculating Inverse Cumulative Normal Distribution on page 501.

The results of NORMSDST are returned as double-precision and are accurate to 6 significant
digits.

A standard normal distribution curve is a normal distribution that has a mean of O and a
standard deviation of 1. The total area under this curve is 1. A point on the X-axis of the
standard normal distribution is called a normalized value. Assuming that your data is normally
distributed, you can convert a data point to a normalized value to find the percentage of scores
that are less than or equal to the raw score.

You can convert a value (raw score) from your normally distributed data to the equivalent
normalized value (z-score) as follows:

z = (raw_score - nean)/standard_devi ation

Information Builders

19. Numeric Functions I

To convert from a z-score back to a raw score, use the following formula:

raw _score = z * standard_devi ati on + nean

The mean of data points xi, where i is from 1 to n is:

(2w /n

The standard deviation of data points xi, where i is from 1 to n is:
SORT(((Zx® - (Exgi%mijsin - 1100

The following diagram illustrates the results of the NORMSDST and NORMSINV functions.

-4 -3 -2 2 3 q
Marmalized Value
(MORMSINW)

Percentile of Standard
Deviation (NORMSDST)

Reference: Characteristics of the Normal Distribution

Many common measurements are normally distributed. A plot of normally distributed data
values approximates a bell-shaped curve. The two measures required to describe any normal
distribution are the mean and the standard deviation:

Id The mean is the point at the center of the curve.

IJ The standard deviation describes the spread of the curve. It is the distance from the mean
to the point of inflection (where the curve changes direction).

Using Functions 499

NORMSDST and NORMSINV: Calculating Normal Distributions

Syntax:

Example:

500

How to Calculate the Cumulative Standard Normal Distribution Function
NORVBDST(val ue, 'D8');

where:
val ue

Is a normalized value.

Is the required format for the result. The value returned by the function is double-precision.
You can assign it to a field with any valid numeric format.

Using the NORMSDST Function

NORMSDST calculates the Z value and finds its percentile:

DEFI NE FI LE GGPRODS

-* CONVERT S| ZE FI ELD TO DOUBLE PRECI SI ON

X/ D12.5 = SI ZE;

END

TABLE FI LE GGPRODS

SUM X NOPRI NT CNT. X NOPRI NT

-* CALCULATE MEAN AND STANDARD DEVI ATI ON

COVPUTE NUM D12.5 = CNT. X; NOPRI NT

COVPUTE MEAN D12.5 = AVE. X; NOPRI NT

COVPUTE VARI ANCE/ D12.5 = ((NUMFASQ X) - (X*X/ NUM))/(NUM 1); NOPRI NT
COVPUTE STDEV/ D12.5 = SQRT(VARI ANCE); NOPRI NT

PRINT SI ZE X NOPRI NT

-* COVPUTE NORMALI ZED VALUES AND USE AS | NPUT TO NORMSDST FUNCTI ON
COWPUTE 7/ D12.5 = (X - MEAN)/ STDEV;

COVPUTE NORMSDY D12.5 = NORMSDST(Z, 'D8');

BY PRODUCT | D NOPRI NT

END

The output is:

Si ze z NORVSD
16 -. 07298 . 47091
12 -. 80273 . 21106
12 -.80273 . 21106
20 . 65678 . 74434
24 1. 38654 . 91721
20 . 65678 . 74434
24 1. 38654 . 91721
16 -. 07298 . 47091
12 -.80273 . 21106

8 -1.53249 . 06270

Information Builders

19. Numeric Functions I

NORMSINV: Calculating Inverse Cumulative Normal Distribution

The NORMSINV function performs calculations on a standard normal distribution curve, finding
the normalized value that forms the upper boundary of a percentile in a standard normal
distribution curve. This is the inverse of NORMSDST. For information about NORMSDST, see
NORMSDST: Calculating Standard Cumulative Normal Distribution on page 498.

The results of NORMSINV are returned as double-precision and are accurate to 6 significant
digits.

Syntax: How to Calculate the Inverse Cumulative Standard Normal Distribution Function

NORMBI NV(val ue, ' D8');

where:
val ue

Is a number between 0 and 1 (which represents a percentile in a standard normal
distribution).

Is the required format for the result. The value returned by the function is double-precision.
You can assign it to a field with any valid numeric format.

Using Functions 501

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

Example: Using the NORMSINV Function

NORMSDST finds the percentile for the Z field. NORMSINV then returns this percentile to a

normalized value:

DEFI NE FI LE GGPRODS

-* CONVERT SI ZE FI ELD TO DOUBLE PRECI SI ON
X/'D12.5 = Sl ZE;

END

TABLE FI LE GGPRCDS

SUM X NOPRI NT CNT. X NOPRI NT

-* CALCULATE MEAN AND STANDARD DEVI ATI ON
COVPUTE NUM D12.5 = CNT. X; NOPRI NT
COVPUTE MEAN D12.5 = AVE. X; NOPRI NT

COVPUTE VARI ANCE/ D12.5 = ((NUMFASQ X) - (X*X/ NUM))/(NUM 1);

COVPUTE STDEV/ D12.5 = SORT(VARI ANCE) ; NOPRI NT
PRI NT SI ZE X NOPRI NT

NOPRI NT

-* COWMPUTE NORMALI ZED VALUES AND USE AS | NPUT TO NORMSDST FUNCTI ON

-* THEN USE RETURNED VALUES AS | NPUT TO NORMSI NV FUNCTI ON

-* AND CONVERT BACK TO DATA VALUES

COWUTE Zz/D12.5 = (X - MEAN)/ STDEV;

COVWPUTE NORMSD/ D12.5 = NORMSDST (%, 'D8');
COVWPUTE NORMSI / D12. 5 = NORMSINV (NORMSD, 'D8');
COWUTE DSI ZE/ D12 = NORVSI * STDEV + MEAN,

BY PRODUCT_I D NOPRI NT

END

The output shows that NORMSINYV is the inverse of NORMSDST and returns the original values:

Si ze z NORVSD NORMS
16 -. 07298 . 47091 -. 07298
12 -.80273 . 21106 -.80273
12 -. 80273 . 21106 -. 80273
20 . 65678 . 74434 . 65678
24 1. 38654 . 91721 1. 38654
20 . 65678 . 74434 . 65678
24 1. 38654 . 91721 1. 38654
16 -.07298 . 47091 -.07298
12 -. 80273 . 21106 -. 80273

8 -1.53249 . 06270 -1.53249

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

Available Languages: reporting, Maintain

The PRDNOR and PRDUNI functions generate reproducible random numbers:

.4 PRDNOR generates reproducible double-precision random numbers normally distributed

with an arithmetic mean of O and a standard deviation of 1.

502

Information Builders

19. Numeric Functions I

If PRDNOR generates a large set of numbers, they have the following properties:

-1 The numbers lie roughly on a bell curve, as shown in the following figure. The bell curve
is highest at the O mark, meaning that there are more numbers closer to O than farther
away.

Frequency
of
Dol rEne

-4 3 2 -1 u] 1 2 3 4
Random Murnber Generated

. The average of the numbers is close to O.
.4 The numbers can be any size, but most are between 3 and -3.

.4 PRDUNI generates reproducible double-precision random numbers uniformly distributed
between 0 and 1 (that is, any random number it generates has an equal probability of being
anywhere between O and 1).

Syntax: How to Generate Reproducible Random Numbers
{ PRDNOR| PRDUNI } (seed, out put)

where:
PRDNOR

Generates reproducible double-precision random numbers normally distributed with an
arithmetic mean of O and a standard deviation of 1.

PRDUNI

Generates reproducible double-precision random numbers uniformly distributed between O
and 1.

Using Functions 503

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

seed
Numeric

Is the seed or the field that contains the seed, up to 9 digits. The seed is truncated to an
integer.

On z/0S, the numbers do not reproduce.

out put
Double-precision

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Example: Generating Reproducible Random Numbers

PRDNOR assigns random numbers and stores them in RAND. These values are then used to
randomly pick five employee records identified by the values in the LAST NAME and FIRST
NAME fields. The seed is 40. To produce a different set of numbers, change the seed.

DEFI NE FI LE EMPLOYEE
RAND/ D12. 2 W TH LAST_NAVME = PRDNOR (40, RAND) ;END

TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND FI RST_NAVME
BY H GHEST 5 RAND

END

The output is:

RAND LAST_NAME FI RST_NAME
1.38 STEVENS ALFRED
1.12 MCCOY JOHN

.55 SMTH Rl CHARD

.21 JONES DI ANE

.01 I RVING JOAN

504 Information Builders

19. Numeric Functions I

RDNORM and RDUNIF: Generating Random Numbers

Available Languages: reporting, Maintain

The RDNORM and RDUNIF functions generate random numbers:

4 RDNORM generates double-precision random numbers normally distributed with an
arithmetic mean of O and a standard deviation of 1.

If RDNORM generates a large set of numbers (between 1 and 32768), they have the
following properties:

.4 The numbers lie roughly on a bell curve, as shown in the following figure. The bell curve
is highest at the O mark, meaning that there are more numbers closer to O than farther
away.

Frequency
o
U e

-4 3 2 -1 u] 1 2 3 4
Random Murnber Generated

.d The average of the numbers is close to O.
.4 The numbers can be any size, but most are between 3 and -3.

.4 RDUNIF generates double-precision random numbers uniformly distributed between O and 1
(that is, any random number it generates has an equal probability of being anywhere
between 0 and 1).

Using Functions 505

SQRT: Calculating the Square Root

Syntax:

Example:

How to Generate Random Numbers
{ RDNORM RDUNI F} (out put)

where:
RDNORM

Generates double-precision random numbers normally distributed with an arithmetic mean
of 0 and a standard deviation of 1.

RDUNI F
Generates double-precision random numbers uniformly distributed between 0 and 1.

out put
Double-precision

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Generating Random Numbers

RDNORM assigns random numbers and stores them in RAND. These numbers are then used
to randomly choose five employee records identified by the values in the LAST NAME and
FIRST NAME fields.

DEFI NE FI LE EMPLOYEE

RANDY D12. 2 W TH LAST_NAME = RDNORM (RAND) ; END
TABLE FI LE EMPLOYEE

PRI NT LAST_NAME AND FI RST_NAME

BY HI GHEST 5 RAND

END

The request produces output similar to the following;:

RAND LAST_NAME FI RST_NAVME
.65 CROSS BARBARA
.20 BANNI NG JOHN
.19 | RVING JOAN
.00 BLACKWOOD ROSEVARI E

-.14 GREENSPAN MARY

SQRT: Calculating the Square Root

506

Available Languages: reporting, Maintain

The SQRT function calculates the square root of a number.

Information Builders

19. Numeric Functions I

Syntax:

Example:

How to Calculate the Square Root
SQRT(/ n_val ue)

where:

i n_val ue
Numeric

Is the value for which the square root is calculated, the name of a field that contains the
value, or an expression that returns the value. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If you supply a negative
number, the result is zero.

Calculating the Square Root
SQRT calculates the square root of LISTPR:

TABLE FI LE MOVI ES

PRI NT LI STPR AND COVPUTE

SQRT_LI STPR/ D12. 2 = SQRT (LISTPR) ;BY TI TLE
VWHERE CATEGORY EQ ' MJUSI CALS' ;

END

The output is:

TI TLE LI STPR SOQRT_LI STPR
ALL THAT JAZZ 19. 98 4. 47
CABARET 19. 98 4. 47
CHORUS LINE, A 14. 98 3.87
FI DDLER ON THE ROOF 29.95 5. 47

XIRR: Calculating the Modified Internal Return Rate (Periodic or Non-Periodic)

Available languages: reporting

The XIRR function calculates the internal rate of return for a series of cash flows that can be
periodic or non-periodic.

Using Functions 507

XIRR: Calculating the Modified Internal Return Rate (Periodic or Non-Periodic)

Syntax:

508

How to Calculate the Internal Rate of Return

TABLE FI LE ...
{PRINT|SUM field ...
COWPUTE rratel fnt = XIRR (cashfl ow dates, guess, nmaxiterations, output);
W THI N {sort_fi el al TABLE}
where:
field ...
Are fields that appear in the report output.
rrate
Is the field that contains the calculated return rate.
fnt
Is the format of the return rate. The data type must be D.

cashf /! ow

Is a numeric field. Each value of this field represents either a payment (negative value) or
income (positive value) for one period. The values must be in the correct sequence in order
for the sequence of cash flows to be calculated correctly. The dates corresponding to each
cash flow should be equally spaced and sorted in chronological order. The calculation
requires at least one negative value and one positive value in the cashflow field. If the
values are all positive or all negative, a zero result is returned.

dat es

Is a date field containing the cash flow dates. The dates must be full component dates
with year, month, and day components. Dates cannot be stored in fields with format A, I,
or P. They must be stored in date fields (for example, format YMD, not AYMD). There must
be the same number of dates as there are cash flow values. The number of dates must be
the same as the number of cash flows.

guess

Is an (optional) initial estimate of the expected return rate expressed as a decimal. The
default value is .1 (10%). To accept the default, supply the value O (zero) for this
argument.

Information Builders

19. Numeric Functions I

Reference:

Example:

maxi terations

Is an (optional) number specifying the maximum number of iterations that can be used to
resolve the rate using Newton's method. 50 is the default value. To accept the default,
supply the value O (zero) for this argument. The rate is considered to be resolved when
successive iterations do not differ by more than 0.0000003. If this level of accuracy is
achieved within the maximum number of iterations, calculation stops at that point. If it is
not achieved after reaching the maximum number of iterations, calculation stops and the
value calculated by the last iteration is returned.

out put
D

Is the name of the field that contains the return rate, or its format enclosed in single
quotation marks.

sort_field

Is a field that sorts the report output and groups it into subsets of rows on which the
function can be calculated separately. To calculate the function using every row of the
report output, use the WITHIN TABLE phrase. A WITHIN phrase is required.

Usage Notes for the XIRR Function
.4 This function is only supported in a COMPUTE command with the WITHIN phrase.
.4 The cash flow field must contain at least one negative value and one positive value.

. Dates cannot be stored in fields with format A, I, or P. They must be stored in date fields
(for example, format YMD, not AYMD).

.d Cash flows or dates with missing values are not supported.

Calculating the Internal Rate of Return

The following request creates a FOCUS data source with cash flows and dates and calculates
the internal return rate.

The Master File for the data source is:

FI LENAME=XI RRO1, SUFFI X=FCC
SEGNAME=SEGL, SEGTYPE=S1

FI ELDNAVE=DUMWY, FORVAT=A2, $

FI ELDNAVE=DATES, FORVAT=YYMD, $
FI ELDNAME=CASHFL, FORVAT=D12. 4, $
END

Using Functions 509

XIRR: Calculating the Modified Internal Return Rate (Periodic or Non-Periodic)

510

The procedure to create the data source is:

CREATE FI LE Xl RRO1

MODI FY FI LE Xl RRO1
FREEFORM DUMWY DATES CASHFL
DATA

AA, 19980101, - 10000. ,$

BB, 19980301, 2750. . $

CC, 19981030, 4250. . $

DD, 19990215, 3250. 8

EE, 19990401, 2750. . $

END

The request is sorted by date so that the correct cash flows can be calculated. The rate
returned by the function is multiplied by 100 in order to express it as a percent rather than a
decimal value. Note that the format includes the % character. This causes a percent symbol to
display, but it does not calculate a percent:

TABLE FI LE Xl RRO1

PRI NT CASHFL

COVWPUTE RATEX/ D12. 2%=Xl RR(CASHFL, DATES, 0., 0., RATEX) * 100;

W THI N TABLE

BY DATES
END

One rate is calculated for the entire report because of the WITHIN TABLE phrase:

DATES CASHFL RATEX
1998/ 01/ 01 -10, 000. 0000 37.49%
1998/ 03/ 01 2,750. 0000 37.49%
1998/ 10/ 30 4, 250. 0000 37.49%
1999/ 02/ 15 3, 250. 0000 37.49%
1999/ 04/ 01 2, 750. 0000 37.49%

Information Builders

Chapter

Maintain-specific Script Functions

Script functions enable you to integrate JavaScript and VBScripts into your Maintain Data
applications and perform client-side execution without returning to the WebFOCUS
Server.

In this chapter:

.4 IWCLink: Displaying a URL in a Browser or Frame

d IWCSwitchToSecure and IWCSwitchToUnsecure: Turning the Secure Sockets Layer On
and Off

4 IWCTrigger: Calling a Maintain Function From a Script Handler
IWC.FindAppCGIValue: Finding a WebFOCUS Parameter or Variable Value

IWC.GetAppCGIValue: Retrieving a WebFOCUS Parameter or Variable

IWCLink: Displaying a URL in a Browser or Frame

The IWCLink function displays a URL in a new browser window or in a frame within your current
form. You can use IWCLink as part of a technique that enables you to invoke an external
procedure without the EXEC command.

Syntax: How to Display a URL in a Browser or Frame
I WCLi nk(ur/, [target], [newu ndowy, [options])

where:
url
Is the URL of the webpage to display.
target
Is the window or frame to send the URL request output to.
neww ndow

Determines if the URL appears in a new browser window. When this parameter is a non-
zero or true, a new browser window is created.

Using Functions 511

IWCLink: Displaying a URL in a Browser or Frame

Example:

512

options

Are new window parameters. This includes, but is not limited to, the following:

_I

_I

screenX=distance, which is the distance the new window is placed from the left side of
the screen.

screenY=distance, which is the distance the new window is placed from the top of the
screen.

scrollbars={yes|no}, which determines whether horizontal and vertical scrollbars are
created when the document grows larger than the window dimensions. When set to
yes, scrollbars are created. When set to no, scrollbars are not created.

status={yes|no}, which determines whether a status bar appears at the bottom of the
window. When set to yes, a status bar is created. When set to no, a status bar is not
created.

titlebar={yes|no}, which determines whether a title bar appears at the bottom of the
window. When set to yes, a title bar is created. When set to no, a title bar is not
created.

toolbar={yes|no}, which determines whether a standard browser toolbar appears in the
window. When set to yes, a toolbar is created. When set to no, a toolbar is not created.

height=pixels, which is the height of the window in pixels.

d resizable={yes|no}, which determines whether a user is able to resize the window. If

set to yes, a user can resize the window. If set to no, a user cannot resize the window.

Displaying a URL in a Frame

The following JavaScript code is called from a script event handler and uses IWCLink as part of
a technique to invoke an external procedure, and to supply the procedure's parameter
dynamically at run time.

1. var theReport = "http://172.19.81.107/i bi _apps/ WFSer vl et ?
| Bl F_f ocexec=r sal es4&l Bl F_par ns=STCD¥3D"

2. theReport = theReport + docunent. Fornil. Edi t Box1. val ue;

3. | WCLi nk(t heReport, " MyFrane", 0, menubar =no, r esi zabl e=no, scrol | bar s=no,
st at us=no, t ool bar =no, hei ght =600, wi dt h=600") ;

Information Builders

20. Maintain-specific Script Functions I

These commands accomplish the following:

1. Defines a variable named theReport and initializes it to the target URL.

When you use IWCLink as part of a technique to invoke an external procedure, the target
URL must identify the WebFOCUS script (IPAddress/ibi_apps/WFServlet), the target
external procedure (?IBIF_focexec=ProcedureName), and the procedure's parameters
(&IBIF_parms=ParameterName%3D). A parameter name is the name of the target
procedure's corresponding Dialogue Manager variable without the initial ampersand. Note
that %3D is the HTML code for an equal sign; the next statement will append the
parameter's value to the equal sign.

In this case, the target procedure is named rsales4, and rsales4 has a parameter named
STCD.

2. Assigns a value from an edit box (Form1.EditBox1) to the target procedure's STCD
parameter by appending the value to the URL string in theReport.

3. Invokes IWCLink to display a WebFOCUS reporting session, running the external procedure
rsales4, in the frame named MyFrame.

If you want the reporting session to appear in a new browser window, you would leave the
second argument blank and change the third argument from O to 1.

The remaining arguments beginning with "menubar" customize the appearance of the
browser window; for information about browser settings, see your browser documentation.

IWCSwitchToSecure and IWCSwitchToUnsecure: Turning the Secure Sockets Layer On and

off

The IWCSwitchToSecure and IWCSwitchToUnsecure functions turn Secure Sockets Layer on
and off, respectively. Use these two functions when configuring an application that requires
certain transmissions be private, such as transferring credit card information. Currently, these
functions are most commonly used in e-commerce applications.

Before using IWCSwitchToSecure and IWCSwitchToUnsecure, you must do the following:
. Obtain secure certification for your Web server.

.4 For an e-commerce application, purchase an e-commerce product from a vendor. The
product verifies your credit card number and completes the transaction.

IWCSwitchToSecure and IWCSwitchToUnsecure are JavaScript functions. JavaScript is case-
sensitive. Ensure you enter these functions exactly as they appear. You can reference these
functions in a VBScript or JavaScript.

Using Functions 513

IWCTrigger: Calling a Maintain Function From a Script Handler

Syntax:

Syntax:

IWCTrigger:

Syntax:

514

How to Turn Secure Sockets Layer On

| WCSwi t chToSecure() ;

How to Turn Secure Sockets Layer Off

I WCSwi t chToUnsecure();

Calling a Maintain Function From a Script Handler

The IWCTrigger function can be used in two ways:

4 To control the Maintain Data application when a local validation test succeeds. If the
validation test fails, the function returns the end user to the form from which they executed
it.

If you use IWCTrigger in a script library, ensure the Maintain function you are calling is in
the same procedure in which you are using the script library.

. To retrieve the value of an ActiveX Control property in a Maintain function. In an event
handler for an ActiveX control event, use a script function for the handler and then call the
Maintain function using IWCTrigger.

IWCTrigger can be used in JavaScript or VBScript. INCTrigger is a Maintain Data-supplied script
function for use in any Maintain Data application.
How to Call a Maintain Function From a Script Handler

| WCTri gger (" functionnane"[, " parm]

where:
functionnane

Is the Maintain function to call. Scripts are case-sensitive, so you must specify the name
using the same uppercase and lowercase letters that you used to name the function in the
Maintain Data procedure.

parm

Is a parameter being passed to the function.

Information Builders

20. Maintain-specific Script Functions I

Syntax: How to Retrieve a Parameter From the Called Function
formane. Tri gger val ue

where:
formane

Is the name of the form in the Maintain Data application.
Syntax: How to Pass the Value of an ActiveX Control Property to a Maintain Function
I WCTri gger (" function",docunent. form control. property);

where:
function
Is the Maintain function you are calling.
form
Is the name of the form on which the ActiveX control is located.
control
Is the name of the ActiveX control.
property
Is the name of the ActiveX control property (look for ActiveX control properties in the
ActiveX tab of the property sheet for the ActiveX control).
Example: Passing an ActiveX Control Value to a Maintain Function

If you have an ActiveX calendar control on Form1 that has a property called Month, you can
use IWCTrigger to send the value of Month to a Maintain function called UpdateDate, via either
JavaScript or VBScript:

| WCTr i gger (" Updat eDat e", docunent . For ml. Ca/ endar Cont r o/ . Mont h) ;

IWC.FindAppCGlValue: Finding a WebFOCUS Parameter or Variable Value

The IWC.FindAppCGlIValue function finds WebFOCUS parameter or variable values by pairing the
parameter or variable name with the Maintain Data variable name to which the value is
assigned.

Note: IWC.FindAppCGlValue retrieves values, but cannot directly assign the values to a
Maintain Data variable as IWC.GetAppCGIValue does.

Using Functions 515

IWC.FindAppCGlValue: Finding a WebFOCUS Parameter or Variable Value

Syntax: How to Find a WebFOCUS Parameter Value
I WC. Fi ndAppCQ Val ue(nane, val ue);

where:
nane

Is the WebFOCUS parameter or variable whose value you are finding.
val ue

Is the Maintain Data variable that receives the value of the WebFOCUS parameter or
variable.

