
A
pplication Studio

Version 8 Release 1.0

Maintain Data Language Reference
Release 8.2 Version 01

October 27, 2016

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2016, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

Preface . 11

Documentation Conventions . 11

Related Publications . 12

Customer Support . 12

Information You Should Have .13

User Feedback . 14

Information Builders Consulting and Training . 14

1. Language Rules Reference .15

Case Sensitivity . 16

Specifying Names . 17

Reserved Words .19

What Can You Include in a Procedure? . 20

Multi-Line Commands . 21

Terminating Command Syntax . 22

Adding Comments . 22

2. Expressions Reference . 25

Types of Expressions . 25

Expressions and Variable Formats. .27

Writing Numeric Expressions . 27

Order of Evaluation. .29

Evaluating Numeric Expressions. 30

Identical Operand Formats. 30

Different Operand Formats. 31

Continental Decimal Notation. .32

Writing Date Expressions . 32

Formats for Date Values. 33

Evaluating Date Expressions. .34

Selecting the Format of the Result Variable. .35

Manipulating Dates in Date Format. 35

Using a Date Constant in an Expression. 35

Extracting a Date Component. 35

Maintain Data Language Reference 3

Combining Variables With Different Components in an Expression. 36

Different Operand Date Formats. 36

Using Addition and Subtraction in a Date Expression. .37

Writing Date-Time Expressions . 38

Manipulating Date-Time Values Directly. 41

Comparing and Assigning Date-Time Values. 41

Date-Time Subroutines. 42

Writing Character Expressions .44

Concatenating Character Strings. 45

Evaluating Character Expressions. 45

Variable-Length Character Variables. 47

Writing Logical Expressions . 48

Relational Expressions. 49

Boolean Expressions. 49

Evaluating Logical Expressions. .50

Writing Conditional Expressions . 51

Handling Null Values in Expressions .52

Assigning Null Values: The MISSING Constant. 52

Conversion in Mixed-Format Null Expressions. 53

Testing Null Values. .53

3. Command Reference . 55

Language Summary .55

Defining a Procedure. 55

Defining a Maintain Data Function (a Case). .55

Defining Blocks of Code. 56

Transferring Control. 56

Executing Procedures. .56

Using Loops. .57

Using Forms. 57

Defining Classes. .57

Creating Variables. 57

Assigning Values. .57

Contents

4 Information Builders

Manipulating Stacks. .57

Selecting and Reading Records. 58

Conditional Actions. .59

Writing Transactions. .60

Setting Reporting Server Parameters. 61

Using Libraries of Classes and Functions. .61

Messages and Logs. .61

BEGIN . 62

CALL .63

CASE . 67

Calling a Function: Flow of Control. .69

Passing Parameters to a Function. 69

Using the Return Value of a Function. 70

Using the Top Function. 71

COMMIT .71

COMPUTE . 72

Using COMPUTE to Call Functions. 76

Using COMPUTE to Dynamically Change the Property of an Object. 77

COPY . 77

DECLARE .82

Local and Global Declarations. 84

DELETE . 85

DESCRIBE . 88

Class Member Functions. .91

Defining and Using Superclasses and Subclasses. 98

END . 101

EXEC . 101

FocCount .103

FocCurrent . 103

FocError .104

FocErrorRow . 104

FocFetch . 104

FocIndex . 104

Contents

Maintain Data Language Reference 5

FocMsg . 105

GOTO .106

Using GOTO With Data Source Commands. 109

GOTO and ENDCASE. 109

GOTO and PERFORM. 109

IF . 109

Coding Conditional COMPUTE Commands. 112

INCLUDE . 112

Data Source Position. .115

Null Values. 116

INFER .116

Defining Non-Data Source Columns. 118

MAINTAIN . 118

Specifying Data Sources With the MAINTAIN Command. 120

Calling a Procedure From Another Procedure. .120

MATCH . 121

How the MATCH Command Works. .123

MODULE . 123

What You Can and Cannot Include in a Library. 124

NEXT . 124

Copying Data Between Data Sources. 127

Loading Multi-Path Transaction Data. .127

Retrieving Multiple Rows: The FOR Phrase. .128

Using Selection Logic to Retrieve Rows. 128

Using NEXT After a MATCH. 131

Using NEXT for Data Source Navigation: Overview. 132

Data Source Navigation: Using NEXT With One Segment. .133

Data Source Navigation: Using NEXT With Multiple Segments. 134

Data Source Navigation: Using NEXT Following NEXT or MATCH. 136

Unique Segments. .139

ON MATCH . 139

ON NEXT . 140

ON NOMATCH .141

Contents

6 Information Builders

ON NONEXT . 142

PERFORM . 143

Using PERFORM to Call Maintain Data Functions. 144

Using PERFORM With Data Source Commands. .144

Nesting PERFORM Commands. .144

Avoiding GOTO With PERFORM. .145

REPEAT . 145

Branching Within a Loop. 151

REPOSITION . 152

REVISE . 153

ROLLBACK . 156

DBMS Combinations. 157

SAY . 157

Writing Segment and Stack Values. 158

Choosing Between the SAY and TYPE Commands. 158

SET . 158

showLayer .160

STACK CLEAR .160

STACK SORT . 161

Sorting Data With the Using CASE_INSENSITIVE Parameter. 162

SYS_MGR . 163

SYS_MGR.DBMS_ERRORCODE .164

SYS_MGR.ENGINE .164

SYS_MGR.FOCSET . 166

SYS_MGR.GET_INPUTPARAMS_COUNT . 167

SYS_MGR.GET_NAMEPARM .168

SYS_MGR.GET_POSITIONPARM . 169

SYS_MGR.PRE_MATCH .170

TYPE . 171

Including Variables in a Message. 172

Embedding Horizontal Spacing Information. 172

Embedding Vertical Spacing Information. 173

Coding Multi-Line Message Strings. 173

Contents

Maintain Data Language Reference 7

Justifying Variables and Truncating Spaces. 173

Writing Information to a File. 174

UPDATE .174

Update and Transaction Variables. .177

Data Source Position. .178

Unique Segments. .178

Winform .178

Displaying Default Values in a Form. 180

WINFORM SET . 180

A. Ensuring Transaction Integrity . 181

Transaction Integrity Overview .181

Why Is Transaction Integrity Important? .182

Defining a Transaction . 183

When Does a Data Source Command Cause a Transaction to Fail?. 184

Canceling a Transaction. 184

Transactions and Data Source Position. 185

How Large Should a Transaction Be?. 185

Designing Transactions That Span Procedures. 185

Designing Transactions That Span Data Source Types. 187

Designing Transactions in Multi-Server Applications. 187

When an Application Ends With an Open Transaction. 187

Evaluating Whether a Transaction Was Successful . 188

Concurrent Transaction Processing . 188

Ensuring Transaction Integrity for FOCUS Data Sources . 190

Setting COMMIT. 190

Sharing Access to FOCUS Data Sources. 191

How the FOCUS Database Server and Change Verification Work. 192

Selecting Which Segments Will Be Verified for Changes. 193

Identifying the FOCUS Database Server. 194

Using Report Procedures and a FOCUS Database Server. 195

Accessing Report Procedures When Using a FOCUS Database Server. 196

Sharing Data Sources With Legacy MODIFY Applications. 197

Contents

8 Information Builders

Ensuring Transaction Integrity for DB2 Data Sources . 197