Example: Finding a Variable Value From a Launch Form

IWC.findAppCgiValue finds the user name and password values of the IBIC_user and IBIC_pass
variables, respectively:

Mai nt ai n

COVWPUTE user nane/ A8;

COVWPUTE passwor d/ A8;

I WC. fi ndAppCgi Val ue("1BI C_user", usernane);
I WC. fi ndAppCgi Val ue(" I BI C_pass", password);

Example: Finding Parameterized Data From Excel

IWC.findAppCgiValue finds the values for fields listed in an Excel file:

MAI NTAI' N FI LE car

MODULE | MPORT (webbase2 errors);

Case Top

conpute x|l sRetail Cost/a0;

I nfer car. ORI G N COUNTRY car. COVP. CAR car . CARREC. MODEL
car . BODY. BODYTYPE car . BODY. RETAI L_COST into car_stack;
car _stack. FocCount =1;

car _stack. Focl ndex=1;

iwe. findAppCgi Val ue(" COUNTRY", car _stack. country);

iwc. findAppCgi Val ue(" CAR', car _st ack. car);

iwc. findAppCgi Val ue(" MODEL", car _st ack. nodel) ;

iwc. fi ndAppCgi Val ue("BODYTYPE", car _st ack. bodyt ype);
iwc. findAppCgi Val ue(" RETAI L_COST", x| sRetai | _Cost);
car_stack.retail _cost = xlsRetail_Cost;

updat e car.BODY. RETAI L_COST from car _st ack;

EndCase

END

516 Information Builders

20. Maintain-specific Script Functions I

IWC.GetAppCGIValue: Retrieving a WebFOCUS Parameter or Variable

Syntax:

Example:

The IWC.GetAppCGIValue function retrieves the value of a WebFOCUS parameter or variable
and imports it into a Maintain Data variable. IWC.GetAppCGlIValue returns the value from the
HTTP request header if the name of the parameter or variable is passed.

If the passed parameter or variable name is not found, the function returns a null value.
Therefore, you can check for errors by looking for a null value, then handle the error as
needed.

Both the IWC.FindAppCGIValue and IWC.GetAppCGIValue functions are supported, but it is
recommended you use IWC.GetAppCGIValue. This function allows the parameter or variable
value to be directly assigned to a Maintain Data variable, while IWC.FindAppCGIValue does not.

Note: Unlike Maintain Data variables, WebFOCUS parameters and variables are case-sensitive.
How to Retrieve a WebFOCUS Parameter
Decl are mnt_varl type [ength = | WC. Get AppCG Val ue(parny;

where:
mt_var

Is the Maintain Data variable that receives the ASCII return value of the WebFOCUS
parameter or variable. The value is unescaped before being passed to the Maintain Data
variable.

type length
Is the selected type and length format of the Maintain Data variable.
parm

Is the WebFOCUS parameter or variable to import. This value is case-sensitive.

Retrieving a WebFOCUS Parameter

IWC.getAppCGlIValue retrieves the PRODUCT_ID WebFOCUS parameter:

Mai ntain Fil e GGPRODS

Infer Product_IDinto prodstk;

Decl are pcode/ a4=|I WC. get AppCd Val ue(" PRODUCT_I D");

For 1 next Product _ID into prodstk where Product_ID eq
pcode;

Using Functions 517

IWC.GetAppCGIValue: Retrieving a WebFOCUS Parameter or Variable

518 Information Builders

Chapter

Simplified Statistical Functions

Simplified statistical functions can be called in a COMPUTE command to perform
statistical calculations on the internal matrix that is generated during TABLE request
processing. The STDDEV and CORRELATION functions can also be called as a verb object
in a display command. Prior to calling a statistical function, you need to establish the
size of the partition on which these functions will operate, if the request contains sort
fields.

Note: It is recommended that all numbers and fields used as parameters to these
functions be double-precision.

In this chapter:
.4 Specify the Partition Size for Simplified Statistical Functions
4 CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data

d KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean
Value

MULTIREGRESS: Creating a Multivariate Linear Regression Column
RSERVE: Running an R Script

STDDEV: Calculating the Standard Deviation for a Set of Data Values

Specify the Partition Size for Simplified Statistical Functions
SET PARTI TI ON_ON = {FI RST| PENULTI MATE| TABLE}

where:

FI RST
Uses the first (also called the major) sort field in the request to partition the values.

PENULTI VATE
Uses the next to last sort field where the COMPUTE is evaluated to partition the values.
This is the default value.

TABLE
Uses the entire internal matrix to calculate the statistical function.

Using Functions 519

CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data

CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data

The CORRELATION function calculates the correlation coefficient between two numeric fields.
The function returns a numeric value between zero (0.0) and 1.0.

Reference: Calculate the Correlation Coefficient Between Two Fields
CORRELATI ON(i el d1, fiel d2)

where:

fieldl
Numeric

Is the first set of data for the correlation.

field2
Numeric

Is the second set of data for the correlation.

Example: Calculating a Correlation

The following request calculates the correlation between the DOLLARS and BUDDOLLARS
fields converted to double precision.

DEFI NE FI LE i bi sanp/ ggsal es
DOLLARS/ D12. 2 = DOLLARS;
BUDDOLLARS/ D12. 2 = BUDDOLLARS;
END

TABLE FI LE i bi sanp/ ggsal es
SUM DCOLLARS BUDDOLLARS
CORRELATI ON(DOLLARS, BUDDOLLARS)
ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

The output is shown in the following image.

CORRELATION

DOLLARS

DOLLARS BUDDOLLARS BUDDOLLARS
46.156,290.00 46,220.778.00 [895691073

520 Information Builders

21. Simplified Statistical Functions I

KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean
Value

The KMEANS_CLUSTER function partitions observations into a specified number of clusters
based on the nearest mean value. The function returns the cluster number assigned to the
field value passed as a parameter.

Note: If there are not enough points to create the number of clusters requested, the value -10
is returned for any cluster that cannot be created.

Syntax: How to Partition Observations Into Clusters Based on the Nearest Mean Value

KMEANS _CLUSTER(nunmber, percent, iterations, tolerance,
[prefix1.]fieldl], [prefixl.1field2 ...])

where:

number
Integer

Is number of clusters to extract.

per cent
Numeric

Is the percent of training set size (the percent of the total data to use in the calculations).
The default value is AUTO, which uses the internal default percent.

i terations
Integer

Is the maximum number of times to recalculate using the means previously generated. The
default value is AUTO, which uses the internal default number of iterations.

tol erance
Numeric

Is a weight value between zero (0) and 1.0. The value AUTO uses the internal default
tolerance.

prefix1, prefix2
Defines an optional aggregation operator to apply to the field before using it in the
calculation. Valid operators are:

4 SUM. which calculates the sum of the field values. SUM is the default value.

.d CNT. which calculates a count of the field values.

Using Functions 521

KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean Value

AVE. which calculates the average of the field values.

MIN. which calculates the minimum of the field values.

d
1
4 MAX. which calculates the maximum of the field values.
4 FST. which retrieves the first value of the field.

1

LST. which retrieves the last value of the field.

Note: The operators PCT., RPCT., TOT., MDN., MDE., RNK., and DST. are not supported.

fieldl
Numeric

Is the set of data to be analyzed.

fieldz
Numeric

Is an optional set of data to be analyzed.

Example: Partitioning Data Values Into Clusters

The following request partitions the DOLLARS field values into four clusters and displays the
result as a scatter chart in which the color represents the cluster. The request uses the
default values for the percent, iterations, and tolerance parameters by passing them as the
value O (zero).

SET PARTI TI ON_ON = PENULTI MATE
GRAPH FI LE GGSALES
PRI NT UNI TS DOLLARS
COWUTE KMEAN1/ D20.2 TITLE ' K- MEANS' = KMEANS_CLUSTER(4, AUTO, AUTO, AUTO
DOLLARS) ;
ON GRAPH SET LOOKGRAPH SCATTER
ON GRAPH PCHOLD FORVAT JSCHART
ON GRAPH SET STYLE *
| NCLUDE=I BFS: / FI LE/ I Bl _HTML_DI R/'i bi _t hemes/ Warm sty, $
type = data, colum = N2, bucket=y-axis,$
type=data, colum= N1, bucket=x-axis,$
type=data, col um=N3, bucket=color,$
GRI D=CFF, $
*GRAPH JS FI NAL
col or Scal e: {

col or Mode: 'discrete',

col orBands: [{start: 1, stop: 1.99, color: 'red}, {start: 2, stop:
2.99, color: 'green'},

{start: 3, stop: 3.99, color: '"yellow}, {start: 3.99, stop:

4, color: "blue'}]

}
*END

ENDSTYLE
END

522 Information Builders

21. Simplified Statistical Functions I

The output is shown in the following image.

L 6ok
50K o
0 K-MEAMNS
(o] —a
40K 0
o
o
o
3
P a0k
3
5
(=]
20K
2
10K
H '
09 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Unit Sales

MULTIREGRESS: Creating a Multivariate Linear Regression Column

Syntax:

MULTIREGRESS derives a linear equation that best fits a set of numeric data points, and uses
this equation to create a new column in the report output. The equation can be based on one
or more independent variables.

The equation generated is of the following form, where y is the dependent variable and x1, x2,
and x3 are the independent variables.

y = al*xl [+ a2*x2 [+ a3*x3] ...] + b

When there is one independent variable, the equation represents a straight line. When there
are two independent variables, the equation represents a plane, and with three independent
variables, it represents a hyperplane. You should use this technique when you have reason to

believe that the dependent variable can be approximated by a linear combination of the
independent variables.

How to Create a Multivariate Linear Regression Column

MULTI REGRESS(/ nput _fieldl, [input_field2 ...])

Using Functions 523

MULTIREGRESS: Creating a Multivariate Linear Regression Column

where:

input_fieldl, input_field2 ...
Are any number of field names to be used as the independent variables. They should be
independent of each other. If an input field is non-numeric, it will be categorized to
transform it to numeric values that can be used in the linear regression calculation.

Example: Creating a Multivariate Linear Regression Column

The following request uses the DOLLARS and BUDDOLLARS fields to generate a regression
column named Estimated_Dollars.

GRAPH FI LE GGSALES

SUM BUDUNI TS UNI TS BUDDOLLARS DOLLARS

COVWPUTE Estimated_Dol | ars/ F8 = MJULTI REGRESS(DOLLARS, BUDDOLLARS) ;
BY DATE

ON GRAPH SET LOOKGRAPH LI NE

ON GRAPH PCHOLD FORNVAT JSCHART

ON GRAPH SET STYLE *

| NCLUDE=I BFS: / FI LE/ | Bl _HTM._DI R/ i bi _t henes/ Warm sty, $
type=data, columm = nl1, bucket = x-axis,$

type=data, columm= dollars, bucket=y-axis,$
type=data, columm= buddol |l ars, bucket=y-axis,$
type=data, columm= Estinmated_Dol | ars, bucket=y-axis,$
*GRAPH_JS

"series":|

{"series":2, "color":"orange"}]

*END

ENDSTYLE

END

524 Information Builders

21. Simplified Statistical Functions I

The output is shown in the following image. The orange line represents the regression
equation.

2.4M
2M N . 2
1.6M

1.2M

O Dollar Sales
0.8M Budget Dollars

Estimated_Dollars

0.4M

1996/01/01
1996/02/01
1996/03/01
1996/04/01
1996/05/01
1996/06/01
1996/07/01
1996/08/01
1996/09/01
1996/10/01
1996/11/01
o 1996/12/01
1997/01/01
1997/02/01
1997/03/01
1997/04/01
1997/05/01
1997/06/01
1997/07/01
1997/08/01
1997/09/01
199710/01
199711701
199712/01

w
o

RSERVE: Running an R Script

You can use the RSERVE function in a COMPUTE command to run an R script that returns
vector output. This requires that you have a configured Adapter for Rserve.

Syntax: How to Run an R Script
RSERVE(rserve_nf, i[nput_fieldl, ...input_fieldn, output)
where:
rserve_nt

Is the synonym for the R script.

Input_fieldl, ...input_fieldn
Are the independent variables used by the R script.

out put
Is the dependent variable returned by the R script. It must be a single column (vector) of
output.

Using Functions 525

RSERVE: Running an R Script

Example: Using RSERVE to Run an R Script

The R script named wine_run_model.R predicts Bordeaux wine prices based on the average
growing season temperature, the amount of rain during the harvest season, the amount of rain
during the winter, and the age of the wine.

Using a configured connection (named MyRserve) for the Adapter for Rserve, and a sample
data file named wine_input_sample.csv, you create the following synonym for the R script, as
described in the Adapter Administration manual.

Master File

FI LENAME=W NE_RUN_MODEL, SUFFI X=RSERVE , $
SEGVENT=I NPUT_DATA, SEGTYPE=SO, $
FI ELDNAMVE=AGST, ALI AS=AGST, USAGE=D9. 4, ACTUAL=STRI NG
M SSI NG=QN,
TI TLE=' AGST', $
FI ELDNAME=HARVESTRAI N, ALI AS=Har vest Rai n, USAGE=l 11, ACTUAL=STRI NG
M SSI NG=QN,
TI TLE=' HarvestRain', $
FI ELDNAVE=W NTERRAI N, ALI AS=W nt er Rai n, USAGE=l 11, ACTUAL=STRI NG,
M SSI NG=QN,
TITLE=' WnterRain', $
FI ELDNAVE=AGE, ALl AS=Age, USAGE=I 11, ACTUAL=STRI NG
M SSI NG=QN,
TITLE=' Age', $
SEGVENT=CQUTPUT_DATA, SEGTYPE=U, PARENT=I NPUT_DATA, $
FI ELDNAVE=PRI CE, ALI AS=Price, USAGE=D18. 14, ACTUAL=STRI NG
M SSI NG=QN,
TITLE=' Price', $

Access File

SEGNAME=| NPUT_DATA,
CONNECTI ON=MyRser ve,
R_SCRI PT=/ pr edi cti on/ wi ne_run_nodel . r,
R_SCRI PT_LOCATI ON=WFRS,
R | NPUT_SAMPLE_DAT=pr edi cti on/ wi ne_i nput _sanpl e.csv, $

526 Information Builders

21. Simplified Statistical Functions I

Now that the synonym has been created for the model, the model will be used to run against
the following data file named wine_forecast.csv.

Year, Pri ce, Wnt er Rai n, AGST, Har vest Rai n, Age, Fr ancePop
1952, 7. 495, 600, 17. 1167, 160, 31, 43183. 569
1953, 8. 0393, 690, 16. 7333, 80, 30, 43495. 03
1955, 7. 6858, 502, 17. 15, 130, 28, 44217. 857
1957, 6. 9845, 420, 16. 1333, 110, 26, 45152. 252
1958, 6. 7772, 582, 16. 4167, 187, 25, 45653. 805
1959, 8. 0757, 485, 17. 4833, 187, 24, 46128. 638
1960, 6. 5188, 763, 16. 4167, 290, 23, 46583. 995
1961, 8. 4937, 830, 17. 3333, 38, 22, 47128. 005
1962, 7. 388, 697, 16. 3, 52, 21, 48088. 673
1963, 6. 7127, 608, 15. 7167, 155, 20, 48798. 99
1964, 7. 3094, 402, 17. 2667, 96, 19, 49356. 943
1965, 6. 2518, 602, 15. 3667, 267, 18, 49801. 821
1966, 7. 7443, 819, 16. 5333, 86, 17, 50254. 966
1967, 6. 8398, 714, 16. 2333, 118, 16, 50650. 406
1968, 6. 2435, 610, 16. 2, 292, 15, 51034. 413
1969, 6. 3459, 575, 16. 55, 244, 14, 51470. 276
1970, 7. 5883, 622, 16. 6667, 89, 13, 51918. 389
1971, 7. 1934, 551, 16. 7667, 112, 12, 52431. 647
1972, 6. 2049, 536, 14. 9833, 158, 11, 52894. 183
1973, 6. 6367, 376, 17. 0667, 123, 10, 53332. 805
1974, 6. 2941, 574, 16. 3, 184, 9, 53689. 61
1975, 7.292,572, 16. 95,171, 8, 53955. 042
1976, 7. 1211, 418, 17. 65, 247, 7, 54159. 049
1977, 6. 2587, 821, 15. 5833, 87, 6, 54378. 362
1978, 7. 186, 763, 15. 8167, 51, 5, 54602. 193

The data file can be any type of file that R can read. In this case it is another .csv file. This file
needs a synonym in order to be used in a report request. You create the synonym for this file
using the Adapter for Delimited Files.

The following is the generated Master File, wine_forecast.mas.

FI LENAME=W NE_FORECAST, SUFFI X=DFI X , CODEPAGE=1252,
DATASET=pr edi cti on/w ne_forecast.csv, $
SEGVENT=W NE_FORECAST, SEGTYPE=S0, $
FI ELDNAMVE=YEAR1, ALl AS=Year, USAGE=I 6, ACTUAL=A5V,

M SSI NG=QON, TITLE= Year', $
FI ELDNAVE=PRI CE, ALI AS=Price, USAGE=D8.4, ACTUAL=A7V,
M SSI NG=QN, TITLE='Price', $
FI ELDNAME=W NTERRAI N, ALI AS=W nt er Rai n, USAGE=l5, ACTUAL=A3V,
M SSI NG=QON, TITLE=E' WnterRain', $
FI ELDNAVE=AGST, ALI AS=AGST, USAGE=D9. 4, ACTUAL=A8Y,
M SSI NG=QN, TITLE=' AGST', $
FI ELDNAME=HARVESTRAI N, ALI AS=Har vest Rai n, USAGE=|5, ACTUAL=A3V,
M SSI NG=ON, TI TLE=' Harvest Rain', $
FI ELDNAVE=AGE, ALI| AS=Age, USAGE=I4, ACTUAL=A2V, M SSI NG=QN,

TITLE=" Age', $
FI ELDNAME=FRANCEPOP, ALI AS=Fr ancePop, USAGE=D11.3, ACTUAL=A11V,
M SSI NG=ON, TI TLE=' FrancePop', $

Using Functions 527

RSERVE: Running an R Script

The following is the generated Access File, wine_forecast.acx.

SEGNAME=W NE_FCRECAST, DELIM TER=", ', ENCLOSURE=", HEADER=YES,
CDN=COMVAS_DOT, CONNECTI ON=<I ocal >, $

The following request, wine_forecast_price_report.fex, uses the RSERVE bulit-in function to run
the script and return a report.

-*wi ne_forecast_price_report.fex
TABLE FI LE PREDI CTI ONV W NE_FORECAST
PRI NT

YEAR

W NTERRAI N

AGST

HARVESTRAI N

AGE

COVPUTE PREDI CTED_PRI CE/ D18.2 M SSI NG ON ALL=

RSERVE (prediction/wine_run model, AGST, HARVESTRAIN, WINTERRAIN, AGE, Price); AS
'Predicted, Price'

ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

528 Information Builders

21. Simplified Statistical Functions I

The output is shown in the following image.

Predicted
Year WinterRain AGST HarvestRain Age Price
1952 600 171167 160 31 71.72
1953 690 16.7333 80 30 787
1955 502 171500 130 28 7.68
1957 420 16.1333 110 26 7.00
1958 582 164167 187 25 7.02
1959 485 174833 187 24 754
1960 763 16.4167 290 23 6.76
1961 830 173333 38 22 836
1962 697 163000 52 21 751
1963 608 157167 155 20 6.63
1964 402 172667 96 19 7.56
1965 602 153667 267 18 5.92
1966 819 165333 86 17 756
1967 714 16.2333 118 16 7.11
1968 610 162000 292 15 6.26
1969 575 165300 244 14 6.60
1970 622 166667 89 13 732
1971 551 16.7667 112 12 7.19
1972 536 149833 158 11 5.88
1973 376 170667 123 10 7.09
1974 574 163000 184 9 6.57
1975 572 169300 1M 8 6.99
1976 418 176300 247 7 692
1977 821 155833 87 6 6.71
1978 763 158167 51 5 691

Using Functions 529

STDDEV: Calculating the Standard Deviation for a Set of Data Values

STDDEV: Calculating the Standard Deviation for a Set of Data Values

The STDDEV function returns a numeric value that represents the amount of dispersion in the
data. The set of data can be specified as the entire population or a sample. The standard
deviation is the square root of the variance, which is a measure of how observations deviate
from their expected value (mean). If specified as a population, the divisor in the standard
deviation calculation (also called degrees of freedom) will be the total number of data points,
N. If specified as a sample, the divisor will be N-1.

If Xj is an observation, N is the number of observations, and p is the mean of all of the
observations, the formula for calculating the standard deviation for a population is:

N

%Z{II—H)E

i=1

To calculate the standard deviation for a sample, the mean is calculated using the sample
observations, and the divisor is N-1 instead of N.

Reference: Calculate the Standard Deviation in a Set of Data
STDDEV(f/ el d, sanpl i ng)

where:

field
Numeric

Is the set of observations for the standard deviation calculation.

sanpl i ng
Keyword

Indicates the origin of the data set. Can be one of the following values.
4 P Entire population.

d S Sample of population.

530 Information Builders

21. Simplified Statistical Functions I

Example: Calculating a Standard Deviation

The following request calculates the standard deviation of the DOLLARS field converted to
double precision.

DEFI NE FI LE i bi sanp/ ggsal es
DOLLARS/ D12. 2 = DOLLARS;

END

TABLE FI LE i bi sanp/ ggsal es
SUM DOLLARS STDDEV(DOLLARS, S)
ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *

GRI D=CFF, $

ENDSTYLE

END

The output is shown in the following image.

STDS
DOLLARS DOLLARS

46.156,290.00 6,157.711080272

Using Functions 531

STDDEV: Calculating the Standard Deviation for a Set of Data Values

532 Information Builders

Chapter

Simplified System Functions

Simplified system functions have streamlined parameter lists, similar to those used by
SQL functions. In some cases, these simplified functions provide slightly different
functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

In this chapter:

.d EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File
4 ENCRYPT: Encrypting a Password

. GETENV: Retrieving the Value of an Environment Variable

d

PUTENV: Assigning a Value to an Environment Variable

EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File

The EDAPRINT function enables you to add a text message into the EDAPRINT log file and
assign it a message type. The returned value of the function is zero (0).

Syntax: How to Insert a Message in the EDAPRINT Log File
EDAPRI NT(nessage_t ype, ' nessage')

where:

nessage_type
Keyword

Can be one of the following message types.
d L Informational message.
4 W. Warning message.

4 E. Error message.

Using Functions 533

ENCRYPT: Encrypting a Password

' nessage'
Is the message to insert, enclosed in single quotation marks.

Example: Inserting a Custom Message in the EDAPRINT Log File

The following procedure inserts three messages in the EDAPRINT log file.

-SET & = EDAPRINT(I, '"This is a test infornmational nessage');
-SET &W = EDAPRINT(W 'This is a test warning nessage');
-SET &E = EDAPRINT(E, 'This is a test error nessage');

The output is shown in the following image.

disconnect B tzc::r.lc':ll; gesid=15

I
Ir v T
I ic gesid=15, cp
I by E to exec <ib:
I by 0B to connect to agern
I connecting 08 tscomid=11,sesid=16
I This iz a test informaticnal message
W This iz a test warning message
E This is a test er
7 I disconnect cmrpht
1 I
T I
0 I
I
c I
15 21 6 I o
15 21 I =
15 21 Ir =
15:30:22.4 Ir =

ENCRYPT: Encrypting a Password
The ENCRYPT function encrypts an alphanumeric input value using the encryption algorithm
configured in the server. The result is returned as variable length alphanumeric.

Syntax: How to Encrypt a Password

ENCRYPT(passwor d)

where:

passwor d
Fixed length alphanumeric

Is the value to be encrypted.

Example: Encrypting a Password

The following request encrypts the value guestpassword using the encryption algorithm
configured in the server.

- SET &P1 = ENCRYPT(' guest password');
- TYPE &P1

534 Information Builders

22. Simplified System Functions I

The returned encrypted value is {AES}963AFA754E1763ABEGO7TES8CS5E764115E.

GETENV: Retrieving the Value of an Environment Variable

The GETENV function takes the name of an environment variable and returns its value as a
variable length alphanumeric value.

Syntax: How to Retrieve the Value of an Environment Variable
GETENV(var_nane)

where:

var_nane
fixed length alphanumeric

Is the name of the environment variable whose value is being retrieved.

Example: Retrieving the Value of an Environment Variable

The following request retrieves the value of the server variable EDAEXTSEC.

-SET &E1 = GETENV(' EDAEXTSEC);
- TYPE &E1

The value returned is ON if the server was started with security on or OFF if the server was
started with security off.

PUTENV: Assigning a Value to an Environment Variable

The PUTENV function assigns a value to an environment variable. The function returns an

integer return code whose value is 1 (one) if the assignment is not successful or O (zero) if it is
successful.

Syntax: How to Assign a Value to an Environment Variable
PUTENV(var_nane, var_val ue)

where:

var_nane
Fixed length alphanumeric

Is the name of the environment variable to be set.

Using Functions 535

PUTENV: Assigning a Value to an Environment Variable

var_val ue
Alphanumeric

Is the value you want to assign to the variable.