Using Transaction Locking to Manage DB2 Row Locks. 199

Using Change Verification to Manage DB2 Row Locks. .201

B. Developing Classes and Objects . 205

What Are Classes and Objects? . 205

Class Properties: Member Variables and Member Functions. 206

Inheritance: Superclasses and Subclasses. 208

Defining Classes . 208

Reusing Classes: Class Libraries . 215

Declaring Objects . 216

C. MNTCON Commands .219

MNTCON CDN_FEXINPUT . 219

MNTCON COMPILE . 221

MNTCON EX . 221

Invoking Maintain Procedures: Passing Parameters. .223

MNTCON EXIT_WARNING . 224

MNTCON MATCH_CASE . 224

MNTCON RADIO_BUTTON_EMIT_TEXT . 226

MNTCON REMOTESTYLE . 226

MNTCON RUN . 227

Contents

Maintain Data Language Reference 9

Contents

10 Information Builders

Preface

This documentation provides a reference for the Maintain Data language. It is intended for
application developers who are responsible for planning the enterprise software environment
and for operating App Studio Maintain Data.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 Language Rules Reference Describes the rules for using the Maintain Data
language.

2 Expressions Reference Describes the rules for combining variables,
constants, operators, and functions to produce
different types of expressions.

3 Command Reference Describes the purpose, syntax, and usage notes for
Maintain Data commands and system variables.

A Ensuring Transaction Integrity Describes how you can ensure transaction integrity
at the application and data source levels.

B Developing Classes and
Objects

Explains how your project can benefit from using
classes and objects, and describes how to define
classes, declare objects, and use class libraries.

C MNTCON Commands Describes the MNTCON commands that are
available in legacy Maintain.

Documentation Conventions

The following table describes the documentation conventions that are used in this manual.

Convention Description

THIS TYPEFACE

or

this typeface

Denotes syntax that you must enter exactly as shown.

Maintain Data Language Reference 11

Convention Description

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or
dialog box option that you can click or select.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices. Type one of them, not the braces.

[] Indicates a group of optional parameters. None are required, but
you may select one of them. Type only the parameter in the
brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

... Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis (...).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

Visit our Technical Content Library at http://documentation.informationbuilders.com. You can
also contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have any questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

Related Publications

12 Information Builders

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
www.informationbuilders.com also provides usage techniques, diagnostic tips, and answers to
frequently asked questions.

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities. Please be ready to provide your
six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have

To help our consultants answer your questions effectively, be prepared to provide the following
information when you call:

Your six-digit site code (xxxx.xx).

Your WebFOCUS configuration:

The front-end software you are using, including vendor and release.

The communications protocol (for example, TCP/IP or HLLAPI), including vendor and
release.

The software release.

Your server version and release. You can find this information using the Version option
in the Web Console.

The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

The Master File and Access File.

The exact nature of the problem:

Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

Preface

Maintain Data Language Reference 13

Provide the error message and return code, if applicable.

Is this related to any other problem?

Has the procedure or query ever worked in its present form? Has it been changed recently?
How often does the problem occur?

What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

Is this problem reproducible? If so, how?

Have you tried to reproduce your problem in the simplest form possible? For example, if you
are having problems joining two data sources, have you tried executing a query containing
just the code to access the data source?

Do you have a trace file?

How is the problem affecting your business? Is it halting development or production? Do
you just have questions about functionality or documentation?

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. You can contact us through our website,
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

User Feedback

14 Information Builders

Chapter1
Language Rules Reference

You can use the App Studio Maintain Data language more effectively if you are familiar
with its standards, including:

When to use uppercase and lowercase characters.

When to spell out keywords in full.

How to name fields, functions, and other procedure components.

Which words to avoid using as names of procedure components.

What sort of components you can include in a procedure.

How to continue a command onto additional lines.

How to terminate command syntax.

How to include comments in a procedure.

Data source descriptions and App Studio procedures are not part of the Maintain Data
language and are subject to different rules. The language rules for data source
descriptions are discussed in the Describing Data With WebFOCUS Language manual. The
language rules for App Studio procedures are discussed in the Creating Reports With
WebFOCUS Language manual.

In this chapter:

Case Sensitivity

Specifying Names

Reserved Words

What Can You Include in a Procedure?

Multi-Line Commands

Terminating Command Syntax

Adding Comments

Maintain Data Language Reference 15

Case Sensitivity

By default, Maintain Data does not usually distinguish between uppercase and lowercase
letters. You can enter keywords and names, such as data source and field names, in any
combination of uppercase and lowercase letters. The only two exceptions are the MAINTAIN
and END keywords used to begin and end a request. These keywords must be uppercase.

However, if mixed-case or NLS field and segment names are used in your application by
enabling the MNTCON MATCH_CASE command, you must be consistent with the case style
used in the names you give your variables and other application components. In addition,
function names must match exactly as documented. However, Maintain Data keywords, such
as Repeat and Include, do not need any special consideration when using this feature. For
more information on MNTCON MATCH_CASE, see MNTCON MATCH_CASE on page 224.