Example: ~ Assigning a Value to the UNIX PS1 Variable

The following request assigns the value FOCUS/Shell: to the UNIX PS1 variable.
-SET &P1 = PUTENV(' PS1',' FOCUS/ Shel |l :");

This causes UNIX to display the following prompt when the user issues the UNIX shell
command SH:

FOCUS/ shel | :

The following request creates a variable named xxxx and sets it to the value this is a test. It
then retrieves the value using GETENV.
- SET &XXXX=PUTENV(xxxx, 'this is a test');

- SET &YYYY=GETENV(XXXX) ;
-TYPE Return Code: &XXXX, Variable val ue: &YYYY

The output is:

Return Code: 0, Variable value: this is a test

536 Information Builders

Chapter

System Functions

System functions call the operating system to obtain information about the operating
environment or to use a system service.

For many functions, the output argument can be supplied either as a field name or as a
format enclosed in single quotation marks. However, if a function is called from a
Dialogue Manager command, this argument must always be supplied as a format, and if
a function is called from a Maintain Data procedure, this argument must always be
supplied as a field name. For detailed information about calling a function and supplying
arguments, see Accessing and Calling a Function on page 61.

In this chapter:

|

|

CHECKPRIVS: Retrieving the Privilege
State for the Connected User

CLSDDREC: Closing All Files Opened by
the PUTDDREC Function

FEXERR: Retrieving an Error Message

FGETENV: Retrieving the Value of an
Environment Variable

FINDMEM: Finding a Member of a
Partitioned Data Set

FPUTENV: Assigning a Value to an
Environment Variable

GETCOOKI: Retrieving a Browser Cookie
Value

GETHEADR: Retrieving an HTTP Header
Variable

GETPDS: Determining If a Member of a
Partitioned Data Set Exists

i

GETUSER: Retrieving a User ID

GRPLIST: Retrieving the Group List of the
Connected User

JOBNAME: Retrieving the Current
Process Identification String

MVSDYNAM: Passing a DYNAM
Command to the Command Processor

PUTCOOKI: Submitting a Value to a
Browser Cookie

PUTDDREC: Writing a Character String as
a Record in a Sequential File

SLEEP: Suspending Execution for a
Given Number of Seconds

SPAWN: Creating a Subprocess From a
Procedure

SYSTEM: Calling a System Program

SYSVAR: Retrieving the Value of a z/0S
System Variable

Using Functions

537

CHECKPRIVS:

Retrieving the Privilege State for the Connected User

CHECKPRIVS: Retrieving the Privilege State for the Connected User

Syntax:

Example:

CLSDDREC:

538

Given a privilege code, CHECKPRIVS returns the value Y, if the connected user has that
privilege, or N if the user does not have the privilege or the privilege does not exist.

Note: You can see your list of general privileges by clicking the Console (C) button at the top
left corner of the window and selecting My Console/Show My General Privileges. A user with
Server Administrator privileges can also see the list of general privileges on the Access Control
page by right-clicking a user ID, selecting Properties from the context menu and clicking the
General Privileges tab on the Properties page.

How to Retrieve the Privilege State for the Connected User
CHECKPRI VS(pri vcode, out put)

where:

privcode

Is the privilege code for which to retrieve the status.
out put

Alphanumeric
Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Retrieving the Privilege State for the Connected User

The following request retrieves the privilege state for privilege ADPTP (Configure Data Adapter):

- SET &PRI VSTATE = CHECKPRI VS(ADPTP, ' Al');
-TYPE Privilege State is: &PRIVSTATE

The output is:

Privilege State is: Y

Closing All Files Opened by the PUTDDREC Function

The CLSDDREC function closes all files opened by the PUTDDREC function. If PUTDDREC is
called in a Dialogue Manager -SET command, the files opened by PUTDDREC are not closed
automatically until the end of a request or connection. In this case, you can close the files and
free the memory used to store information about open file by calling the CLSDDREC function.

For information about PUTDDREC, see PUTDDREC: Writing a Character String as a Record in a
Sequential File on page 553.

Information Builders

23. System Functions I

Syntax: How to Close All Files Opened by the PUTDDREC Function
CLSDDREC(out put)

where:
out put
Integer
Is the return code, which can be one of the following values:

4 0, which indicates that the files are closed.

4 1, which indicates an error while closing the files.

Example: Closing Files Opened by the PUTDDREC Function

This example closes files opened by the PUTDDREC function:
CLSDDREC(' 11")

FEXERR: Retrieving an Error Message
Available Languages: reporting, Maintain

The FEXERR function retrieves an Information Builders error message. It is especially useful in
a procedure using a command that suppresses the display of output messages.

An error message consists of up to four lines of text. The first line contains the message and
the remaining three contain a detailed explanation, if one exists. FEXERR retrieves the first line
of the error message.

Syntax: How to Retrieve an Error Message
FEXERR(error, ' A72')

where:
error
Numeric

Is the error number, up to 5 digits long.

Using Functions 539

FGETENV: Retrieving the Value of an Environment Variable

" A72'
Is the format of the output value enclosed in single quotation marks. The format is A72,
the maximum length of an Information Builders error message.
Example: Retrieving an Error Message

FEXERR retrieves the error message whose number is contained in the &ERR variable, in this
case 650. The result is returned to the variable &&MSGVAR and has the format A72.

-SET &ERR = 650;
- SET &&VBGVAR = FEXERR (&ERR, 'A72');
- TYPE &&MSGVAR

The output is:

(FO0650) THE DI SK |'S NOT ACCESSED
FGETENV: Retrieving the Value of an Environment Variable

Available Languages: reporting

The FGETENYV function retrieves the value of an environment variable and returns it as an
alphanumeric string.

Syntax: How to Retrieve the Value of an Environment Variable
FGETENV(/ engt h, ' varname' , outlen, output)

where:
/engt h
Integer
Is the number of characters in the environment variable name.
var name
Alphanumeric
Is the name of the environment variable whose value is being retrieved.
outlen
Integer

Is the length of the environment variable value returned or a field in which the environment
variable value is stored.

540 Information Builders

23. System Functions I

out put
Alphanumeric

Is the format of the field in which the environment variable's value is stored.

FINDMEM: Finding a Member of a Partitioned Data Set
Available Languages: reporting, Maintain

The FINDMEM function, available only on z/0S, determines if a specific member of a
partitioned data set (PDS) exists. This function is used primarily in Dialogue Manager
procedures.

To use this function, allocate the PDS to a ddname because the ddname is required in the
function call. You can search multiple PDSs with one function call if they are concatenated to
one ddname.

Syntax: How to Find a Member of a Partitioned Data Set
FI NDVEM ddname, nenber, out put)

where:
ddnane

A8

Is the ddname to which the PDS is allocated. This value must be an eight-character literal
enclosed in single quotation marks, or a variable that contains the ddname. If you supply a
literal less than eight characters long, pad it with trailing spaces.

menber

A8

Is the member for which you are searching. This value must be eight characters long. If you
supply a literal that has less than eight characters, pad it with trailing spaces.

out put
Al

Using Functions 541

FPUTENV: Assigning a Value to an Environment Variable

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The result is one of the following:

Y indicates the member exists in the PDS.
N indicates the member does not exist in the PDS.

E indicates an error occurred. Either the data set is not allocated to the ddname, or the
data set allocated to the ddname is not a PDS (and may be a sequential file).

Example: Finding a Member of a Partitioned Data Set

FINDMEM searches for the EMPLOYEE Master File in the PDS allocated to ddname MASTER,
and returns the result to the variable &FINDCODE. The result has the format Al:

- SET &FI NDCODE = FINDMEM ('MASTER ', 'EMPLOYEE', 'A1');-|F &FI NDCODE EQ 'N
GOTO NOVEM

-1 F &FI NDCCDE EQ 'E' GOTO NOPDS;

- TYPE MEMBER EXI STS, RETURN CODE = &FI NDCCDE

TABLE FI LE EMPLOYEE

PRI NT CURR_SAL BY LAST_NAME BY FI RST_NAME

VWHERE RECORDLIM T EQ 4;

END

-EXIT

- NOVEM

- TYPE EMPLOYEE NOT FOUND | N MASTER FI LE PDS

-EXIT

- NOPDS

- TYPE ERROR OCCURRED | N SEARCH

-TYPE CHECK | F FILE IS A PDS ALLCCATED TO DDNAME MASTER
-EXIT

The output is:

LAST_NAVE FI RST_NAVE CURR SAL
JONES DI ANE $18, 480. 00
SM TH MARY $13, 200. 00
STEVENS Rl CHARD $9, 500. 00

ALFRED $11, 000. 00

FPUTENV: Assigning a Value to an Environment Variable
Available Operating Systems: IBM i (formerly referred to as i5/0S), Tandem, UNIX, Windows
Available Languages: reporting

The FPUTENV function assigns a character string to an environment variable. Use FPUTENV to
set values that are used elsewhere in the system.

542 Information Builders

23. System Functions I

Limit: You cannot use FPUTENV to set or change FOCPRINT, FOCPATH, or USERPATH. Once
started, these variables are held in memory and not reread from the environment.

Syntax: How to Assign a Value to an Environment Variable
FPUTENV (varname_[/ engt h,' varname' , val ue_[| engt h, ' val ue', output)

where:
varname_[engt h

Integer

Is the maximum number of characters in the name of the environment variable.
var nane

Alphanumeric

Is the name of the environment variable enclosed in single quotation marks. The name
must be rightjustified and padded with blanks to the maximum length specified by
varname_length.

val ue_I engt h

Is the maximum length of the environment variable value.

Note: The sum of varname_length and value_length cannot exceed 64.
val ue

Alphanumeric

Is the value you wish to assign to the environment variable. The string must be right-
justified and contain no embedded blanks. Strings that contain embedded blanks are
truncated at the first blank.

out put
Integer

Is the return code. It can be the name of the field that contains the result, or the format of
the output value enclosed in single quotation marks. If the variable is set successfully, the
return code is O. Any other value indicates a failure occurred.

Example: Assigning a Value to an Environment Variable

FPUTENV assigns the value FOCUS/Shell to the PS1 variable and stores it in a field with the
format A12:

-SET &RC = FPUTENV (3, 'PS1', 12, 'FOCUS/Shell:', 'I4');

Using Functions 543

GETCOOKI: Retrieving a Browser Cookie Value

The request displays the following prompt when the user issues the UNIX shell command SH:

FOCUS/ shel | :

GETCOOKI: Retrieving a Browser Cookie Value

Syntax:

Example:

544

Security credentials can come from many sources and be provided in several different formats.
Some security credentials from third-party single sign-on products are passed in the form of a
browser cookie. The Reporting Server can use the GETCOOKI function to retrieve the value of a
browser cookie passed to it by the client.

How to Retrieve a Cookie Value
GETCOXKI (' cooki e_nane' , [ength)

where:
cooki e_namne
Alphanumeric

Is the name of the browser cookie whose value is being retrieved. The maximum length of
the cookie name is 80 bytes. If the cookie is not set or its name exceeds 80 characters,
the function will return Invalid Cookie Name.

/engt h
Alphanumeric (An)

Is the length of the cookie. It can be the name of the field that contains the result, or the
format of the output value enclosed in single quotation marks. If the length n specified is
greater than the actual length of the retrieved cookie, the result will be padded with
blanks. It is always recommended to use the function TRUNCATE(arg1) on return from
GETCOOKI to remove extra trailing blanks.

Retrieving the Value of a Browser Cookie

The following function call retrieves the value of the ObSSOCookie created by Oracle Access
manager (formerly Oblix):

GETCOKI (" ObSSOCooki e', " A400')

Information Builders

23. System Functions I

GETHEADR: Retrieving an HTTP Header Variable

Syntax:

Example:

The HTTP header contains variables whose values describe the Web Server environment and
can specify credentials coming from the Web Server or a third-party single sign-on product. The
Reporting Server can use the GETHEADR function to retrieve the value of an HTTP Header
variable from an HTTP header passed to it by the client.

How to Retrieve an HTTP Header Variable
GETHEADR(' var name' , out put)

where:

varnane

Alphanumeric

Is the name of the HTTP header variable whose value is being retrieved.

out put
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Retrieving the Value of an HTTP Header Variable
The following is a sample HTTP header:

FShow incoming http header

Header Walue

cookie JSESSIONID=3576041321067E425A4E2ACE7DEE425E

connection Keep-Alive

accept- ‘

encodling azlp, deflate

referer hittp: /fedarmytd 1 8080/ibi_apps_77 fvebconsole/webconsolefadmin?IBIS_page =NCODETREE

image/gif, image/-xbitmap, image/jpeg, image/pjpeq, applicationyx-shockwave-flash, application/vnd.ms-excel,

accept applicationfind ms-powerpoint, application/maword, *
content-

length 62

cache-control no-cache

accept- MU

language

user-agent Mozillaf4.0 (compatible; MSIE 6.0; Windows NT S5.1; Sv1; NET CLR 1.1.4322; NET CLR 2.0.50727; M5-RTC L
content-type applicationfcwww-form-urlencodad
host edamvtd: 8080

The following function call retrieves the value application/x-www-form-urlencoded from the HTTP
Header:

GETHEADR(' content-type', 'Al50")

Using Functions 545

GETPDS: Determining If a Member of a Partitioned Data Set Exists

The following function call retrieves the value en-us from the HTTP Header:

GETHEADR(' accept - | anguage', ' Al10")

GETPDS: Determining If a Member of a Partitioned Data Set Exists

Syntax:

546

Available Operating Systems: z/0S
Available Languages: reporting, Maintain

The GETPDS function determines if a specific member of a partitioned data set (PDS) exists,
and if it does, returns the PDS name. This function is used primarily in Dialogue Manager
procedures.

To use this function, allocate the PDS to a ddname because the ddname is required in the
function call. You can search multiple PDSs with one function call if they are concatenated to
one ddname.

GETPDS is almost identical to FINDMEM, except that GETPDS provides either the PDS name or
returns a different set of status codes.
How to Determine If a PDS Member Exists

GETPDS(ddnarme, rnember, out put)

where:
ddnane
A8

Is the ddname to which the PDS is allocated. This value must be an eight-character literal
enclosed in single quotation marks, or a variable that contains the ddname. If you supply a
literal less than eight characters long, pad it with trailing spaces.

menber

A8

Is the member for which the function searches. This value must be eight characters long. If
you supply a literal with less than eight characters, pad it with trailing spaces.

out put

A44

Information Builders

23. System Functions I

Example:

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The maximum length of a PDS name is 44. The result is one of
the following:

PDS nane is the name of the PDS that contains the member, if it exists.
* D indicates the ddname is not allocated to a data set.
*Mindicates the member does not exist in the PDS.
* E indicates an error occurred. For example, the data set allocated to the ddname is not a
PDS (and may be a sequential file).
Determining If a PDS Member Exists

GETPDS searches for the member specified by &MEMBER in the PDS allocated to &DDNAME,
and returns the result to &PNAME. The result has the format A44.

- SET &DDNAME = ' MASTER '
- SET &MEMBER = ' EMPLOYEE' ;
-SET &PNAME = ' Y

- SET &PNAME = GETPDS (&DDNAME, &MEMBER, 'Ad4'),
-IF &NAME EQ ' *D THEN GOTO DDNOAL;
-IF &NAME EQ ' *M THEN GOTO MENNOF;
-1 F &NAME EQ ' *E THEN GOTO DDERROR,
_x

- TYPE MEMBER &VEMBER |'S FOUND | N
-TYPE THE PDS &PNAVE

- TYPE ALLOCATED TO &DDNAMVE

_ %

SEXIT

- DDNOAL

_*x

- TYPE DDNAMVE &DDNAME NOT ALLOCATED
_*x

SEXIT

- MEMNOF

_x

- TYPE MEMBER &VEMBER NOT FOUND UNDER DDNAME &DDNAVE
_x

SEXIT

- DDERROR

_x

- TYPE ERROR I N GETPDS; DATA SET PROBABLY NOT A PDS.
*

-EXIT

The output is similar to the following:

MEMBER EMPLOYEE |'S FOUND | N
THE PDS USER1. MASTER DATA
ALLOCATED TO MASTER

Using Functions 547

GETUSER: Retrieving a User ID

Example: Displaying the Attributes of a PDS

To view the attributes of the PDS that contains a specific member, this Dialogue Manager
procedure can search for the EMPLOYEE member in the PDS allocated to the ddname MASTER
and, based on its existence, allocate the PDS to the ddname TEMPMAST. Dialogue Manager
system variables are used to display the attributes.

- SET &DDNAME = ' MASTER '
- SET &MVEMBER = ' EMPLOYEE' ;
-SET &PNAME = ' "

- SET &PNAME = GETPDS (&DDNAME, &MEMBER, 'Ad4');
-IF &PNAME EQ '*D OR '*M OR '*E THEN GOTO DDERRCR;
*

DYNAM ALLOC FI LE TEMPMAST DA -
&PNAME SHR
- RUN
-? WS DDNAME TEMPMAST
-TYPE The data set attributes include:
-TYPE Data set nane is: &DSNAME
-TYPE Vol unme is: &VOLSER
-TYPE Disposition is: &DISP
SEXIT
- *
- DDERROR
-TYPE Error in GETPDS; Check allocation for &DDNAME for
- TYPE proper allocation.
*

-EXIT

The sample output is:

THE DATA SET ATTRI BUTES | NCLUDE:
DATA SET NAME | S: USER1. MASTER. DATA
VOLUME | S: USERMD

DI SPOSITION | S: SHR

GETUSER: Retrieving a User ID
Available Languages: reporting, Maintain

The GETUSER function retrieves the ID of the connected user.
Syntax: How to Retrieve a User ID
GETUSER(out put)

where:
out put

Alphanumeric, at least A8

548 Information Builders

23. System Functions I

Example:

Is the result field, whose length depends on the platform on which the function is issued.
Provide a length as long as required for your platform; otherwise the output will be
truncated.

Retrieving a User ID

GETUSER retrieves the user ID of the person running the request:

DEFI NE FI LE EMPLOYEE
USERI D/ A8 WTH EMP_I D = GETUSER (USERID);
END

TABLE FI LE EMPLOYEE

SUM CURR_SAL AS ' TOTAL SALARI ES

BY DEPARTMENT

HEADI NG

"SALARY REPORT RUN FROM USERI D. <USERI D"

END
The output is:

SALARY REPCRT RUN FROM USERI D: doccar

DEPARTMENT TOTAL SALARI ES
M S $108, 002. 00
PRODUCTI ON $114, 282. 00

GRPLIST: Retrieving the Group List of the Connected User

Syntax:

Available Languages: reporting

GRPLIST returns a group name or a list of group names (separated by colons) for the
connected user. This function is supported for LDAP security with all types of connections.

If the group list is empty or there is an error in the function parameters, the function returns
blanks.

How to Retrieve a List of Group Memberships for the Connected User
GRPLI ST(out put Lengt h, out format)

where:
out put Lengt h

Is the length of the output string.

Using Functions 549

JOBNAME: Retrieving the Current Process ldentification String

Example:

out f or mat

Is the format of the output string enclosed in single quotation marks (').

Retrieving the Group List for the Connected User

The following request retrieves the group list for the connected user into a Dialogue Manager
variable named &LIST:

-SET &LI ST = GRPLI ST(300, 'A300');
-TYPE &LI ST

The output is:
#Al | _Technical _Staff; #CTSS_ADV: #CTSS_ADV; #CTSS_ADVT; #DSEDA

Issuing the same request for user pgmuserl shows that this user belongs to a single group:

pgmgr pl

JOBNAME: Retrieving the Current Process Identification String

Syntax:

550

The JOBNAME function retrieves the raw identification string of the current process from the
operating system. This is also commonly known as a process PID at the operating system
level. The function is valid in all environments, but is typically used in Dialogue Manager and
returns the value as an alphanumeric string (even though a PID is pure humeric on some
operating systems).

Note: JOBNAME strings differ between some operating systems in terms of look and length.
For example, Windows, UNIX, and z/0S job names are pure numeric (typically a maximum of 8
characters long), while an OpenVMS job name is a hex number (always 8 characters long), and
an IBM i job name is a three-part string that has a 26 character maximum length. Since an
application may eventually be run in another (unexpected) environment in the future, it is good
practice to use the maximum length of 26 to avoid accidental length truncation in the future.
Applications using this function for anything more than simple identification may also need to
account for the difference in the application code.

How to Retrieve the Current Process Identification String
JOBNANE(/ engt h, out put)

where:
[ength
Integer

Is the maximum number of characters to return from the PID system call.

Information Builders

23. System Functions I

Example:

out put
Alphanumeric

Is the returned process identification string, whose length depends on the platform on
which the function is issued. Provide a length as long as required for your platform.
Otherwise, the output will be truncated.

Retrieving a Process Identification String

The following example uses the JOBNAME function to retrieve the current process identification
string to an A26 string and then truncate it for use in a -TYPE statement:

- SET &JOBNAME = JOBNAME(26, ' A26');

- SET &JOBNAME = TRUNCATE(&J OBNANE) ;
-TYPE The Current system PID &OBNAME i s processing.

For example, on Windows, the output is similar to the following:

The Current system PID 2536 is processing.

MVSDYNAM: Passing a DYNAM Command to the Command Processor

Syntax:

Available Operating Systems: z/0S
Available Languages: reporting, Maintain

The MVSDYNAM function transfers a FOCUS DYNAM command to the DYNAM command
processor. It is useful in passing allocation commands to the processor in a compiled MODIFY
procedure after the CASE AT START command.

How to Pass a DYNAM Command to the Command Processor
MVSDYNAM command, [ength, outfield)

where:
conmmand
Alphanumeric

Is the DYNAM command enclosed in single quotation marks, or a field or variable that
contains the command. The function converts lowercase input to uppercase.

/ engt h
Numeric

Is the maximum length of the command, in characters, between 1 and 256.

Using Functions 551

PUTCOOKI: Submitting a Value to a Browser Cookie

outfield

14

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

MVSDYNAM returns one of the following codes:

0 indicates the DYNAM command transferred and executed successfully.

posi tive number is the error number corresponding to a FOCUS error.

negati ve number is the FOCUS error number corresponding to a DYNAM failure.

In Dialogue Manager, you must specify the format.

PUTCOOKI: Submitting a Value to a Browser Cookie

Syntax:

552

The PUTCOOKI function allows you to submit a value to the cookie to be used by a third-party
single sign-on software product for connection to the server or an adapter. In order to retrieve
an appropriate cookie value, you must have an existing exit that calls an external procedure
which obtains the value of a single sign-on browser cookie. This feature was initially developed
for the MYSAPSSO2 cookie for the SAP RFC connection.

How to Submit a Cookie Value
PUTCOXI (' cooki e_nane' , ' cookie_val ue')

where:

cooki e_namne
Alphanumeric

Is the name of the browser cookie whose value is being set.

cooki e_val ue
Alphanumeric

Is the value to submit for the cookie. It can be the name of the field that contains the
result, or the format of the output value enclosed in single quotation marks

Information Builders

23. System Functions I

Example:

Submitting a Value to a Browser Cookie

The following function call submits the value created by an external custom exit or set by SAP
EP configured for SSO with SAP Logon Tickets:

SET &COCOKI E_VALUE=CUSTOM EXI T() ;
PUTCOKI (" MYSAPSSC2' , &COOKI E_VALUE)

PUTDDREC: Writing a Character String as a Record in a Sequential File

Syntax:

The PUTDDREC function writes a character string as a record in a sequential file. The file must
be identified with a FILEDEF (DYNAM on z/0S) command. If the file is defined as an existing
file (with the APPEND option), the new record is appended. If the file is defined as NEW and it
already exists, the new record overwrites the existing file.

PUTDDREC opens the file if it is not already open. Each call to PUTDDREC can use the same
file or a new one. All of the files opened by PUTDDREC remain open until the end of a request
or connection. At the end of the request or connection, all files opened by PUTDDREC are
automatically closed.

For information about closing files opened by PUTDDREC in order to free the memory used, see
CLSDDREC: Closing All Files Opened by the PUTDDREC Function on page 538.

. The open, close, and write operations are handled by the operating system. Therefore, the
requirements for writing to the file and the results of deviating from the instructions when
calling PUTDDREC are specific to your operating environment. Make sure you are familiar
with and follow the guidelines for your operating system when performing input/output
operations.

- You can call PUTDDREC in a DEFINE FILE command or in a DEFINE in the Master File.
However, PUTDDREC does not open the file until its field name is referenced in a request.

If PUTDDREC is called in a Dialogue Manager -SET command, the files opened by PUTDDREC
are not closed automatically until the end of a request or connection. In this case, you can
close the files and free the memory used to store information about open file by calling the
CLSDDREC function.