For example, the following ways of specifying the REPEAT command are equally valid, and
Maintain Data always considers them to be identical:

REPEAT

repeat

RePeat

REPeat

By default, you can mix uppercase and lowercase to make variable names more
understandable to a reader. For example, the stack name SALARYSTACK could also be
represented as SalaryStack.

Note: In this content, sample Maintain Data source code shows keywords in uppercase, and
user-defined names, such as field and stack names, in mixed-case. This is only a document
convention, not a Maintain Data language rule. As already explained, you can code Maintain
Data commands in uppercase and lowercase.

While, by default, Maintain Data is not sensitive to the case of syntax, it is sensitive to the
case of data. For example, the MATCH command distinguishes between the values SMITH and
Smith.

Note: Any Master Files that Maintain Data accesses must have field and segment names in
uppercase, unless the MATCH_CASE feature is enabled.

Case Sensitivity

16 Information Builders

Specifying Names

Maintain Data offers you flexibility when naming and referring to procedure components, such
as fields, functions, Winform buttons, and stacks. When naming a component, be aware of the
following guidelines:

Length of names. Unqualified names that are defined in a Maintain Data procedure (such
as the unqualified names of Winforms, functions, and stacks) can be up to 66 characters
long.

There is no limit on the length of a qualified name, as long as the length of each of its
component unqualified names does not exceed 66 characters.

Master File names, and names defined within a Master File (such as names of fields and
segments), are subject to standard Master File language conventions, as defined in the
Describing Data With WebFOCUS Language manual.

Procedure name length is dependent on the operating system.

Valid characters in a name. All names must begin with a letter, and can include any
combination of letters, numbers, and underscores (_).

Identical names. Most types of items in a Maintain Data procedure can have the same
name, but this is not recommended. Data sources, stacks, and Winforms cannot have the
same name within the same Maintain Data procedure.

For example, you may give the same name to fields in different segments, data sources,
and stacks, and to controls in different Winforms, as long as you prevent ambiguous
references by qualifying the names. A data source, a stack, and a Winform used in the
same procedure can never have the same name.

Qualified names. In general, whenever you can qualify a name, you should do so.

Maintain Data requires that the qualification character be a period (.). The QUALCHAR
parameter of the SET command must therefore be set to the default.

If a qualified name cannot fit onto the current line, you can break the name at the end of
any one of its components, and continue it onto the next line. The continued name must
begin with the qualification character. In the following example, the continued line is
indented for clarity:

FOR ALL NEXT ThisIsAVeryLongDataSourceName.ThisIsAVeryLongSegmentName
 .ThisIsAVeryLongFieldName INTO CreditStack;

1. Language Rules Reference

Maintain Data Language Reference 17

You can qualify the names of:

Controls. You can qualify a control name with the name of the Winform in which it is
found. For example, if a button named UpdateButton is in a form named CreditForm, you
could refer to the button as:

CreditForm.UpdateButton

Member functions and member variables. When referring to the member functions and
member variables of an object, you should always use the fully-qualified name of the
function or variable (that is, the name in the Winform objectname.functionname or
objectname.variablename).

Fields and columns. You can qualify a variable name with the name of the data source,
segment, and/or stack in which it is found, using a period (.) as the qualification
character.

Qualification is important when:

You are working with two or more data sources in one Maintain Data procedure, and the
data sources have field names in common.

A field is present in both a data source and a stack, but it is not clear from the context
which one is being referenced.

For example, both the Employee and JobFile data sources have a field named JobCode. If
you want to issue a NEXT command for the JobCode field in Employee, you would use a
qualified field name:

NEXT Employee.JobCode;

You can qualify a field name with any combination of its data source, segment, and stack
names. When including a stack name, you have the option of specifying a particular row in
the stack. If you use several qualifiers, they must conform to the following order:

stackname(row).datasourcename.segmentname.fieldname

If you refer to a field using a single qualifier, such as Sales in the following example, and
the qualifier is the name of both a segment and a stack, Maintain Data assumes that the
name refers to the stack. To refer to the segment in this case, use the data source
qualifier.

Sales.Quantity

Truncated names. You must spell all field names in full. Maintain Data does not recognize
truncated names, such as Dep for a field named Department.

Specifying Names

18 Information Builders

Name aliases. You cannot refer to a field by its alias in a Maintain Data procedure. (An
alias is defined by the ALIAS attribute of a field in a Master File.)

Reserved Words

The words in the following table are Maintain Data keywords and are reserved. You may not
use them as identifiers. Identifiers are names of project components (such as, but not limited
to, classes, functions, data sources, data source segments, stacks, stack columns, scalar
variables, and Winforms).

In addition to these words, you may not use the names of built-in functions to name functions
that you create yourself. See the Using Functions manual for a complete list of built-in
functions.

If a procedure uses an existing Master File that employs a reserved word as a field name, you
can refer to the field by qualifying its name with the name of the segment or data source.

Note: All reserved words can be written in any case, even when using MNTCON MATCH_CASE
ON.

ALL AND AS ASK AT

BEGIN BIND BY CALL CASE

CFUN CLASS CLEAR COMMIT COMPUTE

CONTAINS CONTENTS COPY current DATA

DECLARE DECODE DELETE DEPENDENTS DESCRIBE

DFC DIV DROP DUMP ELSE

END ENDBEGIN ENDCASE ENDDESCRIBE ENDREPEAT

EQ EQ_MASK ERRORS EVENT EXCEEDS

EXEC EXECSQL EXIT EXITREPEAT EXPORT

FALSE FILE FILES FIND FocCount

FocCurrent FocEnd FocEndCase FocEOF FocError

FocErrorRow FocIndex FOR FROM GE

1. Language Rules Reference

Maintain Data Language Reference 19

GET GOTO GT HERE HIGHEST

HOLD IF IN IMPORT INCLUDE

INFER INTO IS IS_LESS_THAN IS_NOT

KEEP LE LIKE LT MAINTAIN

MATCH MISSING MOD MODULE MOVE

NE NE_MASK NEEDS NEXT NO

NOT NOWAIT OBJECT OF OFF

OMITS ON OR PATH PERFORM

QUIT REPEAT REPOSITION RESET RETURN

RETURNS REVISE ROLLBACK SAY SELECTS

self SET SOME SORT SQL

STACK TAKES THEN TO TOP

TRIGGER TRUE TYPE UNLIKE UNTIL

UPDATE WAIT WHERE WHILE WINFORM

XOR YES YRT

What Can You Include in a Procedure?