How to Write a Character String as a Record in a Sequential File
PUTDDREC(ddname, dd_/ en, record _string, record_|en, output)

where:
ddnane

Alphanumeric

Using Functions 553

PUTDDREC: Writing a Character String as a Record in a Sequential File

Is the logical name assigned to the sequential file in a FILEDEF command.
dd Il en

Numeric

Is the number of characters in the logical name.
record_string

Alphanumeric

Is the character string to be added as the new record in the sequential file.
record_l en

Numeric

Is the number of characters to add as the new record.

It cannot be larger than the number of characters in record_string. To write all of
record_string to the file, record_len should equal the number of characters in record_string
and should not exceed the record length declared in the FILEDEF command. If record_len is
shorter than the declared length declared, the resulting file may contain extraneous
characters at the end of each record. If record_string is longer than the declared length,
record_string may be truncated in the resulting file.

out put
Integer
Is the return code, which can have one of the following values:

0 - Record is added.
-1 - FILEDEF statement is not found.
- 2 - Error while opening the file.
- 3 - Error while adding the record to the file.

554 Information Builders

23. System Functions I

Example:

Calling PUTDDREC in a TABLE Request

The following example defines a new file whose logical name is PUTDDZ1. The TABLE request
then calls PUTDDREC for each employee in the EMPLOYEE data source and writes a record to
the file composed of the employee's last name, first name, employee ID, current job code, and
current salary (converted to alphanumeric using the EDIT function). The return code of zero (in
OUT1) indicates that the calls to PUTDDREC were successful:

FI LEDEF PUTDD1 DI SK put ddl. dat TABLE FI LE EMPLOYEE
PRI NT EMP_I D CURR_JOBCODE AS 'JOB' CURR_SAL

COWPUTE SALA/ A12 = EDI T(CURR_SAL) ;
COVPUTE EMP1/ A50=

NOPRI NT

COWUTE OUT1/ 11
BY LAST_NAME BY

END

The output is:

LAST_NANME

STEVENS

NOPRI NT

LAST_NAME| FI RST_NAME| EMP_I D] CURR_JOBCCDE| SALA,

PUTDDREC(' PUTDDL' , 6, EMP1, 50, OUT1);

FI RST_NAMVE

FI RST_NAME EMP_I D JoB
JOHN 119329144 Al7
ROSEMAR E 326179357 B04
BARBARA 818692173 Al7
MARY 543729165 A07
JOAN 123764317 Al5
DI ANE 117593129 BO3
JOHN 219984371 BO02
ROGER 451123478 B02
ANTHONY 126724188 B04
MARY 112847612 Bl4
Rl CHARD 119265415 A0l
ALFRED 071382660 A07

CURR_SAL
$29, 700. 00
$21, 780. 00
$27, 062. 00

$9, 000. 00
$26, 862. 00
$18, 480. 00
$18, 480. 00
$16, 100. 00
$21, 120. 00
$13, 200. 00

$9, 500. 00
$11, 000. 00

After running this request, the sequential file contains the following records:

BANNI NG
BLACKWOOD
CRCSS
GREENSPAN
I RVI NG
JONES
MCCOY
MCKNI GHT
ROVANS

SM TH

SM TH
STEVENS

Using Functions

JOHN
ROSENVARI E
BARBARA
MARY
JOAN

DI ANE
JOHN
ROGER
ANTHONY
MARY

Rl CHARD
ALFRED

119329144A17000000029700
326179357B04000000021780
818692173A17000000027062
543729165A07000000009000
123764317A15000000026862
117593129B03000000018480
219984371B02000000018480
451123478B02000000016100
126724188B04000000021120
112847612B14000000013200
119265415A01000000009500
071382660A07000000011000

auTl

clolololololololololoNe]

555

SLEEP: Suspending Execution for a Given Number of Seconds

Example:

Calling PUTDDREC and CLSDDREC in Dialogue Manager -SET Commands

The following example defines a new file whose logical name is PUTDD1. The first -SET
command creates a record to add to this file. The second -SET command calls PUTDDREC to
add the record. The last -SET command calls CLSDDREC to close the file. The return codes are
displayed to make sure operations were successful:

FI LEDEF PUTDD1 DI SK putddl.dat -SET &MP1 = 'SM TH |' MARY' | ' AO7' | ' 27000" ;

- TYPE DATA = &EMP1

- SET &OUT1 = PUTDDREC(' PUTDD1', 6, &EMP1, 17, 'I1");

-TYPE PUT RESULT = &OUT1

-SET &0OUT1 = CLSDDREC('11');
-TYPE CLOSE RESULT = &OUT1

The output is:

DATA = SM THVARYA0727000

PUT RESULT = 0

CLOSE RESULT = 0

After running this procedure, the sequential file contains the following record:

SM THVARYA0727000

SLEEP: Suspending Execution for a Given Number of Seconds

Syntax:

556

Available Languages: reporting, Maintain

The SLEEP function suspends execution for the number of seconds you specify as its input
argument.

This function is most useful in Dialogue Manager when you need to wait to start a specific
procedure. For example, you can start a FOCUS Database Server and wait until the server is
started before initiating a client application.

How to Suspend Execution for a Specified Number of Seconds
SLEEP(del ay, output);

where:
del ay
Numeric

Is the number of seconds to delay execution. The number can be specified down to the
millisecond.

out put

Numeric

Information Builders

23. System Functions I

Example:

Is the name of a field or a format enclosed in single quotation marks. The value returned
is the same value you specify for delay.

Suspending Execution for Four Seconds

The following example computes the current date and time, suspends execution for 4 seconds,
and computes the current date and time after the delay:

TABLE FILE VI DEOTRK

PRI NT TRANSDATE NOPRI NT

COVPUTE

START_TI ME/ HYYMDSa = HGETC(8, START_TIME);
DELAY/12 = SLEEP(4.0, '12');

END_TI ME/ HYYMDSa = HGETC(8, END_TIME);

|F RECORDLIM T EQ 1

END

The output is:

START_TI MVE DELAY END_TI ME

2007/ 10/ 26 5:04:36pm 4 2007/10/26 5:04:40pm

SPAWN: Creating a Subprocess From a Procedure

Syntax:

Available Operating Systems: UNIX
Available Languages: reporting

The SPAWN function creates a subprocess from a procedure that executes a system command
without terminating the current procedure.

Limit: On UNIX, you can invoke this function only from a COMPUTE or DEFINE command.
How to Create a Subprocess From a Procedure
SPAWN(/ nl engt h, conmand, out code)

where:

i nl ength
Numeric

Is the length, in characters, of command.

command
Alphanumeric

Is a UNIX command, or a .COM file you want to execute.

Using Functions 557

SYSTEM: Calling a System Program

Example:

out code
D

Is the return code specifying whether or not the spawn was successful, or the format of
the output value enclosed in single quotation marks. Zero indicates a successful spawn; a
non-zero value indicates an unsuccessful spawn.

Creating a Subprocess From a Procedure on UNIX

SPAWN executes the echo command, which displays Hello at the beginning of the procedure:

MODI FY FI LE EMPLOYEE

PROVPT EMP_I D

MATCH EMP_I D

ON MATCH DELETE

CASE AT START

COVPUTE

VESSAGE/ 38=SPAWN (10, 'echo Hello', 'D8');
ENDCASE

DATA

SYSTEM: Calling a System Program

558

Available Operating Systems: Windows
Available Languages: reporting

The SYSTEM function calls a DOS program, a batch program, or a Windows application from a
procedure. SYSTEM passes a command string to DOS or Windows and the program is
executed as if it had been entered at the DOS command line or the command line field in the
Windows Program Manager Run dialog box. When you exit the program, control returns to
WebFOCUS.

SYSTEM suspends FOCUS execution of subsequent commands until you exit the application. It
has an advantage over the FOCUS DOS command, which also enables you to call DOS
programs and Windows applications from a procedure.

When executing a command from SYSTEM, the command executes as follows:

. If the command name in the string passed to SYSTEM contains a .COM or .EXE extension,
the command is called directly rather than using the DOS command interpreter.

. If the command name in the string does not contain a suffix or contains a .BAT extension,
SYSTEM calls the DOS command interpreter COMMAND.COM to perform the specified
command and then exit.

Information Builders

23. System Functions I

Syntax:

Example:

Example:

-1 SYSTEM passes the following commands to FOCUS, not to the DOS command interpreter:
CD, CLS, COPY, DEL, DIR, drive:, REN, TYPE. As a result, these commands are interpreted
directly by FOCUS, not by DOS, and you may observe a slightly different behavior. If you
want SYSTEM to pass these commands to the DOS command interpreter instead, use the
following syntax:

SYSTEM / engt h, ' COWAND / C string , returncode)

How to Call a DOS or Windows Program
SYSTEM / ength, ' string ', returncode)

where:
/engt h

Integer

Is the length, in characters, of string.
string

Alphanumeric

Is a valid Windows or DOS command with command line parameters enclosed in single
quotation marks.

returncode
Double precision

Is the name or length of the variable that contains the value of the DOS error level.

Executing the DIR Command

SYSTEM passes the DIR command to the DOS command interpreter to create a sorted
directory listing with no heading information or summary, and redirects the output to a file
named DIR.LIS:

- SET &RETCODE = SYSTEM 31, COMVAND /C DIR /O-N /B >DIR LIS ,'D4");

Changing the Default Directory

SYSTEM changes the default directory and suspends processing until the operation is
complete:

- SET &ERRORLEVEL = SYSTEM 15, ' CHDI R \ CARDATA' , ' D4');

Using Functions 559

SYSVAR: Retrieving the Value of a z/0S System Variable

Example:

Running the Check Disk Program

SYSTEM runs the check disk program and redirects the output to a file called CHKDSK.TXT.
(Redirecting the output to a file makes it accessible to a program that might want to read it.)

- SET &RETCODE=SYSTEM 19, ' CHKDSK > CHKDSK. TXT' ,' D4');

SYSVAR: Retrieving the Value of a z/OS System Variable

Syntax:

560

Available Operating Systems: z/0S

The SYSVAR function populates a Dialogue Manager amper variable with the contents of any
z/0S system variable. System variables are in the format [&]name].], where the dot is
optional. They can be provided by the operating system or can be user defined. The function
can be called in a -SET command.

How to Retrieve the Value of a z/OS System Variable
-SET &dnvar = SYSVAR(' /ength ,'[& sysvar[.]', outfnt');

where:

&dnvar
Alphanumeric

Is the name of the Dialogue Manager variable to be populated with the value of the z/0S
system variable.

/ engt h
Alphanumeric

Is the length of the next parameter in the call. Do not include the escape character in the
length, if one is present in the sysvar argument.

[&]sysvar|.]
Alphanumeric

Is the name of the system variable to be retrieved. Note that the ampersand (&) and the
dot (.) are optional. If the ampersand is included, it must be followed by the escape
character (|).

outfm
Alphanumeric

Is the format of the returned value enclosed in single quotation marks.

Information Builders

23. System Functions I

Example: Retrieving the Value of the z/OS SYSNAME Variable

The following example populates the Dialogue Manager variable named &MYSNAME?2 with the
value of the z/0S SYSNAME variable:

- SET &MYSNAME2=SYSVAR(' 7', ' SYSNAME' , ' A8');
- TYPE SYSNAME: &MYSNAME2

The output is similar to the following:

SYSNAME: | Bl 1

Using Functions 561

SYSVAR: Retrieving the Value of a z/0S System Variable

562 Information Builders

Chapter

Simplified Geography Functions

The simplified geography functions perform location-based calculations and retrieve
geocoded points for various types of location data. They are used by the WebFOCUS
location intelligence products that produce maps and charts. Some of the geography
functions use GIS services and require valid credentials for accessing Esri ArcGIS
proprietary data.

In this chapter:

|

U U U U o o od o d oo

Sample Geography Files

GIS_DISTANCE: Calculating the Distance Between Geometry Points
GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points
GIS_GEOCODE_ADDR: Geocoding a Complete Address
GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State
GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code
GIS_GEOMETRY: Building a JSON Geometry Object

GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon

GIS_LINE: Building a JSON Line

GIS_POINT: Building a Geometry Point

GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

Using Functions

563

Sample Geography Files

Sample Geography Files

Some of the examples for the geography functions use geography sample files. One file, esri-
citibke.csv has station names, latitudes and longitudes, and trip start times and end times.
The other file, esri-ge010036.ftm has geometry data. To run the examples that use these files,
create an application named esri, and place the following files into the application folder.

esri-citibike.mas

FI LENAVE=ESRI - CI Tl Bl KE, SUFFI X=DFI X ,
DATASET=esri/esri-citibike.csv, $
SEGVENT=CI Tl Bl KE_TRI PDATA, SEGTYPE=S0, $

FI ELDNAVE=TRI PDURATI ON, ALI AS=tri pduration, USAGE=I7, ACTUAL=A5V,
TITLE="tripduration', $

FI ELDNAME=STARTTI ME, ALl AS=starttinme, USAGE=HVDYYS, ACTUAL=A18,
TITLE="starttime', $

FI ELDNAVE=STOPTI ME, ALI AS=stoptinme, USAGE=HWDYYS, ACTUAL=A18,
TITLE=" stoptinme', $

FI ELDNAVE=START_STATI ON_I D, ALIAS='start station id , USAGE=I6, ACTUAL=A4V,
TITLE="start station id , $

FI ELDNAVE=START_STATI ON_NAME, ALI AS='start station nane', USAGE=A79V,
ACTUAL=A79BV, TITLE="start station nane', $

FI ELDNAME=START_STATI ON_LATI TUDE, ALIAS='start station |atitude', USAGE=P20. 15,
ACTUAL=A18V, TITLE="start station latitude',
GEOGRAPHI C_ ROLE=LATI TUDE, $

FI ELDNAME=START_STATI ON_LONG TUDE, ALIAS='start station |ongitude', USAGE=P20. 14,
ACTUAL=A18V, TITLE='start station |ongitude',
GEOGRAPHI C ROLE=LONG TUDE, $

FI ELDNAME=END STATI ON I D, ALIAS='end station id' , USACE=IS6,
ACTUAL=A4V, TITLE="end station id , $

FI ELDNAME=END STATI ON_NAME, ALI AS='end station nane', USAGE=A79V,
ACTUAL=A79BV, TITLE='end station nane', $

FI ELDNAME=END_STATI ON_LATI TUDE, ALI AS='end station |atitude', USAGE=P20. 15,
ACTUAL=A18V, TITLE='end station |atitude',
GEOGRAPHI C_ROLE=LATI TUDE, $

FI ELDNAVE=END_STATI ON_LONG TUDE, ALl AS='end station |ongitude', USAGE=P20. 14,
ACTUAL=A18V, TITLE='end station |ongitude',
GEOGRAPHI C_ROLE=LONG TUDE, $

FI ELDNAVE=BI KEI D, ALI AS=bi kei d, USAGE=l 7, ACTUAL=A5,
TI TLE=' bi keid', $

FI ELDNAME=USERTYPE, AL| AS=usertype, USAGE=A10V, ACTUAL=A10BV,
TI TLE=' usertype', $

FI ELDNAVE=BI RTH_YEAR, ALI AS='birth year', USAGE=I6, ACTUAL=A4,
TITLE= birth year', $

FI ELDNAVE=GENDER, ALl AS=gender, USAGE=Il 3, ACTUAL=A1,
TI TLE=' gender', $

SEGVENT=ESRI GEO, SEGIYPE=KU, SEGSUF=FI X, PARENT=CI Tl Bl KE_TRI PDATA,

564

DATASET=esri/esri-geol0036.ftm (LRECL 80 RECFM V, CRFILE=ESRI-GEOL0036, $

Information Builders

24. Simplified Geography Functions I

esri-citibike.acx

SEGNAME=CI TI Bl KE_TRI PDATA,
DELIM TER=", ',
ENCLOSURE=",

HEADER=NO,
CDN=CFF, $

esri-citibike.csv

Note: Each complete record must be on a single line. Therefore, you must remove any line
breaks that may have been inserted due to the page width in this document.

1094, 11/ 1/ 2015 0: 00, 11/ 1/ 2015 0: 18, 537, Lexi ngton Ave & E 24 St,

40. 74025878, - 73.
40. 71893904, - 73.

520, 11/ 1/ 2015 O:
40. 74144387, - 73.
40. 74854862, - 73.

753,11/ 1/ 2015 0:
40. 72743423, - 73.
40. 72405549, - 74.

353,11/ 1/ 2015 O:
40. 73454567, - 73.
40. 72210379, - 73.

98409214, 531, Forsyth St & Broone St,
99266288, 23959, Subscri ber, 1980, 1

00, 11/ 1/ 2015 0: 08,536,1 Ave & E 30 St,
97536082, 498, Broadway & W32 St,
98808416, 22251, Subscri ber, 1988, 1

00, 11/ 1/ 2015 0:12, 229, Great Jones St,
99379025, 328, Watts St & Greenwich St,
00965965, 15869, Subscri ber, 1981, 1

00, 11/ 1/ 2015 0: 06, 285, Broadway & E 14 St,
99074142, 151, C evel and Pl & Spring St,
99724901, 21645, Subscri ber, 1987, 1

1285, 11/ 1/ 2015 0: 00, 11/ 1/ 2015 0: 21, 268, Howard St & Centre St,
40. 71910537, - 73. 99973337, 476, E 31 St & 3 Ave, 40. 74394314, - 73. 97966069, 14788, Cust oner, , 0

477,11/ 1/ 2015 0: 00, 11/1/2015 0: 08,379, W31 St & 7 Ave, 40. 749156, - 73. 9916, 546, E 30 St &
Park Ave S, 40.74444921, -73. 98303529, 21128, Subscri ber, 1962, 2

362,11/ 1/ 2015 0: 00, 11/1/2015 0: 06, 407, Henry St & Popl ar St,
40. 700469, - 73. 991454, 310, State St & Smith St, 40.68926942, - 73. 98912867, 21016, Subscri ber,
1978, 1

2316, 11/ 1/ 2015 0: 00, 11/ 1/ 2015 0: 39, 147, G eenwi ch St & Warren St,
40. 71542197, - 74. 01121978, 441, E 52 St & 2 Ave, 40. 756014, - 73. 967416, 24117, Subscri ber,
1988, 2

627,11/1/2015 0:00, 11/1/2015 0:11,521,8 Ave & W31 St,
40. 75096735, - 73. 99444208, 285, Broadway & E 14 St,
40. 73454567, - 73. 99074142, 17048, Subscri ber, 1986, 2

1484, 11/ 1/ 2015 0: 01, 11/ 1/ 2015 0: 26, 281, G and Arny Plaza & Central
40. 7643971, - 73. 97371465, 367, E 53 St & Lexi ngton Ave,
40. 75828065, - 73. 97069431, 16779, Cust oner, , 0

Park S,

Using Functions 565

Sample Geography Files

284,11/1/ 2015 0:01, 11/1/ 2015 0:06, 247, Perry St & Bl eecker St,
40. 73535398, - 74. 00483091, 453, W22 St & 8 Ave, 40. 74475148, - 73. 99915362, 17272, Subscri ber,
1976, 1

886, 11/ 1/ 2015 0:01, 11/1/2015 0: 16,492, W33 St & 7 Ave, 40. 75019995, - 73. 99093085, 377, 6
Ave & Canal St, 40.72243797,-74.00566443, 23019, Subscri ber, 1982, 1

1379, 11/ 1/ 2015 0:01, 11/1/ 2015 0: 24,512, W29 St & 9 Ave, 40. 7500727, - 73. 99839279, 445, E
10 St & Avenue A, 40.72740794, -73. 98142006, 23843, Subscri ber, 1962, 2

179, 11/1/2015 0:01, 11/ 1/ 2015 0: 04, 319, Ful ton St & Broadway,
40. 711066, - 74. 009447, 264, Mai den Ln & Pear| St,
40. 70706456, - 74. 00731853, 22538, Subscri ber, 1981, 1

309, 11/ 1/ 2015 0: 01, 11/ 1/ 2015 0: 07, 160, E 37 St & Lexington Ave,
40. 748238, - 73. 978311, 362, Broadway & W37 St, 40. 75172632, - 73. 98753523, 22042, Subscri ber,
1988, 1

616, 11/ 1/ 2015 0: 02, 11/1/ 2015 0:12,479,9 Ave & W45 St, 40. 76019252, - 73. 9912551, 440, E 45
St & 3 Ave, 40. 75255434, - 73. 97282625, 22699, Subscri ber, 1982, 1

852, 11/1/ 2015 0: 02, 11/1/2015 0: 16, 346, Bank St & Hudson St,
40. 73652889, - 74. 00618026, 375, Mercer St & Bl eecker St,
40. 72679454, - 73. 99695094, 21011, Subscri ber, 1991, 1

1854, 11/ 1/ 2015 0: 02, 11/ 1/ 2015 0: 33, 409, DeKal b Ave & Skillnman St,
40. 6906495, - 73. 95643107, 3103, N 11 St & Wthe Ave,
40. 72153267, - 73. 95782357, 22011, Subscri ber, 1992, 1

1161, 11/1/2015 0: 02,11/1/2015 0: 21,521,8 Ave & W31 St, 40.75096735, - 73. 99444208, 461, E
20 St & 2 Ave, 40. 73587678, - 73. 98205027, 19856, Subscri ber, 1957, 1

917,11/ 1/ 2015 0:02,11/1/2015 0:17,532,S 5 Pl & S 4 St,40.710451, -73.960876,393,E 5 St
& Avenue C, 40. 72299208, - 73. 97995466, 18598, Subscri ber, 1991, 1

esri-ge010036.mas

FI LENAME=ESRI - GEO10036, SUFFI X=FI X ,
DATASET=esri/esri-geol0036.ftm (LRECL 80 RECFM V, | OTYPE=STREAM $
SEGVENT=ESRI GEO, SEGTYPE=S0, $
FI ELDNAVE=GEOVETRY, ALI AS=CGEQVETRY, USAGE=TX80L, ACTUAL=TX80,
M SSI NG=ON, $

566 Information Builders

24. Simplified Geography Functions I

esri-ge010036.ftm

{"rings":[[[-73.9803889998524, 40. 7541490002762] , [- 73. 9808779999197, 40. 7534830001
404] , [- 73. 9814419998484, 40. 7537140000011] , [- 73. 9824040001445, 40. 7541199998382] , [
- 73. 982461000075, 40. 7541434001978] , [- 73. 9825620002361, 40. 7541850001377] , [- 73. 983
2877000673, 40. 7544888999428] , [- 73. 9833499997027, 40. 7545150000673] , [- 73. 983644399
969, 40. 7546397998869] , [- 73. 9836849998628, 40. 7546570003204] , [- 73. 9841276003085, 40
. 7548161002829] , [- 73. 984399700086, 40. 7544544999752] , [- 73. 9846140004357, 40. 754165
0001147], [- 73. 984871999743, 40. 7542749997914] , [- 73. 9866590003126, 40. 7550369998577
1,[-73. 9874449996869, 40. 7553720000178] , [- 73. 9902640001834, 40. 756570999552] , [- 73
9914340001789, 40. 7570449998269] , [- 73. 9918260002697, 40. 7572149995726] , [- 73. 992429
0001982, 40. 7574769999636] , [- 73. 9927679996434, 40. 7576240004473] , [- 73. 993069000034
3, 40. 7578009996165] , [- 73. 9931059999419, 40. 7577600004237] , [- 73. 9932120003335, 40. 7
576230004012] , [- 73. 9933250001486, 40. 7576770001934] , [- 73. 9935390001247, 40. 7577669

998472], [-73. 993725999755, 40. 7578459998931] , [- 73. 9939599997542, 40. 757937999639] ,
[-73.9940989998689, 40. 7579839999617] , [- 73. 9941529996611, 40. 7579959996157] ,[-73.9
942220001452, 40. 7580159996387] , [- 73. 9943040003293, 40. 7580300002843] , [- 73. 9943650
004444, 40. 7580330004227] , [- 73. 99446499966, 40. 7580369997078] , [- 73. 9945560002591, 4
0. 7580300002843] , [- 73. 9946130001898, 40. 7580209998693] , [- 73. 9945689999594, 40. 7580
809999383] , [- 73. 9945449997519, 40. 7581149997075] , [- 73. 9944196999092, 40. 7582882001
404],[-73.9943810002829, 40. 7583400001909] , [- 73. 9953849998179, 40. 7587409997973] , [
- 73. 9959560000693, 40. 7589690004191], [- 73. 9960649996999, 40. 7590149998424] ,[-73. 99
68730000888, 40. 7593419996336] , [- 73. 996975000296, 40. 7593809996335] , [- 73. 997314999
7874, 40. 7595379996789] , [- 73. 9977009996014, 40. 7597030000935] , [- 73. 998039999946, 40
. 7598479995856] , [- 73. 998334000014, 40. 7599709998618] , [- 73. 9987769997587, 40. 760157
0003453], [- 73. 9990089996656, 40. 7602540003219] , [- 74. 0015059997021, 40. 761292999672

2] ,[-74.0016340002089, 40. 7613299995799] , [- 74. 0015350001401, 40. 7614539999022] , [-7
4.0014580001865, 40. 7615479997405] , [- 74. 0013640003483, 40. 7616560002242] , [- 74. 0013
050003255, 40. 7617199995784] , [- 74. 0011890003721, 40. 7618369995779] , [- 74. 0010579997
269, 40. 7619609999003] , [- 74. 0009659999808, 40. 7620389999] , [- 74. 0008649998198, 40. 76
21230001764], [- 74. 0008390004195, 40. 7621430001993], [- 74. 0006839995669, 40. 76226100
0245] ,[-74.000531999752, 40. 7623750001062] , [- 74. 0003759997525, 40. 7624849997829] , [
- 74.0002840000066, 40. 7625510001286] , [- 73. 9998659996161, 40. 762850999574] , [- 73. 999
8279996624, 40. 7628779999198] , [- 73. 9995749996864, 40. 7630590001727] , [- 73. 999312000
1487, 40. 7632720001028] , [- 73. 9991639996189, 40. 7633989996642] , [- 73. 998941000127, 40
. 7636250001936] , [- 73. 9987589998279, 40. 7638580001466] , [- 73. 9986331999622, 40. 76402
77004181], [- 73. 9986084002574, 40. 7640632002565] , [- 73. 9984819996445, 40. 76423400039
89],[-73.9983469997142, 40. 7644199999831] , [- 73. 998171999738, 40. 7646669996823] , [-7
3.9980319995771, 40. 7648580003964] , [- 73. 9979881998955, 40. 7649204996813] , [- 73. 9979
368000432, 40. 7649942000224] , [- 73. 9978947999051, 40. 7650573998791] , [- 73. 9977017001

Using Functions 567

GIS_DISTANCE: Calculating the Distance Between Geometry Points

733, 40. 7653310995507] , [- 73. 9975810003629, 40. 765481000348] , [- 73. 9975069996483, 40
7654519999099] , [- 73. 9956019999323, 40. 7646519998899] , [- 73. 9955379996789, 40. 764625
0004434] , [- 73. 9954779996099, 40. 7646030003282] , [- 73. 9949389999348, 40. 764369000329
1], [- 73. 9936289997785, 40. 7638200001929] , [- 73. 9934620001711, 40. 7637539998473] , [- 7
3. 9931520002646, 40. 7636270002859] , [- 73. 992701000151, 40. 7634409998023] , [- 73. 99244
19000736, 40. 7633312995998] , [- 73. 9898629996777, 40. 7622390001298] , [- 73. 98861200044
34, 40. 761714000201] , [- 73. 988021000169, 40. 761460000179] , [- 73. 987028000242, 40. 7610
439998808] , [- 73. 9867690998141, 40. 7609346998765] , [- 73. 9848240002274, 40. 7601130001
149] , [- 73. 9841635003452, 40. 7598425002312] , [- 73. 9813259998949, 40. 7586439998208] , [
- 73. 9805479999902, 40. 7583159999834] , [- 73. 9793569999256, 40. 757814000216] , [- 73. 978
1150002071, 40. 7572939996184] , [- 73. 9785670003668, 40. 7566709996669] , [- 73. 979014000
2958, 40. 7560309998308] , [- 73. 9794719998329, 40. 7554120000638] , [- 73. 9799399998311, 4
0. 7547649999048] , [- 73. 9802380000836, 40. 7543610001601] , [- 73. 9803889998524, 40. 7541
490002762]1]}

%5

GIS_DISTANCE: Calculating the Distance Between Geometry Points

The GIS_DISTANCE function uses a GIS service to calculate the distance between two
geometry points.

Syntax: How to Calculate the Distance Between Geometry Points
G S_DI STANCE(geo_poi nt 1, geo_poi nt 2)

where:

geo_poi nt 1, geo_poi nt 2
Fixed length alphanumeric, large enough to hold the JSON describing the point (for
example, A200).

Are the geometry points for which you want to calculate the distance.

Note: You can generate a geometry point using the GIS_POINT function.

568 Information Builders

24. Simplified Geography Functions I

Example: Calculating the Distance Between Two Geometry Points

The following uses a citibike .csv file that contains station names, latitudes and longitudes,
and trip start times and end times. It uses the GIS_POINT function to define geometry points
for start stations and end stations. It then uses GIS_DISTANCE to calculate the distance
between them.

DEFI NE FI LE esri/esri-citibike

STARTPO NT/ A200 = G S_PO NT(' 4326', START_STATI ON_LONG TUDE,
START_STATI ON_LATI TUDE) ;

ENDPOl NT/ A200 = G S_PO NT(' 4326', END_STATI ON_LONG TUDE,
END_STATI ON_LATI TUDE) ;

Di stance/ P10.2 = G S_DI STANCE(ENDPO NT, STARTPO NT) ;

END

TABLE FI LE esri/esri-citibike

PRI NT END_STATI ON_NAME AS End Di stance

BY START_STATI ON_NAME AS Start

ON TABLE SET PAGE NOLEAD

END

Using Functions 569

GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points

The output is shown in the following image.

|Start |End | Distance]
1 Ave & E 30 St |Broadway & w32st || 83
8 Ave & W 31 St |Broadway & E145t || 1.1
| |E 20 St & 2 Ave | 123
9 Ave & W 45 St |E 45 St & 3 Ave | 110
[Bank St & Hudson St |Mercer St & Bleecker st | 83|
[Broadway & E 14 St |Cleveland Pl & Spring St|| 92|
IDeKalb Ave & Skillman St IN 11 8t & Wythe Ave || 2.13]
|E 37 St & Lexington Ave |Broadway & W37st || .54
[Fulton St & Broadway |Maiden Ln & Pearl St | 30|
(Grand Army Plaza & Central Park S|[E 53 St & Lexington Ave| 45|
Great Jones St |Watts St & Greenwich St| 87
|Greenwich St & Warren St |E 52 st& 2 Ave [E
Henry St & Poplar St |State St & Smith st || .78
[Howard St & Centre St |E 315t & 3 Ave | 201
[Lexington Ave & E 24 St |Forsyth St & Broome St || 1.54
[Perry St & Bleecker St | w22 st& 8 Ave | 7
[S5Pl&S 45t |E 5 St & Avenue C | 137
W 29 St & 9 Ave |E10St & AvenueA || 1.80]
[W 31 St & 7 Ave |E30St&Park Aves | 55
[W 33 St & 7 Ave |6 Ave & Canal St | 207

GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points

Syntax:

570

The GIS_DRIVE_ROUTE function uses a GIS service to calculate the driving route between two
geometry points.

How to Calculate the Drive Route Between Geometry Points

G S_DRI VE_ROUTE(geo_start_poi nt, geo_end_poi nt)

Information Builders

24. Simplified Geography Functions I

where:

geo_start_poi nt, geo_poi nt 2
Fixed length alphanumeric, large enough to hold the JSON describing the point (for
example, A200).

Is the starting point for which you want to calculate the drive route.
Note: You can generate a geometry point using the GIS_POINT function.

geo_end _poi nt, geo_poi nt 2
Fixed length alphanumeric, large enough to hold the JSON describing the point (for
example, A200).

Is the ending point for which you want to calculate the drive route.
Note: You can generate a geometry point using the GIS_POINT function.

The format of the field to which the drive route will be returned is TX.

Example: Calculating the Drive Route Between Two Geometry Points

The following uses a citibike .csv file that contains station names, latitudes and longitudes,
and trip start times and end times. It uses the GIS_POINT function to define geometry points
for start stations and end stations. It then uses GIS_DRIVE_ROUTE to calculate the route to
get from the end point to the start point.

DEFI NE FI LE esri/esri-citibike
STARTPQO NT/ A200 = G S_PO NT(' 4326', START_STATI ON_LONG TUDE,
START_STATI ON_LATI TUDE) ;
ENDPOl NT/ A200 = G S_PO NT(' 4326', END_STATI ON_LONG TUDE,
END_STATI ON_LATI TUDE) ;
Rout e/ TX140 (GEOGRAPHI C_ROLE=GEQOVETRY_LI NE) =
G S_DRI VE_ROUTE(ENDPOI NT, STARTPO NT) ;
END
TABLE FI LE esri/esri-citibike
PRI NT START_STATI ON_NAME AS Start END STATI ON_NAME AS End Route
VWHERE START_STATION_I D EQ 147
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRI D=CFF, SI ZE-11, $
ENDSTYLE
END

Using Functions 571

GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points

Example:

572

The output is shown in the following image.

Start
Greenwich St & Warren St

I
&
&,

Route
25t& 2 Ave { "spatialReference: {"wkid" 4326} "geometryType": "esriGeometryPolyline" "geometry™:

{"paths":[[[-73.967401732999974 40.756047761000048],[-73 963229999999963 40.755130000000065],[-73.964739999999942 40 755790000000047].[-T3.9

628690990900053,40.738340000000032],[-73.9619509099900875,40.759610000000066].[-73.961609099080051,40.760020000000048],
3.959819999999954,40.752510000000034].[-73.950569999999985,40.759400000000028].[-7
3.958869990909933,40.759830000000079].[-73.95878999200

7602400000000671.[
.[-73.9591799299992;

0.759320000000053],[-73.938949999992959,40.759720000000073

73.861400900000044,40
40.759280000000047]

259999999

9963,40.739940000000029].[-73 938389999999053 40.760210000000029],[-73 938339999900964 40 760530000000074],[-73 $38189999999045 40 760730000

000081],[-73.957 2,40.76115 310-73.95731 2,40.7 Th-73.9571 1,40.760880000000043],[-73.9569

20000999943,40.76066000000003],[-73.957879999999980,40.759760000000028],[-73.957919999909945,40.7587 10000000041],[-73.958119999899951,40.759
10-73.958 3,40.75: 59].[-73.95860 5.40 75877 271,[-73.9

3.958689999999033 40.758650000000046],[-73.9587 77.40.758 521[-73.9 5.40.758:

40.737710000000031].[-73 93984992999996 40.737330000000031],[-73 960149999996942 40 75692000000003],[-73 960489999999936,40.736500000000074]

L[-73.961799599995982 40.753220000000065],[-73.96193999993997

0.733090000000032],[-73.963 129999999978 40.753890000000069],[-73.96388999999%

935.40.753060000000062],[-73.964112999999992 40.752800000000036],[-73.9646 74.40.752:
053].[-73.96671! 53,407, 5].[-73.96807 .40.74814(1.[-73.9681

054],[-73.9650 5407517

,40.748020000000034],[-73 968325099

40.747930000000033].[-73.968379999999068 40.747780000000034],[-73.968639999999937 40.74744000000004],[-73.970379999999984 40 7454100

73.971 2,40.74 T1.[-73.9721 40,7432 31.[-73.9721 2,40,

3130000000063],[-73.97

1.
2639900900062 40.741790000000037].[-73 972819090990056 40.741010000000074],[-73 973059999009075 40 739860000000078].[-73.973479090000038 41).

73].[-73.974C 33,40.737920000000031].[-73.9744 3.40.73

61.[-73.9747 5.40.7

705 7.

[-73.973049999990933 40.736270000000047],[-73.97497 .40.7354
§.40.732670000000041],[-73.974179999999933,40.732340000000079],[-73.97381.

78,40.733 1.[-73.9742

031],[-73.97 1,40.7294 3¢ 3].[-73.97181 ,40.728930000000034],[-73.971769995995935,40.728270000000066],|

40,7

57182999

9909054 40.72783000000004],[-73.971959999009067_40.72683000000007],[-73.972009999999055 40 726610000000051],[-73.973299909000038 40 72428000

0000078],[-73.97444 33,40.7223 25].[-73.9746. 72,40.721, 2].[-73.97472! 3,40.720750000000066].[-73.974
959999999953 40.718960000000038],[-73 97497999999906,40.718760000000032],[-73.975! 54.40.717380000000055),[-73.97 33,40
3 1],[-73.9765 73.40.7147 044],[-73.971 37,40.714 71.[-73.9768: .40.714 Ing
73.977689999999939 40.712550000000078],[-73.9' 40711 065],[-73.978: 7840711 71).[-73.97
2,40.711520000000064],[-73.979819999999961 40.711020000000076],[-73.9817 4.40.7108 1.[-73.985: .40.7105
044],[-73.98171; 7,40.7097, 8].[-73.902 ,40.70! 1. [-73. ,40.70842000000008], 99437999

9999985,40.702340000000034].[-73.995429999099942 40.709230000000048].[-73.995912999099956,40.702160000000034],

[-73.996129999999988 40.709120

000000041],[-73.99 2,40.7090. 3.9973! 71,40, 1],[-73.99 79,40.708630000000028],[-73.9
£9509999999987 40.708120000000065].[-74.002 .40.706520000000069],[-74.0034 8.40.70593000000008],[-74 004 169999999988 40.7
05470000000048],[-74.007835999999937.40.703110000000038],[-74.009: 139,40.7022: 1.[-74.00987 3,40.7018. 1L
74.010919909000242.40.701730000000055],[-74.0111 .40.701 067],[-74.011! .40.701],[-74.01.
.40.701420000000041].[-74.012679999999982.40.701320000000067],[-74.013 4,40.70121 1.[-74.01411 34,40.7012.
31[-74.0147 7.40.701 135).[-74.0153% 7,40.701730C 1[-74.01342 1,40.701800000000048],[-74.015479999

999968 .40.701850000000036],[-74.015729999999962 40.702140000000043].[-74.013999999999963_40.702620000000024],[-74.01604299998995 40 70277000

0000044],[-74.01 4,40.703 1.[-74.01 ,40.704631 721.[-74.01 7,40.704850000000033],[-74.016
569999999945 40.705120000000079].[-74.016009999999937 40.706470000000024].[-74 015719999990938 40.707210000000032],[-74 01568999999995 40.70
7. 6].[-74.0156 156,40.707: 26].[-74.015 75,40.7075. 7 4015 43,40.70797 L[
74.0147199999999354 40 70973000000008],[-74.014: 73.40.7103 T1L[-74.014 7,407 1.[-74.014
40.711010000000044],[-74.014229999939941,40.712080000000071],[-74.013 749995989935 40.713680000000068],[-74.013429999599571,40.71442000000007
31.[-74.013 2,40.7143: 4],[-74.0132. ,40.71521000000007],[-74.013079999999545,40.715750000000071],[-74.0129299999

99983 40.716390000000047].[-74.011109999999974 40.715590000000077],[-74.011159794999060 40.715405758000031]]]} }

Charting a Driving Route Between Two Geometry Points

The following request uses GIS_DRIVE_ROUTE to generate a driving route between a station

start point and end point and charts the route on an Esri map.

DEFI NE FI LE esri-citibike
STARTPO NT/ A200 = G S_PO NT(' 4326', START_STATI ON_LONG TUDE,
START_STATI ON_LATI TUDE) ;
ENDPO NT/ A200 = G S_PO NT('4326', END_STATI ON_LONG TUDE,
END_STATI ON_LATI TUDE) ;
Rout e/ TX80 (GEOGRAPHI C_ROLE=GEOMVETRY_LI NE) =
G S_DRI VE_ROUTE(ENDPOI NT, STARTPO NT) ;
END

Information Builders

24. Simplified Geography Functions I

GRAPH FI LE ESRI - CI Tl Bl KE
PRI NT
START_STATI ON_NAME
END_STATI ON_NANE
WHERE START_STATI ON_|I D EQ 147
ON TABLE PCHOLD FORVAT JSCHART
ON TABLE SET LOOKGRAPH CHOROPLETH
ON TABLE SET ENMBEDHEADI NG ON
ON TABLE SET AUTCFI T ON
ON TABLE SET STYLE *
TYPE=REPORT, TI TLETEXT=' Map', PAGCESI ZE=E, CHART-LOOK=com esri.nmap, $
TYPE=DATA, COLUMN=NL, /*START_STATI ON_NAME*/
BUCKET=t ool tip, $
TYPE=DATA, COLUMN=ENZ, /*END_STATI ON_NAME*/

*GRAPH JS FI NAL
"l egend": {"visible": true},

"extensions" : { "comesri.nap"
{ "scal ebar"
{
"scal ebarUnit": "dual",
"attachTo" : "bottomleft"
I
"baseMapl nfo": {
"drawBasemapControl " : false,
"showAr c@ SBasemaps" : fal se,
"cust onBaseMaps" : [
{"i bi BaseLayer" : "dark-gray"}
]
}
"over | ayLayers":
[{
"i bi Dat aLayer": {"map-geormetry" : {"map_by_field" : "Route"}}, "title"
"Chart"}]
"i ntroAni mation": "{\"enabled\":fal se}"
}
* END
ENDSTYLE
HEADI NG
"Chart Drive Route"
END

Using Functions 573

GIS_GEOCODE_ADDR: Geocoding a Complete Address

The output is shown in the following image.

Chart Drive Route

GIS_GEOCODE_ADDR: Geocoding a Complete Address

GIS_GEOCODE_ADDR uses a GIS geocoding service to obtain the geometry point for a
complete address.

Syntax: How to Geocode a Complete Address
G S_CGEOCODE_ADDR(address[, countryl)

where:

addr ess
Fixed length alphanumeric

Is the complete address to be geocoded.

country
Fixed length alphanumeric

Is a country name, which is optional if the country is the United States.

574 Information Builders

24. Simplified Geography Functions I

Example:

Geocoding a Complete Address

The following request creates a complete address by concatenating the street address, city,
state, and ZIP code. It then uses GIS_GEOCODE_ADDR to create a GIS point for the address.

DEFINE FI LE WF_RETAIL_LITE

GADDRESS/ A200 =ADDRESS LINE 1 || ' ' | CITY.NAVE || ' ' | STATE_PROV_NAME
[| * ' | POSTAL_CODE;
GEOCODEL/ A200 = GI' S GEOCODE,_ADDR(GADDRESS) ;

END
TABLE FILE W_RETAIL_LI TE

PRI NT ADDRESS LINE_1 AS Address GEOCCDEL
BY POSTAL_CODE AS Zi p

WHERE CI TY_NAME EQ ' New Yor k'
WWHERE POSTAL_CODE FROM ' 10013'
ON TABLE SET PAGE NOPAGE

END

TO ' 10020

The output is shown in the following image.

Zip ||Address GEOCODE1
10013({125 Worth St { "spatialReference": {"wkid": 4326} ."geometryType": "esriGeometryPoint" " geometry”: {"x":-74. 00269, "v":40.71543}}
10016|{139 E 35Th St { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry”: -73.97911, "y":40.74705%}}
10017|[2 United Nations Plz { "spatialReference": {"wkid": 4326} ."geometryType": "esriGeometryPoint"."geometry™: =-73.97115, "y":40.75111}}
1405 E 42Nd S5t { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry”: -73.96956, "v":40.74867}}
1405 E 42Nd St { "spatialReference": {"wkid": 4326},"geometryType": "esriGeometryPoint"," geometry”: 73.96936, "y":40.74867}}
1219 E 42Nd St { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry” 73.97333, "y":40.75030}}
330 Madison Ave { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry”: -73.97906, "v":40.75316}}
10018|(119 W 40Th St F1 10 { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint","geometry™: L "v":40.75398}}
11 West 40Th Street { "spatialReference": {"wkid": 4326} ."geometryType": "esriGeometryPoint"." geometry”: {" "y"40.75245})
10019([31 West 52Nd Street { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry”: L "y"40.760441
1301 Ave Of The Americas { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry” L "y"40.76125})
1345 Avenue Of The Americas||{ "spatialReference”: {"wkid": 4326} _."geometryType": "esriGeometryPoint” " geometry”: V"v"40.762641)
745 7Th Ave { "spatialReference": {"wkid": 4326},"geometryType": "esriGeometryPoint"," geometry”: - L "y"40.76077F
10020{(1221 Avenue Of The Americas||{ "spatialReference": {"wkid": 4326} ."geometryType": "esriGeometryPoint"."geometry": {"x":-73.98129_ "y":40.75874}}
1271 Avenue Of The Americas||{ "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"."geometry”: {"x":-73 98018, "v":40.76025}}

GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State

Syntax:

GIS_GEOCODE_ADDR_CITY uses a GIS geocoding service to obtain the geometry point for an
address line, city, state, and optional country. The returned value is a fixed length
alphanumeric format, large enough to hold the JSON describing the geographic location (for
example, A200).

How to Geocode an Address Line, City, and State

G S_GECCODE_ADDR CI TY(Street_addr, city , state [, countryl)

Using Functions 575

GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State

where:

street_addr
Fixed length alphanumeric

Is the street address to be geocoded.

city
Fixed length alphanumeric

Is the city name associated with the street address.

state
Fixed length alphanumeric

Is the state name associated with the street address.

country
fixed length alphanumeric

Is a country name, which is optional if the country is the United States.

Example: Geocoding a Street Address, City, and State
The following request geocodes a street address using GIS_GEOCODE_ADDR_CITY.

DEFI NE FI LE WE_RETAIL_LITE
GEOCODE1/ A200 = GI' S GEOCODE_ADDR Cl TY(ADDRESS LI NE_1, CI TY_NAME ,
STATE_PROV_NAME) ;

END

TABLE FILE WF_RETAIL_LITE

PRI NT ADDRESS_LINE 1~ AS Address GEOCODEL

BY POSTAL_CODE AS Zip

WHERE CI TY_NAME EQ ' New York'

WHERE POSTAL_CODE FROM ' 10013' TO ' 10020’

ON TABLE SET PAGE NOPAGE

END

576 Information Builders

24. Simplified Geography Functions I

The output is shown in the following image.

Zip ||Address \IGEOCODE1
10013([125 Worth St { "spatialReference": {"wkid": 4326},"geometryType": "esriGeometryPoint","geometry": {"x":-74.00269, "v":40.71543}
10016|[139 E 35Th St { "spatialReference": {"wkid": 4326},"geometryType": "esriGeometryPoint","geometry": {"x":-73.94483, "v":40.65194}
100172 United Nations Plz { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint" "geometry”: {"x":-73 97115, "v":40.75111}}
1405 E 42Nd St { "spatialReference”: {"wlid": 4326}."geometryType": "esriGeometryPoint"." geometry”: {"x":-73.96956, "yv":40.74867} +
1405 E 42Nd St { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint","geometry": {"x":-73.96956, "y":40.74867} +
219 E 42Nd St { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint"."geometry”: {"x":-73 97333, "y":40.75030} +
330 Madison Ave { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint"."geometry": {"x":-73 97906, "v":40.75316} +
10018([119 W 40Th St F1 10 { "spatialReference”: {"wkid": 4326}."geometryType": "esriGeometryPoint"."geometry”: {"x":-73 98599, "v":40.75398} +
11 West 40Th Street { "spatialReference": {"wkid": 4326} ,"geometryType": "esriGeometryPoint","geometry": {"x":-73.98235, "v":40.75245}
10019|[31 West 32Nd Street { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint" "geometry”: {"x":-73 97776, "v":40.76044} +
1301 Ave Of The Amernicas { "spatialReference”: {"wlid": 4326}."geometryType": "esriGeometryPoint"." geometry”: {"x":-73.97945, "y":40.76125} +
1345 Avenue Of The Americas||{ "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint"," geometry": {"x":-73.97843, "y":40.76264}
745 TTh Ave { "spatialReference": {"wkid": 4326},"geometryType": "esriGeometryPoint","geometry": {"x":-73.98340, "v":40.76077} +
10020((1221 Avenue Of The Americas||{ "spatialReference”: {"wkid": 4326} ."geometryType": "esriGeometryPoint"."geometry”: {"x":-73 98129 "y":40.75874}
1271 Avenue Of The Americas||{ "spatialReference”: {"wlkid": 4326} "geometryType": "esriGeometryPoint"."geometry”: {"x":-73 98018. "y":40.76025}

GIS_GEOCODE_ADDR_POSTAL:

GIS_GEOCODE_ADDR_POSTAL uses a GIS geocoding service to obtain the geometry point for
an address line, postal code and optional country. The returned value is a fixed length
alphanumeric format, large enough to hold the JSON describing the geographic location (for
example, A200).