You can include the following items in a Maintain Data procedure:

Maintain Data language commands. All Maintain Data commands must be located within a
Maintain Data function, except for the MAINTAIN, MODULE, DESCRIBE, CASE, and END
commands, as well as global DECLARE commands, all of which must be located outside of
a function. In the Maintain Data Editor, commands are displayed in blue by default. For
more information, see Command Reference on page 55.

Comments. In the Maintain Data Editor, comments are displayed in green by default. For
more information, see Adding Comments on page 22.

Blank lines. Add blank lines to separate functions and other logic so that the procedure is
easier to read.

What Can You Include in a Procedure?

20 Information Builders

If a Maintain Data procedure is a starting procedure (sometimes known as a root procedure),
and it is not called by any other Maintain Data procedures, it can also contain Dialogue
Manager commands preceding the MAINTAIN command. Dialogue Manager commands are
described in the Developing Reporting Applications Developing Applications manual.

Multi-Line Commands

You can continue almost all Maintain Data commands onto additional lines. The continued
command can begin in any column, and can be continued for any number of lines.

The only exceptions are the TYPE command, which uses a special convention for continuing,
and the beginning of the REPEAT command, which cannot be continued.

In the following example, all continued lines are indented for clarity:

MAINTAIN FILES VideoTrk
 AND Movies
.
.
.
IF CustInfo.FocIndex GT 1
 THEN COMPUTE CustInfo.FocIndex = CustInfo.FocIndex - 1;
 ELSE COMPUTE CustInfo.FocIndex = CustInfo.FocCount;

1. Language Rules Reference

Maintain Data Language Reference 21

Terminating Command Syntax

When you code a Maintain Data command, you terminate its syntax using one of the following:

A semicolon (;). For most commands that can be terminated with a semicolon, the
semicolon is optional. Even when it is optional, supplying it is recommended.

Coding suggestion: Supplying optional semicolons is preferable, because if you omit them,
when you invoke functions in that procedure, you must do so using the COMPUTE or
PERFORM commands. By supplying optional semicolons in a procedure, you can invoke
functions more directly, by simply specifying their names. Supplying optional semicolons is
also preferable because if you supply them in a procedure, you can code assignment
statements more succinctly by omitting the COMPUTE keyword.

For example, the following NEXT command, assignment statement, and invocation of the
DisplayEditForm function are all terminated with semicolons:

FOR ALL NEXT CustID INTO CustOrderStack;
EditFlag = CustOrderStack().Status;
DisplayEditForm();

An end keyword. Some commands, such as BEGIN, CASE, and REPEAT, bracket a block of
code. You indicate the end of the block by supplying the appropriate END keyword (for
example, ENDBEGIN, ENDCASE, or ENDREPEAT).

In the following example, the CASE command is terminated with an ENDCASE keyword:

CASE UpdateAcct
UPDATE SavingsAcct FROM TransactionStack;
IF FocError NE 0 THEN TransErrorLog();
ENDCASE

Most commands use one of these methods (a semicolon or an end keyword) exclusively, as
described for each command in Command Reference on page 55.

Adding Comments

By adding comments to a procedure, you can document its logic, making it easier to maintain.
You can place a comment on its own line, at the end of a command, or even in the middle of a
command. You can also place a comment in the middle of the procedure, at the very beginning
of the procedure before the MAINTAIN command, or at the very end of the procedure following
the END command. You can place any text within a comment.

Terminating Command Syntax

22 Information Builders

There are two types of comments:

Stream comments. Begin with $* and end with *$. Maintain Data interprets everything
between these two delimiters as part of the comment. A comment can begin on one line
and end on another line, and can include up to 51 lines.

For example:

MAINTAIN
 $* This is a stream comment *$
 TYPE "Hello world";
 $* This is a second stream comment.
This is still inside the second comment!
 This is the end of the second comment *$
$* Document the TYPE statement--> *$ TYPE "Hello again!"; $* Goodbye
*$
END

Line comments. Begin with $$ or -* and continue to the end of the line. For example:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Pay;
-* This entire line is a comment.
COMPUTE Pay.NewSal/D12.2;
.
.
.
END

You can also place a comment at the end of a line of code:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Pay; $$ Put root seg into a stack
COMPUTE Pay.NewSal/D12.2;
.
.
.
END

You can place a comment at the end of a line containing a command that continues onto
the next line:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Pay -* Put root seg into a stack
WHERE Department IS 'MIS';
COMPUTE Pay.NewSal/D12.2;
.
.
.
END

1. Language Rules Reference

Maintain Data Language Reference 23

You can include all types of comments in the same procedure:

MAINTAIN
 TYPE "Hello world"; -* This is a TYPE command
 $* This is a stream comment
 that runs onto a second line *$
$* Document the TYPE statement--> *$ TYPE "Hello again!"; $$ Goodbye
.
.
.
END

While Maintain Data uses the same comment characters (-*) as Dialogue Manager, it is only in
a Maintain Data procedure that comments can be placed at the end of a line of code.

Adding Comments

24 Information Builders

Chapter2
Expressions Reference

An expression enables you to combine variables, constants, operators, and functions in
an operation that returns a single value. Expressions are used in a wide variety of
Maintain Data commands. You can build increasingly complex expressions by combining
simpler ones.

In this chapter:

Types of Expressions

Writing Numeric Expressions

Writing Date Expressions

Writing Date-Time Expressions

Writing Character Expressions

Writing Logical Expressions

Writing Conditional Expressions

Handling Null Values in Expressions

Types of Expressions

This section describes the types of expressions that you can write in Maintain Data:

Numeric. Use a numeric expression to perform calculations that use numeric constants
(integer or decimal) and variables. For example, you can write an expression to compute
the bonus for each employee by multiplying the current salary by the desired percentage as
follows:

COMPUTE Bonus = Curr_Sal * 0.05 ;

A numeric expression returns a numeric value. For details, see Writing Numeric Expressions
on page 27.

Date. Use date expressions to perform numeric calculations on dates. For example, you
can write an expression to determine when a customer can expect to receive an order by
adding the number of days in transit to the date on which you shipped the order as follows:

Maintain Data Language Reference 25

COMPUTE Delivery/MDY = ShipDate + 5 ;

There are two types of date expressions:

Date expressions. Return a date, a component of a date, or an integer that represents
the number of days, months, quarters, or years between two dates. For details, see
Writing Date Expressions on page 32.

Date-time expressions. Use a variety of specialized date-time functions, each of which
returns a different kind of value. For details, see Writing Date-Time Expressions on page
38.

Character. Use a character expression to manipulate alphanumeric or text constants or
variables. For example, you can write an expression to extract the first initial from an
alphanumeric field as follows:

COMPUTE First_Init/A1 = MASK (First_Name, '9$$$$$$$$$') ;

A character expression returns a character value. For details, see Writing Character
Expressions on page 44.

Logical. Use a logical expression to evaluate the relationship between two values. A logical
expression returns TRUE or FALSE. For details, see Writing Logical Expressions on page
48.

Conditional. Use a conditional expression to assign a value based on the result of a logical
expression. A conditional expression (IF...THEN...ELSE) returns a numeric or character
value. For details, see Writing Conditional Expressions on page 51.

Reference: Usage Notes for Expressions

Expressions in Maintain Data cannot exceed 40 lines of text or use more than 16 IF
statements.

Expressions are self-terminating. You do not use a semicolon to indicate the end of an
expression. Semicolons are used only to terminate commands.

Types of Expressions

26 Information Builders

Expressions and Variable Formats

When you use an expression to assign a value to a variable, make sure that you give the
variable a format that is consistent with the value returned by the expression. For example, if
you use a character expression to concatenate a first name and last name and assign it to the
variable FullName, make sure you define the variable as character (that is, as alphanumeric or
text).

Writing Numeric Expressions

A numeric expression performs a calculation that uses numeric constants, variables,
operators, or functions to return a numeric value. A numeric expression can consist of the
following components, as highlighted below:

A numeric constant. For example:

COMPUTE COUNT/I2 = 1 ;

A numeric variable. For example:

COMPUTE RECOUNT/I2 = Count ;

Two numeric constants or variables joined by a numeric operator. For example:

COMPUTE BONUS/D12.2 = CURR_SAL * 0.05 ;

A numeric function. For example:

COMPUTE LONGEST_SIDE/D12.2 = MAX(WIDTH, HEIGHT) ;

Two or more numeric expressions joined by a numeric operator. For example:

COMPUTE PROFIT/D12.2 = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

Reference: Numeric Operators

The following list shows the numeric operators you can use in an expression:

Operation Operator

Addition +

Subtraction -

2. Expressions Reference

Maintain Data Language Reference 27

Operation Operator

Multiplication *

Division /

Integer division DIV

Remainder division MOD

Exponentiation **

Note: Multiplication, DIV, MOD, and exponentiation are not supported for date expressions of
any type. To isolate part of a date, use a simple assignment command.

Syntax: How to Use DIV: Integer Division

The DIV operator can be used in any valid expression to perform integer division. The result is
an integer value and the remainder is truncated.

The syntax is:

expression DIV expression

Example: Using DIV to Perform Integer Division

In this example, the DIV operator is used to calculate the number of whole days that are
equivalent to a number of hours:

COMPUTE Days/I4 = Hours DIV 24;

Syntax: How to Use MOD: Calculating the Remainder

The MOD operator can be used in any valid expression to calculate the remainder when
division is performed.

The syntax is:

expression MOD divisor

The MOD operator always returns an integer value, and all decimal places are truncated.

Writing Numeric Expressions

28 Information Builders

Example: Using MOD to Calculate a Remainder

In the following example, the divisor is 10. The variables IntMod and DblMod contain the
result.

MAINTAIN FILE Car
FOR 4 NEXT Country MPG INTO StkCar
REPEAT StkCar.FocCount Cnt/I4=1;
 COMPUTE IntMod/I4=StkCar(Cnt).MPG MOD 10;
 DblMod/D4.1=StkCar(Cnt).MPG MOD 10;
 TYPE "MPG=<<StkCar(Cnt).MPG" " IntMod=<<IntMod DblMod=<<DblMod"
ENDREPEAT Cnt=Cnt+1;
END

The decimal place in the variable DblMod is truncated, even though the format is D4.1.

MPG= 16 INTMOD= 6 DBLMOD= 6.0
MPG= 9 INTMOD= 9 DBLMOD= 9.0
MPG= 11 INTMOD= 1 DBLMOD= 1.0
MPG= 25 INTMOD= 5 DBLMOD= 5.0

Order of Evaluation

Maintain Data performs numeric operations in the following order:

1. Exponentiation.

2. Division and multiplication.

3. Addition and subtraction.

When operators are at the same level, they are evaluated from left to right. Because
expressions in parentheses are evaluated before any other expression, you can use
parentheses to change this predefined order. For example, the following expressions yield
different results because of parentheses:

COMPUTE PROFIT = RETAIL_PRICE - UNIT_COST * UNIT_SOLD ;
COMPUTE PROFIT = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

In the first expression, UNIT_SOLD is first multiplied by UNIT_COST, and the result is
subtracted from RETAIL_PRICE. In the second expression, UNIT_COST is first subtracted from
RETAIL_PRICE, and that result is multiplied by UNIT_SOLD.

2. Expressions Reference

Maintain Data Language Reference 29

Evaluating Numeric Expressions

Maintain Data follows a specific evaluation path for each numeric expression based on the
format of the operands and the operators. If the operands all have the same format, most
operations are carried out in that format. This is known as native-mode arithmetic. If the
operands have different formats, Maintain Data converts the operands to a common format in
a specific order of format precedence. Regardless of operand formats, some operators require
conversion to specific formats so that all operands are in the appropriate format.

Identical Operand Formats

If all operands of a numeric operator are of the same format, you can use the following table to
determine whether or not the operations are performed in that native format or if the operands
are converted before and after executing the operation. In each case requiring conversion,
operands are converted to the operational format and the intermediate result is returned in the
operational format. If the format of the result differs from the format of the target variable, the
result is converted to the format of the target variable.

Operation Operational Format

Addition + Native.

Subtraction - Native.

Multiplication * Native.

Full Division / Accepts single-precision or double-precision floating
point, converts all others to double-precision floating
point.