Syntax:

G S _GEOCCODE_ADDR _PCSTAL(street_addr,

where:

street_addr
fixed length alphanumeric

Geocoding an Address Line and Postal Code

Is the street address to be geocoded.

postal _code
fixed length alphanumeric

How to Geocode an Address Line and Postal Code

postal _

code [,

Is the postal code associated with the street address.

country
fixed length alphanumeric

Is a country name, which is optional if the country is the United States.

Using Functions

countryl)

577

GIS_GEOMETRY: Building a JSON Geometry Object

Example: Geocoding a Street Address and Postal Code
The following request geocodes a street address using GIS_GEOCODE_ADDR_POSTAL.

DEFI NE FI LE WE_RETAIL_LITE

GEOCODE1/ A200 = G S_GEOCODE_ADDR POSTAL(ADDRESS LI NE_1, POSTAL_CODE);
END

TABLE FILE WE_RETAIL_LITE

PRI NT ADDRESS LI NE_1 AS Address GEOCODEL

BY POSTAL_CCODE AS Zip

WHERE CI TY_NAME EQ ' New Yor k'

WHERE POSTAL_CODE FROM ' 10013' TO ' 10020'

ON TABLE SET PAGE NOPAGE

END

The output is shown in the following image.

Zip ||Address IGEOCODE1
10013([125 Worth St { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint"."geometry": {"x":-74 00269, "v":40.71543} +
10016|[139 E 35Th St { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint"."geometry": {"x":-73 97911, "v":40.74705} +
100172 United Nations Plz { "spatialReference”: {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry”: {"x":-73.97115, "y":40.75111} +
405 E 42Nd St { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint" "geometry”: {"x":-73 96956, "v":40.74867}
405 E 42Nd St { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint" "geometry": {"x":-73 96956, "v":40.74867} +
1219 E 42Nd St { "spatialReference": {"wkid": 4326}."geometryType": "esriGeometryPoint","geometry": {"x":-73.97333, "y":40.75030} }
330 Madison Ave { "spatialReference": {"wkid": 4326},"geometry Type": "esriGeometryPoint"," geometry": {"x":-73.97906, "y":40.75316} +
10018([119 W 40Th St F1 10 { "spatialReference": {"wkid": 4326}."geometry Type": "esriGeometryPoint","geometry™: {"x":-73.98599, "y":40.75398} +
11 West 40Th Street { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint"."geometry”: {"x":-73 98235, "v":40.75245} +
10019|[31 West 52Nd Street { "spatialReference”: {"wkid": 4326}."geometryType": "esriGeometryPoint"." geometry”: {"x":-73.97776, "v":40.76044} +
1301 Ave Of The Americas { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint" "geometry”: {"x":-73 97945 "y":40.76125}
1345 Avenue Of The Americas||{ "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint" "geometry”: {"x":-73 97806, "y":40.76309}
745 TTh Ave { "spatialReference”: {"wkid": 4326} "geometryType": "esriGeometryPoint"."geometry”: {"x":-73 98340, "v":40.76077} +
10020([1221 Avenue Of The Americas||{ "spatialReference": {"wkid": 4326},"geometryType": "esriGeometryPoint","geometry": {"x":-73.98129, "y":40.75874}
1271 Avenue Of The Amernicas||{ "spatialReference": {"wlkid": 4326} ,"geometryType": "esriGeometryPoint","geometry": {"x":-73.98018, "y":40.76025}

GIS_GEOMETRY: Building a JSON Geometry Object

The GIS_GEOMETRY function builds a JSON Geometry object given a geometry type, WKID, and
a geometry.

Syntax: How to Build a JSON Geometry Object
G S_CGEQOVETRY(geot ype, wkid, geonetry)

where:

geot ype
Alphanumeric

Is a geometry type, for example, 'esriGeometryPolygon' ,esriGeometryPolyline,
'esriGeometryMultipoint’, 'EsriGeometryPoint’, 'EsriGeometryExtent’..

578 Information Builders

24. Simplified Geography Functions I

wki d
Alphanumeric

Is a valid spatial reference ID. WKID is an abbreviation for Well-Known ID, which identifies
a projected or geographic coordinate system.

geonetry
X

A geometry in JSON.

The output is returned as TX.

Example: Building a JSON Geometry Object

The following request builds a polygon geometry of the area encompassing ZIP code 10036 in
Manhattan. The input geometry object is stored in a text (.ftm) file that is cross-referenced in
the esri-citibike Master File. The field containing the geometry object is GEOMETRY.

DEFI NE FI LE esri/esri-citibike
WKI D/ A10 = '4326';
MASTER_GEOVETRY/ TX256 (GEOGRAPHI C_ROLE=GEOVETRY_AREA) =
G S_CEOMETRY(' esri CeonetryPol ygon', WKID , GEOVETRY);
END
TABLE FI LE esri/esri-citibike
PRI NT
START_STATI ON_NAME AS Stati on
START_STATI ON_LATI TUDE AS Latitude
START_STATI ON_LONG TUDE AS Longi t ude
MASTER_GEOVETRY AS ' JSON Ceonetry Object'
WHERE START_STATION I D EQ 479
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
type=report, grid=off, size=10,9%
ENDSTYLE
END

Using Functions 579

GIS_GEOMETRY: Building a JSON Geometry Object

Example:

580

The output is shown in the following image.

Station Latitude Longitude
QAve &W 40.760192520000000 -73.99123510000000
455t

ISON Geometry Object
{ "spatialReference” {"wkid"- 4326}."geometry Type": “estiGeometryPolygon”," geometry”

{"rings":[[[-73.9803880908524.40.7541490002762].[-73.9808770900197,40.7534830001404],[-73.9814410008484,40.753 714000001 1],[-
73.9824040001445,40.7541109008382],[-73.982461000075,40.7541434001978],[-73.9825620002361,40.7541850001377],[-73.9832877000673,40.75
44888000428] [-73 0833400007027 40 7545150000673].[-73 083644300060 40 7546307008860].[-73 0836840008628 40 7546570003204]. [
73.9841276003085,40.7548161002820],[-73.984309700086,40.7544544000752],[-73.9846140004357,40.7541650001147],[-73.984871999743.40.75
42749997914],[-73 9866590003126,40.7550369998577],[-73 9874440006869,40. 75537200001 78].[-73.9902640001834,40.756570999552] [
73.9914340001789,40.7570449998269],[-73.9918260002697.40.7572149995726],[-73 9924290001982 40.7574769999636],[- 7399276 79996434 40.
7576240004473],[-73.9930690000343,40.7578009996165].[-73 9931059999419, 40.7577600004237],[-73.9932120003335,40.7576230004012],[-
73.9933250001486,40.7576770001934],[-73.9935390001247.40.7577669998472],[-73 993725999755 40.7578459998931].[-73.9939599997542 4
0.757937999630],[-73 9940089908689,40.7579830990617].[-73.9941529906611,40.7579950996157].[-73.9942220001452,40 75801599963 87],[-
73.9943040003293,40.7580300002843],[-73.9943650004444,40.7580330004227],[-73.99446499966,40.7580369997078],[-73.9945560002591.4
0.7580300002843],[-73.9946130001898,40.758020¢ 1.[-73.9945680009304,40.758080! 83],[-73.9945440007519.40.7581140907075 [
73.9944196999092,40.7582882001404],[-73.9943810002829.40.7583400001909],[-73 9953849998179 40.7587409997973],[-73.995956000069
3.40.7589690004191].[-73.9960649996009.40.7590149908424],[-73.9068730000888,40.7593410996336].[-73.996975000296,40.7593800006335].[-
73.9973149997874,40.7595379996789],[-73.9977009996014,40.7597030000935],[-73 998039999946 40.7598479995856],[- 73 99833400001
4,40.7509709998618],[-73.0087760007587.40.7601570003453.[-73.9000089996656.40.7602540003219],[-74.0015039907021,40.761 2020006 722].[-
74.0016340002089,40.7613209005799],[-74.0015350001401,40.7614539990022],[-74.0014580001865.40.7615479997405],[-74.001364000
3483.40.7616560002242],[-74.0013050003255,40.7617199095784],[-74.0011890003721,40.7618360995779],[-74.0010579207269,40. 7610608009003, [-
74.0009659999808,40.7620389999],[-74.0008649998198,40.7621230001764],[-74.0008390004195,40.7621430001993],[-74.000683999
5669.40.762261000245].[-74.000531999752 40.7623750001062].[-74.0003750997525 40.7624849007820] [-74 0002840000066 40.7625510001286].[-
73.0008650006161,40.762850000574],[-73.9998279906624,40.7628770000108],[-73.9005740006864.40.7630500001727],[-73.999312000
1487.40.7632720001028],[-73.9991639996189.40.7633089906642] [-73 998941000127 40.7636250001936],[-73.9987580098279 40.7638580001466],[-
73.0086331090622,40.7640277004181],[-73.9986084002574,40.7640632002565],[-73 90084819006445.40.7642340003989], [-73.9983468

097142 40.7644199999831] [-73 998171099738 40.7646669906823] [-73 0080319005771 40.7648580003964].[-73.9070881908055 40 7649204906813] [
73.0070368000432,40.7649042000224],[-73.9978047099051,40.7650573908701],[-73.9077017001733,40.7653310995507), [- 73.99758
10003629,40.765481000348],[-73.9975069996483,40.7654519999099] [-73 9956019999323 40.7646519998890] [-73.9955370906780,40.7646250004434],[-
73.9954779996099,40.7646030003282],[-73.9949389999348 40.7643690003291],[-73 9936289997785 40.7638200001929],[-73.993
4620001711,40.7637530008473] [-73 9031520002646,40.7636270002859],[-73 992701000151,40.7634400008023],[-73.9924410000736,40.7633312005008] [
73.9808629996777,40.7622390001298],[-73.9886120004434.40.761714000201],[-73.988021000169,40.761460000179],[-73 9870
28000242,40.7610439998808],[-73 9867690998141,40.7609346998765],[- 73 9848240002274,40.7601130001149],[-73.9841635003452,40 7598425002312],[-
73.9813250998040,40.7586439998208],[-73.9805479999902,40.7583159999834],[-73 9793569999256 40.757814000216].[-73.978
1150002071.40.7572939996184].[-73.9785670003668.40.7566700996669].[-73.9790140002958,40.7560300008308], [-73.9704710008320,40.7554120000638].[-
73.9799399998311,40.7547649999048].[-73.9802380000836,40.7543610001601],[-73 9803889998524 40.75414900027621]1} }

Charting a Geometry Object

The following request uses GIS_GEOMETRY to build a geometry object and chart it on an Esri

map.

DEFI NE FI LE esri-citibike

WKI DY A10 = ' 4326’

MASTER_GEQOVETRY/ TX256 (GEOGRAPHI C_ROLE=GEQOVETRY_AREA) =
G S _GEOVETRY(' esri GeonetryPol ygon', WKID , GEOVETRY);

END

GRAPH FI LE ESRI - CI Tl BI KE

PRI NT
START _STATI ON_NAME
END_STATI ON_NANE

ON TABLE PCHOLD FORVAT JSCHART
ON TABLE SET LOOKGRAPH CHORCPLETH
ON TABLE SET EMBEDHEADI NG ON
ON TABLE SET AUTOFI T ON

ON TABLE SET STYLE *

TYPE=REPORT, TI TLETEXT=' Map', PAGESIZE=E, CHART-LOOK=com esri.nap, $

TYPE=DATA, COLUMN\=NL1,
BUCKET=t ool tip, $
TYPE=DATA, COLUVN=NZ,

/ * START_STATI ON_NAME*/

/ * END_STATI ON_NANE* /

Information Builders

24. Simplified Geography Functions I

* GRAPH_JS_FI NAL

"l egend": {"visible": true},

"extensions" : { "comesri.mp"
{ "scal ebar"
{
"scal ebarUnit": "dual",
"attachTo" : "bottomleft"
1
"baseMapl nfo": {
"drawBasemapControl " : fal se,
"showAr cG SBasemaps" : fal se,
"cust onBaseMaps" : [
{"i bi BaseLayer" : "dark-gray"}
]
¥
"overl ayLayers":
[{
"i bi Dat aLayer": {"map-geonetry" : {"map_by field" : "MASTER GEOVETRY"}},
"title" : "Chart"}]
I
"introAni mation": "{\"enabled\":fal se}"
}
*END
ENDSTYLE
HEADI NG
"Chart Geonetry Object"
END

The output is shown in the following image.

Chart Geometry Object

City of New Y ork. State of New Jersey, Esri, HERE, DeLorme, INCREMENT P, NGA, USGS | State of Ne..

Using Functions 581

GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon

GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon

Syntax:

Example:

582

Given a point and a polygon definition, the GIS_IN_POLYGON function returns the value 1
(TRUE) if the point is in the polygon or O (FALSE) if the point is not in the polygon. The value is

returned in integer format.
How to Determine if a Point is in a Complex Polygon
G S | N POLYGON(poi nt, pol ygon_defi nition)

where:
poi nt
Alphanumeric or text

Is the geometry point.

pol ygon definition
Text

Is the geometry area (polygon) definition.

Determining if a Point is in a Polygon

The following example determines if a station is inside ZIP code 10036. GIS_IN_POLYGON
returns 1 for a point inside the polygon definition and O for a point outside. The polygon
definition being passed is the same one used in the example for the GIS_GEOMETRY function
described previously and defines the polygon for ZIP code 10036 in Manhattan in New York
City. The value 1 is translated to Yes and O to No for display on the output.

DEFI NE FI LE esri/esri-citibike
WKI D/ A10 = '4326';

MASTER_GEOVETRY/ TX256 (GEOGRAPHI C_ROLE=GEQVETRY_AREA)
G S_GEOVETRY(' esri GeonetryPol ygon', WKID , GEOVETRY);

START:STATI ON_PO NT/ A200=G S_PO NT(WKI D, START_STATI ON_LONG TUDE,

START_STATI ON_LATI TUDE) ;

STATI ON_I N_POLYGOV | 4=G S_| N_POLYGON(START_STATI ON_PO NT, MASTER_GEQVETRY) ;

| N_PO_YGO\JI_AS = | F STATION_I N POLYGON EQ 1 THEN ' Yes'

END
TABLE FI LE esri/esri-citibike

PRI NT

START_STATI ON_NAME AS Station
IN POLYGON AS 'Station in zip, code 100367

BY START _STATION ID AS 'Station I D
ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *
type=report, grid=off, size=10,9%

type=data, columm=i n_pol ygon, style=bold, color=red, when

"Yes', $
ENDSTYLE
END

ELSE ' No' ;

i n_pol ygon eq

Information Builders

24. Simplified Geography Functions I

The output is shown in the following image.

Station in zip
Station [D Stafion code 100367

147 Greenwich 5t & Warren 5t No
160 E 37 5t & Lexington Ave No
229 Great Jones 5t No
247 Perrv 5t & Bleecker 5t No
268 Howard 5t & Centre St No
281 Grand Armmy Plaza & Central Park 5 No
285 Broadway & E 14 5t No
319 Fulton 5t & Broadway No
346 Bank 5t & Hudson 5t No
379 W315t& 7 Ave No
407 Henry 5t & Poplar 5t No
409 DeKalb Ave & Skillman St No
479 D Ave & W45 5t Yes
492 W33 5t& 7 Ave No
512 W2O5t& 9 Ave No
521 BAve& W3l5t No

8 Ave & W315t No
532 S5P1&S45t No
536 lAve & E305t No
537 Lexington Ave & E 24 5t No

GIS_LINE: Building a JSON Line

Given two geometry points or lines, GIS_LINE builds a JSON line. The output is returned in text
format.

Syntax: How to Build a JSON Line
G S LI NE(geometryl, geonetry?l)

where:

geonetryl
Alphanumeric or text

Is the first point or line for defining the beginning of the new line.

Using Functions 583

GIS_LINE: Building a JSON Line

Example:

584

geonetry2
Alphanumeric or text

Is the second point or line for the concatenation of the new line.

Building a JSON Line

The following request prints start stations and end stations and builds a JSON line between

them.

DEFI NE FI LE ESRI/ ESRI - Cl TI Bl KE
STARTPO NT/ A200 = G S_PO NT(' 4326', START_STATI ON_LONG TUDE,
START_STATI ON_LATI TUDE) ;
ENDPO NT/ A200 = G S_PO NT(' 4326', END_STATI ON_LONG TUDE,
END_STATI ON_LATI TUDE) ;
CONNECTI ON_LI NE/ TX80 (GEOGRAPHI C_RCLE=GEQVETRY_LI NE) =
G S_LI NE(STARTPO NT, ENDPO NT) ;
END
TABLE FI LE ESRI/ ESRI - Cl Tl Bl KE

PRI NT END_STATI ON_NAME AS End CONNECTI ON_LI NE AS ' Connecting Line'

BY START_STATI ON_NAME AS Start
VWHERE START_STATI ON_NAME LE ' D
ON TABLE SET PAGE NOLEAD

ON TABLE SET STYLE *
TYPE=REPORT, CRI D=OFF, $
ENDSTYLE

END

Information Builders

24. Simplified Geography Functions I

The output is shown in the following image.

Start End
1 Ave & E30 5t Broadway & W 32 St
8 Ave & W 31 5t Broadway & E 14 St

E 20 S8t & 2 Ave

9 Ave & W 45 St E 4558t & 3 Ave

Bank St & Hudson St Mercer St & Bleecker St

Broadway & E 14 St Cleveland P1 & Spring St

Example: Charting Geometry Lines

Connecting Line

{ "spatialReference": {"wkid": 4326},"geometryType":

"esriGeometryPolyline"." geometry": {"paths":
[[[-73.97536082000000,40.741443870000000],[-73.98808416000000,40.748548620000000
133

{ "spatialReference": {"wkid": 4326} ,"geometryType":

"esriGeometryPolyline"," geometry": {"paths":
[[[-73.99444208000000,40.750967350000000].[-73.99074142000000,40.7345456 70000000
33

{ "spatialReference": {"wkid": 4326},"geometryType":
"esriGeometryPolyline” " geometry": {"paths":
[[[-73.99444208000000,40.750967350000000].[-73.98205027000000,40.7358 76780000000
m3

{ "spatialReference": {"wkid": 4326},"geometryType":

"esriGeometryPolyline"." geometry": {"paths":
[[[-73.99125510000000,40.760192520000000],[-73.97282625000000,40.752554340000000
133

{ "spatialReference": {"wkid": 4326} ,"geometryType":

"esriGeometryPolyline"," geometry": {"paths":
[[[-74.00618026000000,40.736528890000000].[-73.99695094000000,40.726794540000000
m3

{ "spatialReference": {"wkid": 4326},"geometryType":

"esriGeometryPolyline"." geometry": {"paths":
[[[-73.99074142000000,40.734545670000000].[-73.99724901000000,40.72210379000000C
133

The following request generates geometry lines and charts them on an Esri map.

DEFI NE FI LE ESRI - Cl Tl Bl KE

CONNECTI ON_LI NE/ TX80 (GEOGRAPHI C_ROLE=GEOVETRY_LI NE)
=G S_LI NE(START_STATI ON_POI NT, END_STATI ON_POI NT) ;
DI STANCE/ P33. 11 TI TLE ' Di stance' =G S_DI STANCE(START_STATI ON_POI NT,

END_STATI ON_POI NT) ;
END

Using Functions

585

GIS_LINE: Building a JSON Line

GRAPH FI LE ESRI - CI Tl BI KE
PRI NT
START_STATI ON_NAME
END_STATI ON_NANE
DI STANCE
ON TABLE PCHOLD FORVAT JSCHART
ON TABLE SET LOOKGRAPH BUBBLENAP
ON TABLE SET EMBEDHEADI NG ON
ON TABLE SET AUTCFI T ON
ON TABLE SET STYLE *
TYPE=REPCORT, TI TLETEXT=" Map',
TYPE=DATA, COLUMN=NL, /*START_STATI ON_NAME*/
BUCKET=t ool tip, $
TYPE=DATA, COLUMN=ENZ, /*END_STATI ON_NAME*/
BUCKET=t ool tip, $
TYPE=DATA, COLUWN=N3, /*DI STANCE*/
BUCKET=t ool tip, $

* GRAPH_JS_FI NAL
"l egend": {"visible": true},
"ext ensi ons" { "comesri.mp"
{ "scal ebar"

{
"scal ebarUnit": "dual",
"attachTo" "bottomleft"
},
"baseMapl nfo": {
"drawBasenmapControl " fal se,
"showAr c@ SBasenaps" fal se,
"cust onBaseMaps" : [
{"i bi BaseLayer" "dark-gray"}
]
H
"overl aylLayers":
[{
"i bi Dat aLayer": {"map-geonetry" {"map_by_field"
"title" "Chart"}]
},
"introAni mation": "{\"enabled\":fal se}"
}
*END
ENDSTYLE
HEADI NG
"Chart Geonetry Lines"
END

586

PACGESI ZE=E, CHART- LOOK=com esri .

map, $

" CONNECTI ON_LI NE"}},

Information Builders

24. Simplified Geography Functions I

The output is shown in the following image.

Chart Geometry Lines

.
Esri. HERE | City of New York, State of New Jersey, Esri, HERE, DeLorme. NGA, USGS e Sr I

GIS_POINT: Building a Geometry Point

Given a WKID (Well-Known ID) spatial reference, longitude, and latitude, the GIS_POINT
function builds a JSON point defining a Geometry object with the provided WKID, longitude, and
latitude. The function is optimized for those SQL engines that can build a JSON geometry
object.

The field to which the point is returned should have fixed length alphanumeric format, large
enough to hold the JSON describing the point (for example, A200).

Syntax: How to Build a Geometry Point
G S_PO NT(ukid, [ongitude, [atitude)

where:
wki d
Fixed length alphanumeric

Is a spatial reference code (WKID). WKID is an abbreviation for Well-Kknown ID, which
identifies a projected or geographic coordinate system.

/ ongi t ude
D20.8

Is the longitude for the point.

Using Functions 587

GIS_POINT: Building a Geometry Point

Example:

588

[atitude
D20.8

Is the latitude for the point.

Building a Geometry Point

The following request uses the spatial reference code 4326 (decimal degrees) and state

capital longitudes and latitudes to build a geometry point.

DEFI NE FI LE WE_RETAIL_LITE
GPOI NT/ A200 = GI'S_PO NT(' 4326' , STATE_PROV_CAPI TAL_LONG TUDE,
STATE_PROV_CAPI TAL_LATI TUDE) ;

END

TABLE FILE W_RETAIL_LITE

SUM FST. STATE_PROV_CAPI TAL_LONG TUDE AS Longi t ude

FST. STATE_PROV_CAPI TAL_LATI TUDE AS Lat i t ude

FST. GPOI NT AS Poi nt

BY STATE_PROV_CAPI TAL_NAVE AS Capi t al

WHERE COUNTRY_NAME EQ ' United States'

WHERE STATE _PROV_CAPI TAL_NAME LT ' C

ON TABLE SET PAGE NOPAGE

END

The output is shown in the following image.

[Capital | Tongiude| Tatitude|[Point

‘Albany ‘ 7376000000 ‘42 66000000

542 SE000000} }

{ "spatialFeference": {"wlid" 4326} ,"geometryType": "esriGeometryPoint","geometry™: {"&"-73. 76000000,

"5':38.95000000} }

Ammapolis -76.45000000|(38.95000000 |{ "spatiaReference”. {"wlad" 4326} ,"geometryType": "esriGeometryP oint","geometry": {"x"-76.45000000,

"9":33 94000000} }

Atlanta -84.27000000|(22.94000000 |{ "spatialReference”: {"whid" 4326},"geometryType": "esriGeometryP cint”,"geometry”: {"z"-84. 27000000,

Augusta -69.77000000|[44.32000000 |{ "spatialReference”: {"wlid" 4326} "geometryType": "estiGeometryPoint" "geometry": {"z"-63 77000000,
“y":44. 32000000}

Austin -97.75000000|(30.40000000 |{ "spatiaReference”. {"wlad" 4326} ,"geometryType": "esriGeometryP oint","geometry": {"x"-97. 75000000,
"5":30.40000000} }

Baten -91.17000000|(20.28000000 |{ "spatialReference”: {"whid" 4326} ,"geometryType": "esriGeometryP eint”,"geometry”: {"x"-91.17000000,

Rouge "g":30.38000000} }

Bismarck ‘_100 77000000 ‘46 82000000

"546, 52000000} }

{ "spatialReference": {"whkid" 4326} ,"geometryType": "esnGeometryPoint" "geometry™: {"="-100.77000000,

Boise ‘7115.15000000 ‘43.50000000

"y":43.60000000}

{ "spatialReference"; {"wlid" 4326},"geometryType". "esriGeometryPomt","geometry™: {"z"-116, 16000000,

942 35000000} }

Boston ‘-71.10000000‘42.35000000

{ "spatialReference”; {"whid" 4326}, "geometryTipe" "esriGeometryPoint”,"geometry™ {"z"-71.10000000,

Information Builders

24. Simplified Geography Functions I

Example: Charting Geometry Points

The following request generates geometry points using GIS_POINT charts them on an Esri map.