Integer Division DIV Native, except converts packed decimal to double-
precision floating point.

Remainder Division MOD Native, except converts packed decimal to double-
precision floating point.

Exponentiation ** Double-precision floating point.

Example: Identical Operand Formats

Because the following variables are defined as integers,

Writing Numeric Expressions

30 Information Builders

COMPUTE OperandOne/I4;
 OperandTwo/I4;
 Result/I4;

Maintain Data does the following multiplication in native-mode arithmetic (integer arithmetic):

COMPUTE Result = OperandOne * OperandTwo;

Different Operand Formats

If operands of a numeric operator have different formats, you can use the following table to
determine what the common format is after Maintain Data converts them. Maintain Data
converts the lower operand to the format of the higher operand before performing the
operation.

Order Format

1 16-byte packed decimal

2 Double-precision floating point

3 8-byte packed decimal

4 Single-precision floating point

5 Integer

6 Character (alphanumeric and text)

For example, if a 16-byte packed-decimal operand is used in an expression, all other operands
are converted to 16-byte packed-decimal format for evaluation. However, if an expression
includes only integer and alphanumeric operands, all alphanumeric operands are converted to
integer format.

Maintain Data converts the alphanumeric to a numeric. If the alphanumeric is not a number, it
is converted to 0 (zero), and 0 (zero) gets substituted into the equation.

If you assign a decimal value to an integer, Maintain Data truncates the fractional value.

2. Expressions Reference

Maintain Data Language Reference 31

Continental Decimal Notation

By default, you must use a decimal point (.) to indicate a decimal position when writing a value
in a Maintain Data procedure (for example, a COMPUTE statement), and a comma (,) to
demarcate thousands, regardless of the CDN setting.

To write the value in a procedure using the format matching the CDN setting for a value other
than OFF (for example, ON, QUOTE, QUOTEP, SPACE), use MNTCON CDN_FEXINPUT ON in the
EDASPROF file or user profile, and use quotation marks to delimit the value. You can use
single quotation marks (') or double quotation marks (") when CDN=ON or SPACE. However,
you must use double quotation marks (") when CDN=QUOTE or QUOTEP. The MNTCON
CDN_FEXINPUT command does not apply to values entered in Maintain Data forms at run time.

For more information on setting MNTCON CDN_FEXINPUT, see MNTCON CDN_FEXINPUT on
page 219.

When entering values in forms at run time, observe the following rule:

If CDN=OFF or QUOTEP, use a decimal point (.) to enter decimal values.

If CDN=ON, QUOTE or SPACE, use a comma (,) to enter decimal values.

For more information on the SET CDN command, see the Developing Reporting Applications
manual.

Writing Date Expressions

A date expression returns a date, a component of a date, or an integer that represents the
number of days, months, quarters, or years between two dates.

A date expression can consist of the following components, highlighted below:

A date constant. For example:

COMPUTE StartDate/MDY= 'FEB 28 93';

Note the use of single quotation marks (') around the date constant FEB 28 93.

A date variable. For example:

COMPUTE NewDate = StartDate;

An alphanumeric, integer, or packed variable with date edit options. For example, in the
second COMPUTE command, OldDate is a date expression:

COMPUTE OldDate/I6YMD = '980307';
COMPUTE NewDate/YMD DFC 19 YRT 10 = OldDate;

Writing Date Expressions

32 Information Builders

A calculation that uses addition, subtraction, or date functions to return a date. For
example:

COMPUTE Delivery/MDY = ShipDate + 5;

A calculation that uses subtraction or date functions to return an integer (not a date) that
represents the number of days, months, quarters, or years between two dates. For
example:

COMPUTE ResponseTime/I4 = ShipDate - OrderDate;

Formats for Date Values

Maintain Data enables you to work with dates in one of two ways:

In date format, Maintain Data treats the value as a date. Date format interprets cross-
century dates correctly, regardless of whether they are displayed with century digits. This is
the preferred way of working with date values. The date is stored internally as an integer
representing the number of days between the date and a standard base date. The base
date is 12/31/1900 for all date variables declared in any operating environment using a
'D' for days, and also for all date variables declared in a Windows or UNIX environment
using a 'Y' for years. The base date is 01/01/1901 for all date variables declared with a
'Y' in an S/390 environment.

In integer, packed, or alphanumeric format with date edit options, Maintain Data treats the
value as an integer, a packed decimal, or an alphanumeric string. When displaying the
value, Maintain Data formats it to resemble a date.

You can convert a date in one format to a date in another format simply by assigning one to
the other. For example, the following assignment statements take a date stored as an
alphanumeric variable formatted with date edit options and convert it to a date stored as a
date variable:

COMPUTE AlphaDate/A6MDY = '120599';
 RealDate/MDY = AlphaDate;

2. Expressions Reference

Maintain Data Language Reference 33

The following table illustrates how the format affects storage and display:

 Date Format

For example: MDY

Integer, Packed, or
Alphanumeric Format

For example: A6MDY

October 31, 1992 33542 10/31/92 103192 10/31/92

November 01, 1992 33543 11/01/92 110192 11/01/92

Evaluating Date Expressions

The format of a variable determines how you can use it in a date expression. Calculations on
dates in date format can incorporate numeric operators, as well as numeric functions. If you
need to perform calculations on dates in integer, packed, or alphanumeric format, we
recommend that you first convert them to dates in date format, and then perform the
calculations on the dates in date format.

Consider the following example, which calculates how many days it takes for your shipping
department to fill an order by subtracting the date on which an item is ordered, OrderDate,
from the date on which it is shipped, ShipDate:

COMPUTE TurnAround/I4 = ShipDate - OrderDate;

An item ordered on October 31, 1992 and shipped on November 1, 1992 should result in a
difference of 1 day. The following table shows how the format affects the result:

 Value in Date Format Value in Integer Format

ShipDate = November 1, 1992 33543 110192

OrderDate = October 31, 1992 33542 103192

TurnAround 1 7000

If the date variables are in integer format, you can convert them to date format and then
calculate TurnAround:

COMPUTE NewShipDate/MDY = ShipDate;
 NewOrderDate/MDY = OrderDate;
 TurnAround/I4 = NewShipDate - NewOrderDate;

Writing Date Expressions

34 Information Builders

Selecting the Format of the Result Variable

A date expression always returns a number. That number may represent a date or the number
of days, months, quarters, or years between two dates. When you use a date expression to
assign a value to a variable, the format you give to the variable determines how the result is
displayed.

Consider the following commands. The first command calculates how many days it takes for
your shipping department to fill an order by subtracting the date on which an item is ordered,
ORDERDATE, from the date on which it is shipped, SHIPDATE. The second calculates a delivery
date by adding 5 days to the date on which the order is shipped, SHIPDATE.

COMPUTE TURNAROUND/I4 = SHIPDATE - ORDERDATE ;
COMPUTE DELIVERY/MDY = SHIPDATE + 5 ;

In the first command, the date expression returns the number of days it takes to fill an order.
Therefore, the associated variable, TURNAROUND, must have an integer format. In the second
command, the date expression returns the date on which the item will be delivered. Therefore,
the associated variable, DELIVERY, must have a date format.

Manipulating Dates in Date Format

This section provides additional information on how to write expressions using values
represented in date format. It describes how to:

Use a date constant in an expression.

Extract a date component.

Combine variables with different components in an expression.

Using a Date Constant in an Expression

When you use a date constant in a calculation with variables in date format, you must enclose
it in single quotation marks ('), otherwise, Maintain Data interprets it as the number of days
between the constant and the base date (December 31, 1900). The following example shows
how to initialize STARTDATE with the date constant 02/28/93:

COMPUTE STARTDATE/MDY = '022893' ;

Extracting a Date Component

Date components include days, months, quarters, and years. You can write an expression that
extracts a component from a variable in date format. The following example shows how you
can extract a month from SHIPDATE, which has the format MDY:

2. Expressions Reference

Maintain Data Language Reference 35

COMPUTE SHIPMONTH/M = SHIPDATE ;

If SHIPDATE has the value November 23, 1992, the above expression returns the value 11 for
SHIPMONTH. Note that calculations on date components automatically produce a valid value
for the desired component. For example, if the current value of SHIPMONTH is 11, the
following expression correctly returns the value 2, not 14:

COMPUTE ADDTHREE/M = SHIPMONTH + 3 ;

You cannot write an expression that extracts days, months, or quarters from a date that did
not have these components. For example, you cannot extract a month from a date in YY
format, which represents only the number of years.

Combining Variables With Different Components in an Expression

When using variables in date format, you can combine variables with a different order of
components within the same expression. For example, consider the following two variables,
where DATE_PAID has the format YYMD and DUE_DATE has the format MDY. You can combine
these two variables in an expression to calculate the number of days that a payment is late,
such as the following expression:

COMPUTE DAYS_LATE/I4 = DATE_PAID - DUE_DATE ;

In addition, you can assign the result of a date expression to a variable with a different order
of components from the variables in the expression. For example, consider the variable
DATE_SOLD, which contains the date on which an item is sold, in YYMD format. You can write
an expression that adds 7 days to DATE_SOLD to determine the last date on which the item
can be returned, and then assign the result to a variable with DMY format, as in the following
COMPUTE command:

COMPUTE RETURN_BY/DMY = DATE_SOLD + 7 ;

Different Operand Date Formats

In an expression in a procedure, all date formats are valid. If you have an expression that
operates on date variables with different formats (for example, QY and MDY), Maintain Data
converts one variable to the format of the other variable in order to perform the operation.

However, there are a few types of date variables that you cannot use in a mixed-format date
expression. These variables, formatted as single components, such as a day of the week or
year (formats D, W, Y, and YY), cannot be meaningfully converted to a more complete date
(such as a year with a month). You can use these date variables in same-type date
expressions.

Writing Date Expressions

36 Information Builders

If a date with format M is compared to a date with format Q (or vice versa), the operand on the
right is converted to the format of the operand on the left, and then the comparison is
performed.

For all other date-to-date comparisons, the date with the lesser format is promoted to the
format of the higher date, where possible. If conversion is not possible, an error is generated.

The following conversion hierarchy applies to date formats:

Order Date Format

1 Dates with three components (for example, MDY, YYMD, Julian dates).

2 Dates with two components, one of which is a month (for example, MYY or YM).

3 Dates with two components, one of which is a quarter (for example, YQ).

4 Single component M or Q.

5 All other formats.

Dates in the fifth category do not get promoted.

When you have dates of two different types, dates in the lower category are promoted to the
higher type.

Using Addition and Subtraction in a Date Expression

When performing addition or subtraction in a date expression:

Adding a number to a date yields a date. It is up to you to make sure that the expression
resolves to a meaningful value.

Subtracting one date from another yields an integer that represents the difference between
the two dates.

When a date with format M or Q is subtracted from a higher type of date, the operand on
the right is converted to the format of the operand on the left.

When a two-component date is subtracted from a three-component date, or vice versa, the
variable with the lesser format is promoted to the type of the variable with the higher
format.

When subtracting a Q format date from an M format date, or vice versa, the operand on the
right is converted to the same format as the operand on the left.

2. Expressions Reference

Maintain Data Language Reference 37

Subtracting a number from a date yields a date with the same format as the original date.

You cannot subtract a date from a number, and you cannot add a date to a date.

Example: Using Addition and Subtraction in a Date Expression

Given the following variable definitions

DECLARE Days/D = 23;
DECLARE OldYear/YY = 1960;
DECLARE NewYear/YY = 1994;
DECLARE YearsApart/YY;
DECLARE OldYearMonth/YM = 9012;
DECLARE NewYearMonth/YM;
DECLARE FullDate/YMD = 870615;

the following COMPUTE commands are valid:

COMPUTE
YearsApart = NewYear - OldYear;
NewYear = OldYear + 2;
NewYearMonth = OldYearMonth - FullDate;

However, the next series of COMPUTE commands are invalid, because they include date
variables formatted as just a day (Days) or just a year (OldYear) in a mixed-format date
expression:

COMPUTE
NewYear = FullDate - OldYear;
FullDate = OldYearMonth + Days;

Writing Date-Time Expressions

Date-time values for Maintain Data may be supplied in one of the following ways:

As a value in a computed expression, enclosed in single quotation marks (') or double
quotation marks (").

As a value extracted or computed by a date-time function.

Using an application Winform.