DEFI NE FI LE WF_RETAI L

GPOI NT/ A200 = G 'S PO NT(' 4326', STATE_PROV_CAPI TAL_LONG TUDE,
STATE_PROV_CAPI TAL_LATI TUDE) ;

END

CRAPH FI LE WF_RETAI L
PRI NT
STATE_PROV_NANE
WHERE STATE_PROV_CAPI TAL_LONG TUDE NE M SSI NG
ON TABLE PCHOLD FORMAT JSCHART
ON TABLE SET LOOKGRAPH BUBBLENAP
ON TABLE SET ENMBEDHEADI NG ON
ON TABLE SET AUTCFI T ON
ON TABLE SET STYLE *
TYPE=REPORT, TI TLETEXT=' Map', PAGCESI ZE=E, CHART-LOOK=com esri.nap, $
TYPE=DATA, COLUVN=N1,
BUCKET=t ool tip, $

* GRAPH_JS_FI NAL
"bubbl eMarker": {"nmaxSi ze": "10%},
"l egend": {"visible": true},

"extensions" : { "comesri.nmp"
{ "scal ebar"
{
"scal ebarUnit": "dual",
"attachTo" : "bottomleft"
1
"baseMapl nfo": {
"drawBasemapControl " : fal se,
"showAr cG SBasemaps" : fal se,
"cust onBaseMaps" : [
{"i bi BaseLayer" : "gray"}
]
H
"over| ayLayers":
[{
"i bi Dat aLayer": {"map-geonetry" : {"map_by field" : "GPO NT"}},
"title" : "Report"}]
j
"introAnimation": "{\"enabled\":fal se}"
}
*END
ENDSTYLE
HEADI NG
"Chart Geonetry Points"
END

Using Functions 589

GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point

The output is shown in the following image.

Chart Geometry Points

on
il » Layers
+
Calgary
L Vancouver

st Louis Washington

Los Angeles

Mon terre Miarmi

Santo
Domingo
Guatemala

= Caracas

Esri, HERE, DeLorme, NGA, USGS | Esri, HERE 4 =3t= £l

GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point

Syntax:

590

The GIS_SERVICE_AREA function uses a GIS service to calculate the geometry area with
access boundaries within the given time or distance from the provided geometry point. The
output is returned in text format.

How to Calculate a Geometry Area Around a Point
G S_SERVI CE_AREA(geo_poi nt, distance, travel_node)

where:

geo_poi nt
Alphanumeric

Is the starting geometry point.

di stance
Alphanumeric

Is the travel limitation in either time or distance units.

Information Builders

24. Simplified Geography Functions I

travel _node
Alphanumeric

Is a valid travel mode as defined in gis_serv_area.mas in the Catalog directory under the
server installation directory. The accepted travel modes are;

4 'Miles’. This is the default value.
d 'TravelTime'.

d 'TruckTravelTime'.
4 'WalkTime'.
d

'Kilometers'.

Example: Calculating a Service Area Around a Geometry Point

The following request calculates the geometry area that is a five-minute walk around a station.

DEFI NE FI LE esri/esri-citibike
VIKI D/ A10=" 4326 ;
START_STATI ON_PQO NT/ A200=G S_PO NT(WKI D, START_STATI ON_LONG TUDE,
START_STATI ON_LATI TUDE) ;
DI STANCE/ A10="5";
TRAVEL MODE/ A10=" VI kTi ne' ;
STATI ON_SERVI CE_AREA/ TX80 (GEOGRAPHI C_ROLE=GEOVETRY_AREA) =
G S_SERVI CE_AREA(START_STATI ON_PO NT, DI STANCE, TRAVEL_MCDE) ;
END
TABLE FI LE esri/esri-citibike
PRI NT
START _STATION ID AS 'Station ID
START_STATI ON_NAME AS ' Station Nang'
STATI ON_SERVI CE_AREA AS '5-M nute Wal k Service Area Around Station'
VHERE START_STATION I D EQ 479 OR 512;
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, CRI D=CFF, SIZE=12,$%
ENDSTYLE
END

Using Functions 591

GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point

Example:

592

The output is shown in the following image.

Station ID Station Name 5-Minute Walk Service Area Around Station

512 W29S8t& 9 Ave {"spatialReference": {"wkid": 4326} "geometryType":
"esriGeometryPolygon"," geometry":
{"rmgs":[[[-73.995542525999952 40.740246597000081],[-73.995094298999959 40.7483
46329000071],[-73.995542525999952_40.74767494200006],[-73.996665954999969_40.747
449875000029],[-73.99778938299994 40.748571396000045],[-73.998462676999964 40.74
8571396000045],[-73.998462676999964 40.747449875000029],[-73.999135970999987_40.
746999741000025],[-73.999586104999935,40.747224808000055],[-74.000932692999982 4
0.746103287000039],[-74.00160789499995_40.746549606000031],[-74.002056121999942,
40.748121262000041],[-74 0004 84466999978 40.749471664000055],[-74.00025939899995
8,40.749471664000055],[-74.000034331999984 40.749917984000035],[-74.002729415999
966,40.750818253000034],[-74.00317954999997.40.751489639000056],[-74.00272941599
9966,40.752614975000029],[-74.001831054999968,40.752614975000029],[-74.000932692
999982.40.75328636200004],[-74.000034331999984,40.752840042000059],[-73.99981117
1999966.40.75171470600003],[-73.99778938299994 40.751043320000065],[-73.99756431
5999966.40.75036811800004],[-73.995542525999952 40.749246597000081]]]}

479 9 Ave & W45 St { "spatialReference": {"wkid": 4326} ,"geometryType":
"esriGeometryPolygon","geometry":
{"rmgs":[[[-73.990602492999983 40.760248184000034],[-73.988132476999965 40.7593
51730000049],[-73.98768234299996 40.758451462000039],[-73.988580703999958.40.757
555008000054],[-73.98992919899996_40.757780075000028],[-73.990827559999957 40.75
6658554000069],[-73.992399215999967 40.75732994100008],[-73.992849349999972 40.7
56433487000038],[-73.993745803999957 40.756208420000064],[-73.994644164999954 40
.757104874000049],[-73.994421004999936.40.758230209000033],[-73.995094298999959,
40.760026932000073],[-73.994195937999962.40.760923386000059],[-73.99262428299994
1,40.760248184000034] [-73.991950988999974 40.760923386000059],[-73.991725921999
944 40.760923386000059],[-73.99150085399998 40.760923386000059],[-73.99150085399
998.40.761148453000033],[-73.990602492999983_40.760698318000038],[-73.9906024929
99983,40.760248184000034]]]}

Charting a Geometry Service Area Around a Point

The following request generates service areas that are 5-minute walking distances from start
station geometry points and charts them on an Esri map.

DEFI NE FI LE esri-citibike
VWKI D/ A10=" 4326' ;
START_STATI ON_PQO NT/ A200=G S_PO NT(WKI D, START_STATI ON_LONG TUDE,
START_STATI ON_LATI TUDE) ;
DI STANCE/ A10='5";
TRAVEL _MODE/ A10=" Wl kTi ne" ;
STATI ON_SERVI CE_AREA/ TX80 (GEOGRAPHI C_ROLE=GEQVETRY_AREA) =
G S_SERVI CE_AREA(START_STATI ON_PO NT, DI STANCE, TRAVEL_MCODE);
END

Information Builders

24. Simplified Geography Functions I

GRAPH FI LE ESRI - Cl TI Bl KE

PRI NT
START_STATI ON_NAVE
END_STATI ON_NAME
DI STANCE

ON TABLE PCHOLD FORMAT JSCHART

ON TABLE SET LOOKGRAPH CHORCOPLETH

ON TABLE SET EMBEDHEADI NG ON

ON TABLE SET AUTCFIT ON

ON TABLE SET STYLE *

TYPE=REPORT, TI TLETEXT=' Map', PAGESIZE=E, CHART-LOOK=com esri.nap, $

TYPE=DATA, COLUMN=NL, /*START_STATI ON_NAME*/

BUCKET=t ool tip, $

TYPE=DATA, COLUMN=N2, /*END_STATI ON_NAME*/

BUCKET=t ool tip, $

TYPE=DATA, COLUWMN=NS3, /*DI STANCE*/

BUCKET=t ool tip, $

* GRAPH_JS_FI NAL
"l egend": {"visible": true},

"extensions" : { "comesri.nmp"
{ "scal ebar"
{
"scal ebarUnit": "dual",
"attachTo" : "bottomleft"
I
"baseMapl nfo": {
"drawBasemapControl " : false,
"showAr cG SBasemaps" : fal se,

"cust onBaseMaps" : [

{"i bi BaseLayer" : "dark-gray"}

]
H
"over | ayLayers":

[{

"i bi Dat aLayer": {"map-geonetry"
" STATI ON_SERVI CE_AREA"}}, "title"

1,

"introAni mation": "{\"enabled\":fal se}"

}

*END

ENDSTYLE

HEADI NG

"Chart Geonetry Service Area"
END

Using Functions

{"map_by_field"

593

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

The output is shown in the following image.

Chart Geometry Service Area

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

Syntax:

594

The GIS_SERV_AREA_XY function uses a GIS service to calculate the geometry area with
access boundaries within the given time or distance from the provided coordinate. The output
is returned in text format.

How to Calculate a Geometry Area Around a Coordinate
G S_SERV_AREA XY(/ongi tude, [atitude, distance, travel_node[, wkid])

where:

/ ongi t ude
Alphanumeric

Is the longitude of the starting point.

latitude
Alphanumeric

Is the latitude of the starting point.

di stance
Integer

Is the travel limitation in either time or distance units.

Information Builders

24. Simplified Geography Functions I

Example:

travel _node
Alphanumeric

Is a valid travel mode as defined in gis_serv_area.mas in the Catalog directory under the
server installation directory. The accepted travel modes are;

4 'Miles’. This is the default value.
d 'TravelTime'.
d 'TruckTravelTime'.
4 'WalkTime'.
o 'Kilometers'.
wki d
Alphanmeric

Is the spatial reference ID for the coordinate. WKID is an abbreviation for Well-Known ID,
which identifies a projected or geographic coordinate system. The default value is '4326',
which represents decimal degrees.

Calculating a Service Area Around a Coordinate

The following request calculates the geometry area that is a five-minute walk around a station,
using the longitude and latitude that specify the station location.

DEFI NE FI LE esri/esri-citibike
DI STANCE/ | 4=5;
WKI D/ A10=' 4326' ;
TRAVEL MODE/ A10=" V\l kTi ne' ;
STATI ON_SERVI CE_AREA/ TX80 (GEOGRAPHI C_ROLE=GEOVETRY_AREA) =
G S_SERV_AREA XY(START_STATI ON_LONG TUDE, START_STATI ON_LATI TUDE,
DI STANCE, TRAVEL_MODE, WKID);
END
TABLE FI LE esri/esri-citibike
PRI NT

START_STATION ID AS ' Station I D

START_STATI ON_NAME AS ' Station Nane'

STATI ON_SERVI CE_AREA

AS '5-M nute Wal k Service Area Around Station Coordinate'
VWHERE START_STATION I D EQ 479 OR 512;

ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRI D=CFF, SIZE=12,$%
ENDSTYLE
END

Using Functions 595

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

Example:

596

The output is shown in the following image.

Station ID Station Name 5-Minute Walk Area Around Station Coordinate
512 W29St&9Ave { "spatialReference": {"wkid": 4326} ,"geometryType":
"egriGeometryPolygon","geometry":

{"rings"[[[-73.996217727999976 40.748571396000045].[-73.996891021999943 40.7481
212620000411,[-73.998462676999964.40.748571396000045],[-73.998237609999933,40.74
7900009000034],[-73.998687743999938.40.7472248080000551,[-74.000932692999982 40.
746999741000025],[-74.001382827999976,40.748121262000041],[-74.000034331999984.4
0.749917984000035].[-74.002281188999973.40.7508182530000341.[-74.002504348999935
,40.75171470600003],[-74.002056121999942 40.752389908000055],[-74.00183 105499996
8,40.752389908000055].[-74.001382827999976,40.752614975000029],[-74.001382827999
976,40.752840042000059].[-73.996665954999969.40.750143051000066].[-73.9959926609
99946 40.749246597000081],[-73.996217727999976,40.748571396000045]]1} }

479 9 Ave & W455t { "spatialReference": {"wkid": 4326},"geometryType":
"esriGeometryPolygon","geometry":
{"rings"[[[-73.988357543999939 40.75867652900007],[-73.989255904999936 40.75778
0075000028],[-73.99127578699995,40.758451462000039],[-73.991725921999944 40.7575
55008000054],[-73.993297576999964.40.756658554000069],[-73.994195937999962,40.75
7555008000054],[-73.993745803999957.40.758451462000039],[-73.994195937999962.40.
759576797000079],[-73.993745803999957 40.760248184000034],[-73.992399215999967.4
0.760248184000034],[-73.99150085399998.40.760923386000059],[-73.99150085399998 4
0.761148453000033],[-73.990827559999957 40.760923386000059],[-73.990602492999983
,40.760248184000034],[-73.988805770999988.40.759801865000043],[-73.9883575439999
39.40.758676529000071]1}

Charting a Geometry Service Area Around a Coordinate

The following request generates service areas that are 5-minute walking distances from start
station coordinates and charts them on an Esri map.

DEFI NE FI LE esri-citibike
WKI D/ A10=' 4326' ;
DI STANCE/ A10='5";
TRAVEL _MODE/ A10=" Wl kTi ne" ;
STATI ON_SERVI CE_AREA/ TX80 (GEOGRAPHI C_ROLE=GEQOVETRY_AREA) =
G S_SERV_AREA XY(START_STATI ON_LONG TUDE, START_STATI ON_LATI TUDE,
DI STANCE, TRAVEL_MODE, WKID);
END

Information Builders

24. Simplified Geography Functions I

GRAPH FI LE ESRI - Cl TI Bl KE

PRI NT
START_STATI ON_NAVE
END_STATI ON_NAME
DI STANCE

ON TABLE PCHOLD FORMAT JSCHART

ON TABLE SET LOOKGRAPH CHORCOPLETH

ON TABLE SET EMBEDHEADI NG ON

ON TABLE SET AUTCFIT ON

ON TABLE SET STYLE *

TYPE=REPORT, TI TLETEXT=' Map', PAGESIZE=E, CHART-LOOK=com esri.nap, $

TYPE=DATA, COLUMN=NL, /*START_STATI ON_NAME*/

BUCKET=t ool tip, $

TYPE=DATA, COLUMN=N2, /*END_STATI ON_NAME*/

BUCKET=t ool tip, $

TYPE=DATA, COLUWMN=NS3, /*DI STANCE*/

BUCKET=t ool tip, $

* GRAPH_JS_FI NAL
"l egend": {"visible": true},

"extensions" : { "comesri.nmp"
{ "scal ebar"
{
"scal ebarUnit": "dual",
"attachTo" : "bottomleft"
I
"baseMapl nfo": {
"drawBasemapControl " : false,
"showAr cG SBasemaps" : fal se,

"cust onBaseMaps" : [

{"i bi BaseLayer" : "dark-gray"}

]
H
"over | ayLayers":

[{

"i bi Dat aLayer": {"map-geonetry"
" STATI ON_SERVI CE_AREA"}}, "title"

1,

"introAni mation": "{\"enabled\":fal se}"

}

*END

ENDSTYLE

HEADI NG

"Chart Geonetry Service Area"
END

Using Functions

{"map_by_field"

597

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

The output is shown in the following image.

Chart Geometry Service Area

o

598 Information Builders

Appendix

Creating a Subroutine

You can create custom subroutines to use in addition to the functions provided by
Information Builders. The process of creating a subroutine consists of the following
steps:

. Writing a subroutine using any language that supports subroutine calls. Some of the
most common languages are FORTRAN, COBOL, PL/I, Assembler, and C. For details,
see Writing a Subroutine on page 599.

4 Compiling the subroutine. For details, see Compiling and Storing a Subroutine on page
610.

- Storing the subroutine in a separate file; do not include it in the main program. For
details, Compiling and Storing a Subroutine on page 610.

.4 Testing the subroutine. For details, see Testing the Subroutine on page 611.
Note: On z/0S, all subroutines called by WebFOCUS must be fully LE compliant.

In this appendix:
d Writing a Subroutine

Compiling and Storing a Subroutine

1

. Testing the Subroutine

.4 Using a Custom Subroutine: The MTHNAM Subroutine
1

Subroutines Written in REXX

Writing a Subroutine

You can write a subroutine in any language that supports subroutines. If you intend to make
your subroutine available to other users, be sure to document what your subroutine does, what
the arguments are, what formats they have, and in what order they must appear in the
subroutine call.

When you write a subroutine you need to consider the requirements and limits that affect it.
These are:

. Naming conventions. For details, see Naming a Subroutine on page 601.

Using Functions 599

Writing a Subroutine

600

- Argument considerations. For details, see Creating Arsuments on page 601.
d Language considerations. For details, see Language Considerations on page 602.

.4 Programming considerations. For details, see Programming a Subroutine on page 605.

If you write a program named INTCOMP that calculates the amount of money in an account
earning simple interest, the program reads a record, tests if the data is acceptable, and then
calls a subroutine called SIMPLE that computes the amount of money. The program and the
subroutine are stored together in the same file.

The program and the subroutine shown here are written in pseudocode (a method of
representing computer code in a general way):

Begi n program | NTCOVP.
Execute this loop until end-of-file.
Read next record, fields: PRI NCPAL, DATE_PUT, YRRATE.
If PRINCPAL is negative or greater than 100, 000,
reject record.
I f DATE_PUT is before January 1, 1975, reject record.
I'f YRRATE is negative or greater than 20% reject record.
Cal | subroutine SIMPLE (PRI NCPAL, DATE_PUT, YRRATE, TOTAL).
Print PRI NCPAL, YEARRATE, TOTAL.
End of | oop.
End of program

Subroutine SI MPLE (AMOUNT, DATE, RATE, RESULT).
Retrieve today's date fromthe system

Let NO _DAYS = Days from DATE until today's date.
Let DAY _RATE = RATE / 365 days in a year.

Let RESULT = AMOUNT * (NO_DAYS * DAY _RATE + 1).
End of subrouti ne.

If you move the SIMPLE subroutine into a file separate from the main program and compile it,
you can call the subroutine. The following report request shows how much money employees
would accrue if they invested salaries in accounts paying 12%:
TABLE FI LE EMPLOYEE
PRI NT LAST_NANME DAT_| NC SALARY AND COVPUTE

I N\VESTED/ D10. 2 = SI MPLE(SALARY, DAT_INC, 0.12, | NVESTED);

BY EMP_I D
END

Note: The subroutine is designed to return only the amount of the investment, not the current
date because a subroutine can return only a single value each time it is called.

Information Builders

A. Creating a Subroutine I

Naming a Subroutine

A subroutine name can be up to eight characters long unless the language you are using to
write the subroutine requires a shorter name. A name must start with a letter and can consist
of a combination of letters and/or numbers. Special symbols are not permitted.

Creating Arguments

When you create arguments for a subroutine, you must consider the following issues:

.4 Maximum number of arguments. A subroutine may contain up to 200 arguments. You can
bypass this restriction by creating a subroutine that accepts multiple calls, as described in
Including More Than 200 Arguments in a Subroutine Call on page 607.

.d Argument types. You can use the same types of arguments in a subroutine as in a
function. For details on these argument types, see Argument Types on page 63.

4 Input arguments. Input arguments are passed to a subroutine using standard conventions.
Register one points to the list of arguments.

You should not assume that input parameters are stored in contiguous memory.

. Output arguments. A subroutine returns only one output argument. This argument must be
the last in the subroutine. You can choose any format for the output argument except in
Dialogue Manager which requires the argument to have the format of the output field.

. Internal processing. A subroutine's arguments are processed as follows:
.4 An alphanumeric argument is not changed.

.4 A numeric argument is converted to floating-point double-precision format except in an
operating system RUN command or when storing the output in a variable.

d Dialogue Manager requirements. If you are writing a subroutine specifically for Dialogue
Manager, the subroutine may need to perform a conversion. For details on using a
subroutine with Dialogue Manager, see Calling a Function From a Dialogue Manager
Command on page 70.

The lengths of the calling arguments as defined in WebFOCUS must match the lengths of the
corresponding arguments defined in the subroutine.

Using Functions 601

Writing a Subroutine

Any deviation from these rules may result in problems in using the subroutine. Information
Builders recommends that you modify the subroutine to conform to the stated rules and then
link it above the line. In order to load subroutines above the line, the following are the required
link-edit options for compiling and storing the subroutine:

4 AMODE 31 (Addressing Mode - 31-bit addressing)

4 RMODE ANY (System can load this routine anywhere)

Language Considerations

602

When writing a subroutine, you must consider the following language issues:

Language and memory. If you write a subroutine in a language that brings libraries into
memory (for example, FORTRAN and COBOL), the libraries reduce the amount of memory
available to the subroutine.

FORTRAN. TSO supports FORTRAN input/output operations.

COBOL. When writing a subroutine in COBOL:

. The subroutine must use the GOBACK command to return to the calling program. STOPRUN
is not supported.

. Numeric arguments received from a request must be declared as COMP-2 (double precision
floating point).

. The format described in the DEFINE or COMPUTE command determines the format of the
output argument:

WebFOCUS Format Picture

An Xn

| S9(9) COWP

P SO(n) [VI(m]

where:

(1+n+m 12 = 8 for small packed numbers.

(1+n+tm ! 2 16 for large packed numbers.

Information Builders

A. Creating a Subroutine I

WebFOCUS Format Picture
D COWP- 2
F COwP- 1

PL/1. When writing a subroutine in PL/I:
. The RETURNS attribute cannot be used.
.4 The following attribute must be in the procedure (PROC) statement:

OPTI ONS (COBQL)

.4 Alphanumeric arguments received from a request must be declared as

CHARACTER (1)

where:
n
Is the field length as defined by the request. Do not use the VARYING attribute.
.d Numeric arguments received from a request must be declared as

DECI MAL FLOAT (16)

or

Bl NARY FLOAT (53)

Using Functions 603

Writing a Subroutine

604

-1 The format described in the DEFINE or COMPUTE command determines the format of the
output argument:

WebFOCUS Format PL/1 Declaration for Output

An CHARACTER (17)

| Bl NARY FI XED (31)

F DECI MAL FLOAT (6) or BINARY FLOAT (21)

D DECI MAL FLOAT (16) or BI NARY FLOAT (53)

P DECI VAL FI XED (15) (for small packed numbers, 8
bytes)

DECI MAL FI XED (31) (for large packed numbers, 16
bytes)

. Variables that are not arguments with the STATIC attribute must be declared. This avoids
dynamically allocating these variables every time the subroutine is executed.

C language. When writing a subroutine in C:
.l Do not return a value with the return statement.
. Declare double-precision fields as Double.

4 The format defined in the DEFINE or COMPUTE command determines the format of the
output argument:

WebFOCUS Format C Declaration for Output
An char *xxx
n

Alphanumeric fields are not terminated with a null byte
and cannot be processed by many of the string
manipulation subroutines in the run-time library.

Information Builders

A. Creating a Subroutine I

WebFOCUS Format C Declaration for Output
| | ong
* XXX
F f I oat
* XXX
D doubl e
* XXX
[No equivalent in C.

Programming a Subroutine
Consider the following when planning your programming requirements:
.4 Write the subroutine to include an argument that specifies the output field.

. If the subroutine initializes a variable, it must initialize it each time it is executed (serial
reusability).

4 Since a single request may execute a subroutine numerous times, code the subroutine as
efficiently as possible.

. If you create your subroutine in a text file or text library, the subroutine must be 31-bit
addressable.

4 The last argument, which is normally used for returning the result of the subroutine, can
also be used to provide input from the subroutine.

You can add flexibility to your subroutine by using a programming technique. A programming
technique can be one of the following:

. Executing a subroutine at an entry point. An entry point enables you to use one algorithm to
produce different results. For details, see Executing a Subroutine at an Entry Point on page
606.

.4 Creating a subroutine with multiple subroutine calls. Multiple calls enable the subroutine to
process more than 200 arguments. For details, see Including More Than 200 Arguments in
a Subroutine Call on page 607.

Using Functions 605

Writing a Subroutine

Syntax:

606

Executing a Subroutine at an Entry Point

A subroutine is usually executed starting from the first statement. However, a subroutine can
be executed starting from any place in the code designated as an entry point. This enables a
subroutine to use one basic algorithm to produce different results. For example, the DOWK
subroutine calculates the day of the week on which a date falls. By specifying the subroutine
name DOWK, you obtain a 3-letter abbreviation of the day. If you specify the entry name
DOWKL, you obtain the full name. The calculation, however, is the same.

Each entry point has a name. To execute a subroutine at an entry point, specify the entry point
name in the subroutine call instead of the subroutine name. How you designate an entry point
depends on the language you are using.

How to Execute a Subroutine at an Entry Point
{subroutine| entrypoint}y (inputl, i[nputl2 ...outfield)

where:
subroutine
Is the name of the subroutine.
ent rypor nt
Is the name of the entry point to execute the subroutine at.
inputl, input?2, ...
Are the subroutine's arguments.
outfield

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the
name of the field.

Information Builders

A. Creating a Subroutine I

Example:

Executing a Subroutine at an Entry Point

The FTOC subroutine, written in pseudocode below, converts Fahrenheit temperature to
Centigrade. The entry point FTOK (designated by the Entry command) sets a flag that causes
273 to be subtracted from the Centigrade temperature to find the Kelvin temperature. The
subroutine is:

Subroutine FTOC (FAREN, CENTI).

Let FLAG = 0.

Go to label X

Entry FTOK (FAREN, CENTI).

Let FLAG = 1.

Label X

Let CENTI = (5/9) * (FAREN - 32).

If FLAG = 1 then CENTI = CENTI - 273.

Ret ur n.
End of subroutine.

The following is a shorter way to write the subroutine. Notice that the kelv output argument
listed for the entry point is different from the centi output argument listed at the beginning of
the subroutine:

Subroutine FTOC (FAREN, CENTI).
Entry FTOK (FAREN, KELV).

Let CENTI = (5/9) * (FAREN - 32).
KELV = CENTI - 273.

Ret ur n.

End of Subroutine.

To obtain the Centigrade temperature, specify the subroutine name FTOC in the subroutine
call. The subroutine processes as:

CENTI GRADE/ D6. 2 = FTOC (TEMPERATURE, CENTI GRADE) ;
To obtain the Kelvin temperature, specify the entry name FTOK in the subroutine call. The

subroutine processes as:

KELVI N D6. 2 = FTOK (TEMPERATURE, KELVIN);

Including More Than 200 Arguments in a Subroutine Call

A subroutine can specify a maximum of 200 arguments including the output argument. To
process more than 200 arguments, the subroutine must specify two or more call statements
to pass the arguments to the subroutine.

Using Functions 607

Writing a Subroutine

Use the following technique for writing a subroutine with multiple calls:

1. Divide the subroutine into segments. Each segment receives the arguments passed by one
corresponding subroutine call.

The argument list in the beginning of your subroutine must represent the same number of
arguments in the subroutine call, including a call number argument and an output
argument.

Each call contains the same number of arguments. This is because the argument list in
each call must correspond to the argument list in the beginning of the subroutine. You may
process some of the arguments as dummy arguments if you have an unequal number of
arguments. For example, if you divide 32 arguments among six segments, each segment
processes six arguments; the sixth segment processes two arguments and four dummy
arguments.

Subroutines may require additional arguments as determined by the programmer who
creates the subroutine.

2. Include a statement at the beginning of the subroutine that reads the call number (first
argument) and branches to a corresponding segment. Each segment processes the
arguments from one call. For example, number one branches to the first segment, number
two to the second segment, and so on.

3. Have each segment store the arguments it receives in other variables (which can be
processed by the last segment) or accumulate them in a running total.

End each segment with a command returning control back to the request (RETURN
command).

4. The last segment returns the final output value to the request.

You can also use the entry point technique to write subroutines that process more than 200
arguments. For details, see Executing a Subroutine at an Entry Point on page 606.

608 Information Builders

A. Creating a Subroutine I

Syntax:

Example:

How to Create a Subroutine With Multiple Call Statements

field = subroutine (1, groupl, field)
s field = subroutine (2, group2, field);

outfield = subroutine (n, groupn, outfield;

where:
field

Is the name of the field that contains the result of the segment or the format of the field
enclosed in single quotation marks. This field must have the same format as outfield.

Do not specify field for the last call statement; use outfield.
subrouti ne

Is the name of the subroutine up to eight characters long.

Is a number that identifies each subroutine call. It must be the first argument in each
subroutine call. The subroutine uses this call number to branch to segments of code.

groupl, group2, ...
Are lists of input arguments passed by each subroutine call. Each group contains the
same number of arguments, and no more than 26 arguments each.
The final group may contain dummy arguments.

outfield

Is the field that contains the result, or the format of the output value enclosed in single
quotation marks.

In Dialogue Manager, you must specify the format. In Maintain Data, you must specify the
name of the field.

Creating a Subroutine Divided Into Segments

The ADD32 subroutine, written in pseudocode, sums 32 numbers. It is divided into six
segments, each of which adds six numbers from a subroutine call. (The total number of input
arguments is 36 but the last four are dummy arguments.) The sixth segment adds two
arguments to the SUM variable and returns the result. The sixth segment does not process
any values supplied for the four dummy arguments.

Using Functions 609

Compiling and Storing a Subroutine

The subroutine is:

Subroutine ADD32 (NUM A, B, C, D, E F, TOTAL).
If NUMis 1 then goto

else if NUMis 2 then
else if NUMis 3 then
else if NUMis 4 then
else if NUMis 5 then
el se goto | abel SIX
Label ONE

Let SUM= A + B + C +
Ret urn.

Label TWO

Let SUM= SUM+ A + B
Return

Label THREE

Let SUM= SUM+ A + B
Return

Label FOUR

Let SUM= SUM+ A+ B
Ret urn

Label FIVE

Let SUM= SUM+ A + B
Return

Label SI X

LET TOTAL = SUM + A +
Ret urn
End of subroutine

| abel ONE

goto | abel TWO
goto | abel THREE
goto | abel FOUR
goto | abel FIVE
D+ E+F

To use the ADD32 subroutine, list all six call statements, each call specifying six numbers.
The last four numbers, represented by zeros, are dummy arguments. The DEFINE command
stores the total of the 32 numbers in the SUM32 field.

DEFI NE FI LE EMPLOYEE

DUMMY/ D10 = ADD32 (1,
DUMMY/ D10 = ADD32 (2,
DUMMY/ D10 = ADD32 (3,
DUMMY/ D10 = ADD32 (4,
DUMMY/ D10 = ADD32 (5,
SUMB2/ D10 = ADD32 (6,
END

5, 7,

13, 9, 4, 2,

5 16, 2, 9, 28, 3, DUMW);

17, 12, 8, 4, 29,
28, 3, 22, 7, 18,
15, 4, DUMWY);
0, 0, 0, 0, SUMB2);

8, 19,
3, 27,

7, 25,

Compiling and Storing a Subroutine

610

DUMMWY) ;
6, DUVMY);
1, DUMWY);

After you write a subroutine, you need to compile and store it. This topic discusses compiling
and storing your subroutine for Windows and z/0S.

Information Builders

A. Creating a Subroutine I

Compiling and Storing a Subroutine on z/0S

Compile the subroutine, then link-edit it and store the module in a load library. If your
subroutine calls other subroutines, compile and link-edit all the subroutines together in a
single module. Do not store the subroutine in the FUSELIB load library (FUSELIB.LOAD), as it
may be overwritten when your site installs the next release of WebFOCUS.

If the subroutine is written in PL/I, include the following when link-editing the subroutine

ENTRY subrouti ne

where:
subrouti ne

Is the name of the subroutine.

Compiling and Storing a Subroutine on UNIX

Run the program GENCPGM, which creates a .DLL file. Then check the location of your dynamic
link functions library file as specified by the IBICPG environment variable, and save the .DLL
file to this location.

Compiling and Storing a Subroutine on Windows

Run the program GENCPGM, which creates a .DLL file. Then check the location of your dynamic
link functions library file as specified by the IBICPG environment variable, and save the .DLL
file to this location.

Testing the Subroutine

After compiling and storing a subroutine, you can test it in a report request. In order to access
the subroutine, you need to issue the ALLOCATE command for z/0S.

If an error occurs during testing, check to see if the error is in the request or in the subroutine.

Procedure: How to Determine the Location of Error
You can determine the location of an error with the following;:
1. Write a dummy subroutine that has the same arguments but returns a constant.
2. Execute the request with the dummy subroutine.

If the request executes the dummy subroutine normally, the error is in your subroutine. If the
request still generates an error, the error is in the request.

Using Functions 611

Using a Custom Subroutine: The MTHNAM Subroutine

Using a Custom Subroutine: The MTHNAM Subroutine

This topic discusses the MTHNAM subroutine as an example. The MTHNAM subroutine
converts a number representing a month to the full name of that month. The subroutine
processes as follows:

1. Receives the input argument from the request as a double-precision number.

2. Adds .000001 to the number which compensates for rounding errors. Rounding errors can
occur since floating-point numbers are approximations and may be inaccurate in the last
significant digit.

Moves the number into an integer field.
If the number is less than one or greater than 12, it changes the number to 13.

Defines a list containing the names of months and an error message for the number 13.

o o > w

Sets the index of the list equal to the number in the integer field. It then places the
corresponding array element into the output argument. If the number is 13, the argument
contains the error message.

7. Returns the result as an output field.

Writing the MTHNAM Subroutine
The MTHNAM subroutine can be written in FORTRAN, COBOL, PL/I, BAL Assembler, and C.

Reference: MTHNAM Subroutine Written in FORTRAN
This is a FORTRAN version of the MTHNAM subroutine where:
MI'H
Is the double-precision number in the input argument.
MONTH

Is the name of the month. Since the character string 'September' contains nine letters,
MONTH is a three element array. The subroutine passes the three elements back to your
application which concatenates them into one field.

Is a two dimensional, 13 by 3 array, containing the names of the months. The last three
elements contain the error message.

| MTH

Is the integer representing the month.

612 Information Builders

A. Creating a Subroutine I

The subroutine is:

SUBROUTI NE MTHNAM (MTH, MONTH)

REAL* 8 MTH

I NTEGER*4 MONTH(3), A(13, 3), | MIH

DATA

+ AC 1,1)/"IANU/, A(1,2)/ ARY '/, A(1,3)/" ",
+ A(2,1)/"FEBR /, A(2,2)/'UARY'/, A(2,3)/" ",
+ Al 3,1)/"MARC /, A(3,2)/'H '/, Al 3,3)/" ",
+ A 4,1)/"APRI' [, Al 4,2)/'L '/, Al 4,3)/" ",
+ Al 5,1)/"MAY '/, A(5,2)/" I, A(5,3)/" ",
+ Al 6,1)/"JUNE /, A(6,2)/" "/, Al 6,3)/" ",
+ AC 7,130y 1, A 7,2)1" 1, A 7,3)0 ",
+ Al 8,1)/"AUGU /, Al 8,2)/'ST '/, Al 8,3)/" ",
+ Al 9,1)/"SEPT'/, A(9,2)/' EMBE /, A(9,3)/'R '/,
+ A(10,1)/' OCTO /, A(10,2)/'BER '/, A(10,3)/" ",
+ A(11,1)/' NOVE /, A(11,2)/' MBER /, A(11,3)/' ",
+ A(12,1)/' DECE /, A(12,2)/' MBER /, A(12,3)/" ",
+ A(13,1)/'**ER /, A(13,2)/'ROR*'/, A(13,3)/'* '/

| MTH=MTH+0. 000001
IF (IMH.LT. 1 .0R |IMH.GI. 12) | MIH=13
DO 1 1=1,3
1 MONTH(I)=A(I MTH, 1)
RETURN
END
Reference: MTHNAM Subroutine Written in COBOL
This is a COBOL version of the MTHNAM subroutine where:
MONTH- TABLE
Is a field containing the names of the months and the error message.
MLI NE

Is a 13-element array that redefines the MONTH-TABLE field. Each element (called A)
contains the name of a month; the last element contains the error message.

Is one element in the MLINE array.
I X

Is an integer field that indexes MLINE.
| MTH

Is the integer representing the month.
MI'H

Is the double-precision number in the input argument.

Using Functions 613

Using a Custom Subroutine: The MTHNAM Subroutine

MONTH

Is the name of the month corresponding to the integer in IMTH.

The subroutine is:

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. MIHNAM

ENVI RONVENT DI VI SI ON
CONFI GURATI ON SECTI ON

SOURCE- COVPUTER
OBJECT- COVPUTER

DATA DI VI SI ON

WORKI NG- STORAGE SECTI ON.

01 MONTH- TABLE

05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(9)
X(9)
X(9)
X(9)
X(9)
X(9)
X(9)

| BM 370.
| BM 370.

VALUE
VALUE
VALUE
VALUE

VALUE '
VALUE '
VALUE '
VALUE ' .
' SEPTEMBER .
' OCTOBER .
' NOVEMBER ' .
' DECEMBER ' .
" FERRORF* .

VALUE
VALUE
VALUE
VALUE
VALUE

" JANUARY
' FEBRUARY

¢
g

01 M.I ST REDEFI NES MONTH- TABLE

05 M.INE OCCURS 13 TI MES | NDEXED BY I X.
10 A PIC X(9).
Pl C S9(5) COMP.

01 I MH

LI NKAGE SECTI ON.
COWP- 2.

01 MIH
01 MONTH

PIC X(9).

PROCEDURE DI VI SI ON USI NG MI'H, MONTH

BEG 1.

ADD 0. 000001 TO MrH.
MOVE MIH TO | MTH
IF IMH< +1 OR > 12

SET | X TO +13

ELSE

SET 1X TO | MTH.
MOVE A (1X) TO MONTH,

GOBACK.

Reference: MTHNAM Subroutine Written in PL/I

614

This is a PL/I version of the MTHNAM subroutine where:

MIHNUM

Is the double-precision number in the input argument.

Information Builders

A. Creating a Subroutine I

FULLMTH
Is the name of the month corresponding to the integer in MONTHNUM.
MONTHNUM

Is the integer representing the month.

MONTH_TABLE

Is a 13-element array containing the names of the months. The last element contains the
error message.

The subroutine is:

MIHNAM

DECLARE
DECLARE
DECLARE
DECLARE

PROC(MTHNUM FULLMTH) OPTI ONS(COBOL) ;
MTHNUM DECI MAL FLOAT (16) ;
FULLMTH CHARACTER (9) ;
MONTHNUM FI XED BIN (15,0) STATIC ;
MONTH_TABLE(13) CHARACTER (9) STATIC
INIT (' JANUARY' ,
' FEBRUARY' ,
" MARCH
"APRIL',
Y\
"JUNE'
"JULY',
' AUGUST' ,
' SEPTEMBER |
' OCTOBER
' NOVEMBER ,
' DECEMBER ,
' x* ERRORF*')

MONTHNUM = MIHNUM + 0. 00001 ;
| F MONTHNUM < 1 | MONTHNUM > 12 THEN

RETURN,

MONTHNUM = 13 ; FULLMIH = MONTH_TABLE(MONTHNUM

END MIHNAM

Using Functions

615

Using a Custom Subroutine: The MTHNAM Subroutine

Reference:

616

MTHNAM Subroutine Written in BAL Assembler

This is a BAL Assembler version of the MTHNAM subroutine:

*
*
* A SIMPLE MAIN ASSEMBLE ROUTI NE THAT CALLS THE LE CALLABLE SERVI CES
*
*
MIHNAM CEEENTRY PPA=NMAI NPPA, AUTO=WORKSI ZE, MAI N=NO
USI NG VORKAREA, 13
*
L 3,0(0, 1) LOAD ADDR OF FIRST ARG |NTO R3
LD 4,=D 0.0 CLEAR OUT FPR4 AND FPR5
LE 6,0(0, 3) FP NUVBER | N FPR6
LPER , ABS VALUE | N FPR4
AW 4, =D 0.00001" ADD ROUNDI NG CONSTANT
AW 4, DZERO SHIFT OUT FRACTI ON
STD 4, FPNUM MOVE TO MEMORY
L 2, FPNUM+4 I NTEGER PART IN R2
™ 0(3), B 10000000' CHECK SI GN OF ORI G/ NAL NO
BNO POS BRANCH | F POSI TI VE
LCR 2,2 COVPLEMENT | F NEGATI VE
*
PCS LR 3,2 COPY MONTH NUMBER | NTO R3
C 2,=F 0’ I'S I T ZERO OR LESS?
BNP I NVALI D YES. SO I NVALI D
C 2,=F 12' I'S I T GREATER THAN 12?
BNP VALI D NO. SO VALI D
INVALID LA 3,13(0, 0) SET R3 TO PO NT TO | TEM 13 (ERROR)
*
VALID SR 2,2 CLEAR OUT R2
M 2,=F' 9 MULTI PLY BY SHIFT I N TABLE
*
LA 6, MTH(3) GET ADDR OF | TEM IN R6

Information Builders

A. Creating a Subroutine I

L
wC

4,4(0,1) GET ADDR OF SECOND ARG IN R4
0(9,4),0(6) MOVE | N TEXT

* TERM NATE THE CEE ENVI RONMENT AND RETURN TO THE CALLER

CEETERM RC=0

* CONSTANTS
*
DS 0D ALI GNVENT
FPNUM DS D FLOATI NG POl NT NUVBER
DZERO DC X' 4E00000000000000" SHI FT CONSTANT
MTH DC CL9' DUMMYI TEM MONTH TABLE
DC CL9' JANUARY
DC CL9' FEBRUARY'
DC CL9' MARCH
DC CL9' APRI L'
DC CLY' MAY
DC CLY' JUNE
DC CLY' JULY
DC CL9' AUGUST
DC CL9' SEPTEMBER
DC CL9' CCTOBER
DC CL9' NOVENMBER
DC CL9' DECEMBER
DC CL9' ** ERROR* *'
*
MAI NPPA CEEPPA CONSTANTS DESCRI BI NG THE CODE BLOCK
*
* THE WORKAREA AND DSA
*
WORKAREA DSECT
ORG *+CEEDSASZ LEAVE SPACE FOR THE DSA FI XED PART
PLIST DS oD
PARML DS A
PARM® DS A
PARVB DS A
PARME DS A
PARVG DS A
*
FOCPARML DS F SAVE FI RST PARAVETER PASSED
FOCPARM2 DS F SAVE SECOND PARAMETER PASSED
*
DS oD
WORKSI ZE EQU ~ *- WORKAREA
CEEDSA MAPPI NG OF THE DYNAM C SAVE AREA
CEECAA MAPPI NG OF THE COVMON ANCHOR AREA
*
END MTHNAM NOM NATE MTHNAM AS THE ENTRY POl NT

/*

Using Functions

617

Using a Custom Subroutine: The MTHNAM Subroutine

Reference: MTHNAM Subroutine Written in C

This is a C language version of the MTHNAM subroutine:

voi d nt hnan(doubl e *, char *);

voi d m hnam(nt h, nont h)

doubl e *nt h;

char *nont h;

{

char *nnonth[13] = {"January
"February "
"March
"Apri l
" May
"June
"July
" August
" Sept enber "
"Cct ober "
"Novenber "
"Decenber "
"**Error**"};

int inmh, |oop;

inth = *mth + .00001;

inmth = (imh <1]| inmth >12 ? 13 : inth);
for (l1oop=0;lo00p < 9;1o00p++)

nont h[1 oop] = nnmonth[inth-1][1 oop];

Calling the MTHNAM Subroutine From a Request

You can call the MTHNAM subroutine from a report request.

Example: Calling the MTHNAM Subroutine

The DEFINE command extracts the month portion of the pay date. The MTHNAM subroutine
then converts it into the full name of the month, and stores the name in the PAY_MONTH field.
The report request prints the monthly pay of Alfred Stevens.

DEFI NE FI LE EMPLOYEE

MONTH_NUM M = PAY_DATE;

PAY_NMONTH A12 = MIHNAM (MONTH NUM PAY_NMONTH) ;
END

TABLE FI LE EMPLOYEE

PRI NT PAY_MONTH GROSS

BY EMP_I D BY FIRST NAME BY LAST NAME

BY PAY_DATE

IF LN TS STEVENS

END

618 Information Builders

A. Creating a Subroutine I

The output is:

EMP_I D FI RST NAME LAST_NAME PAY_DATE PAY_MONTH GRCSS

071382660 ALFRED STEVENS 81/ 11/ 30 NOVEMBER $833. 33
81/12/31 DECEMBER $833. 33
82/ 01/ 29 JANUARY $916. 67
82/ 02/ 26 FEBRUARY $916. 67
82/ 03/ 31 MARCH $916. 67
82/04/30 APRIL $916. 67
82/ 05/ 28 NVAY $916. 67
82/ 06/ 30 JUNE $916. 67
82/ 07/ 30 JULY $916. 67
82/08/31 AUGUST $916. 67

Subroutines Written in REXX

Reference:

A request can call a subroutine coded in REXX. These subroutines, also called FUSREXX
macros, provide a 4GL option to the languages supported for user-written subroutines.

REXX subroutines are supported in the z/0S environment. A REXX subroutine contains REXX
source code. Compiled REXX code is not supported.

A REXX subroutine contains REXX source code. Compiled REXX code is not supported.

REXX subroutines are not necessarily the same in all operating environments. Therefore, some
of the examples may use REXX functions that are not available in your environment.

Because of CPU requirements, the use of REXX subroutines in large production jobs should be
monitored carefully.

For more information on REXX subroutines, see your REXX documentation.

Storing and Searching for a REXX Subroutine

To store a REXX subroutine, DDNAME FUSREXX must be allocated to a PDS. This library is
searched before other z/0S libraries.

The search order for a REXX subroutine is:

1. FUSREXX.
2. Standard z/0S search order.

Using Functions 619

Subroutines Written in REXX

Syntax:

620

How to Call a REXX Subroutine

DEFI NE FI LE f//enane
fiel dnanel {An|\ ny = subname(/nlenl, inparnd, ..., outlen, outparn);
END

or

{ DEFI NE| COWPUTE} f/ el dnamel { An|| ny = subname(inl enl, inparmt, ...,
out ! en, outparm;

or
-SET &var = subname(inlenl, [nparml, ..., outlen, outparny;
where:
fiel dname

Is the field that contains the result.
An, I'n

Is the format of the field that contains the result.
subname

Is the name of the REXX subroutine.
inlenl, inparml ...

Are the input parameters. Each parameter consists of a length and an alphanumeric
parameter value. You can supply the value, the name of an alphanumeric field that
contains the value, or an expression that returns the value. Up to 13 input parameter pairs
are supported. Each parameter value can be up to 256 bytes long.

Dialogue Manager converts numeric arguments to floating-point double-precision format.
Therefore, you can only pass alphanumeric input parameters to a REXX subroutine using -
SET.

out! en, outparm

Is the output parameter pair, consisting of a length and a result. In most cases, the result
should be alphanumeric, but integer results are also supported. The result can be a field
or a Dialogue Manager variable that contains the value, or the format of the value
enclosed in single quotation marks. The return value can be a minimum of one byte long
and a maximum (for an alphanumeric value) of 256 bytes.

Note: If the value returned is an integer, outlen must be 4 because WebFOCUS reserves
four bytes for integer fields.

Information Builders

A. Creating a Subroutine I

Example:

&var

Is the name of the Dialogue Manager variable that contains the result.

Returning the Day of the Week
The REXX subroutine DOW returns the day of the week corresponding to the date an employee

was hired. The routine contains one input parameter pair and one return field pair.

DEFI NE FI LE EMPLOYEE

1. AHDT/ A6 = EDI T(H RE_DATE) ;

2. DAY_OF_VEEK/ A9 WTH AHDT = DOWN 6, AHDT, 9, DAY_OF_MEEK);
END

TABLE FI LE EMPLOYEE
PRI NT LAST_NAME H RE_DATE DAY OF WEEK
END

The procedure processes as follows:

1. The EDIT function converts HIRE_DATE to alphanumeric format and stores the result in a
field with the format AG.

2. The result is stored in the DAY_OF_THE_WEEK field, and can be up to nine bytes long.

The output is:

LAST_NAVE H RE_DATE DAY_OF WEEK
STEVENS 80/ 06/ 02 MNonday

SM TH 81/07/ 01 Wednesday
JONES 82/ 05/01 Saturday
SM TH 82/ 01/ 04 Monday
BANNI NG 82/ 08/ 01 Sunday

I RVI NG 82