Maintain Data supports the date-time data type with the following restrictions:

The default date-time format separators (/) must be used. Other separators are not
supported.

When you create a WHERE statement or an IF THEN ELSE clause, you must use a variable
as the test value.

Writing Date-Time Expressions

38 Information Builders

The format SET DATEFORMAT, used to change the default input format, is not supported.

The SET commands WEEKFIRST and DTSTRICT are not supported.

Computing an expression to DT (value) is not supported.

Syntax: How to Write Date-Time Expressions

A date-time constant in a Maintain Data procedure, and in an IF expression in a report
procedure, has one of the following formats.

Note: In an IF expression, if the value contains no blanks or special characters, the single
quotation marks (') are not necessary.

'date_string [time_string]''time_string [date_string]'

where:

time_string

Cannot contain blanks. Time components are separated by colons and may be followed by
AM, PM, am, or pm. For example:

14:30:20:99 (99 milliseconds)
14:30
14:30:20.99 (99/100 seconds)
14:30:20.999999 (999999 microseconds)
02:30:20:500pm

Note that seconds can be expressed with a decimal point or be followed by a colon.

If there is a colon after seconds, the value following it represents milliseconds. There is
no way to express microseconds using this notation.

A decimal point in the seconds value indicates the decimal fraction of a second.
Microseconds can be represented using six decimal digits.

date_string

Can have one of the following three formats:

Numeric string format. Is exactly four, six, or eight digits. Four-digit strings are
considered to be a year (century must be specified). The month and day are set to
January 1. Six-digit and eight-digit strings contain two or four digits for the year,
followed by two for the month, and then two for the day.

2. Expressions Reference

Maintain Data Language Reference 39

If a numeric-string format longer than eight digits is encountered, it is treated as a
combined date-time string in the Hn format described in the Describing Data With
WebFOCUS Language manual. The following are examples of numeric string date
constants:

99
1999
19990201

Formatted-string format. Contains a one-digit or two-digit day, a one-digit or two-digit
month, and a two-digit or four-digit year separated by spaces, slashes, hyphens, or
periods. If any of the three fields is four digits, it is interpreted as the year, and the
other two fields must follow the order given by the DATEFORMAT setting. The following
are examples of formatted-string date constants:

1999/05/20
5 20 1999
99.05.20
1999-05-20

Translated-string format. Contains the full or abbreviated month name. The year must
also be present in four-digit or two-digit form. If the day is missing, day 1 of the month
is assumed. If the day is present, it can have one or two digits. If the string contains
both a two-digit year and a two-digit day, they must be in the order given by the
DATEFORMAT setting. For example:

January 6 2000

Note:

The date and time strings must be separated by at least one blank space. Blank spaces
are also permitted at the beginning and end of the date-time string.

In each date format, two-digit years are interpreted using the [F]DEFCENT and [F]YRTHRESH
settings.

Example: Using a Date-Time Value in a COMPUTE Command

COMPUTE RAISETIME/HYYMDIA = '20000101 09:00AM';

Writing Date-Time Expressions

40 Information Builders

Manipulating Date-Time Values Directly

The only direct operations that can be performed on date-time variables and constants are
comparison using a logical expression and simple assignment of the form A = B. All other
operations are accomplished through a set of date-time subroutines. For more information, see
Writing Character Expressions on page 44.

Comparing and Assigning Date-Time Values

Any two date-time values can be compared, even if their lengths do not match.

If a date-time field supports missing values, fields that contain the missing value have a
greater value than any date-time field can have. Therefore, in order to exclude missing values
from report output when using a GT or GE operator in a selection test, it is recommended that
you add the additional constraint field NE MISSING to the selection test:

date_time_field {GT|GE} date_time_value AND date_time_field NE MISSING

Assignments are permitted between date-time formats of equal or different lengths. Assigning
a 10-byte date-time value to an 8-byte date-time value truncates the microsecond portion (no
rounding takes place). Assigning a short value to a long one sets the low-order three digits of
the microseconds to zero.

Other operations, including arithmetic, concatenation, and the reporting operators EDIT and
LIKE on date-time operands are not supported. Reporting prefix operators that work with
alphanumeric fields are supported.

Example: Testing for Missing Date-Time Values

Consider the DATETIM2 Master File:

FILE=DATETIM2, SUFFIX=FOC ,$
SEGNAME=DATETIME, SEGTYPE=S0 ,$
FIELD=ID, ID, USAGE = I2 ,$
FIELD=DT1, DT1, USAGE=HYYMDS, MISSING=ON,$

Field DT1 supports missing values. Consider the following request:

TABLE FILE DATETIM2
PRINT ID DT1
END

The resulting report output shows that in the instance with ID=3, the field DT1 has a missing
value:

2. Expressions Reference

Maintain Data Language Reference 41

ID DT1
-- ---
 1 2000/01/01 02:57:25
 2 1999/12/31 00:00:00
 3 .

The following request selects values of DT1 that are greater than 2000/01/01 00:00:00 and
are not missing:

TABLE FILE DATETIM2
PRINT ID DT1
 WHERE DT1 NE MISSING AND DT1 GT DT(2000/01/01 00:00:00);
END

The missing value is not included in the report output:

ID DT1
-- ---
 1 2000/01/01 02:57:25

Date-Time Subroutines

The following subroutines allow you to manipulate date-time values:

Function Name Description

HADD Increments date-time values by a specified number of units.

HCNVRT Converts date-time values to alphanumeric format for use with
operators, such as EDIT, CONTAINS, and LIKE.

HDATE Extracts the date components from a date-time field and converts
them to a date field.

HDIFF Returns the number of units of a specific date-time component
between two date-time values.

HDTTM Converts a date field to a date-time field with the time set to
midnight.

HEXTR Extracts components from a date-time value and moves them to a
target date-time field with all other components set to zero.

HGETC Returns the current date and time in date-time format.

Writing Date-Time Expressions

42 Information Builders

Function Name Description

HMASK Extracts components from a date-time value and moves them to a
target date-time field with all other components of the target field
preserved.

HHMMSS Retrieves the current time from the system.

HINPUT Converts an alphanumeric string to a date-time value.

HMIDNT Changes the time portion of a date-time field to midnight.

HNAME Extracts specified components of a date-time value and converts
them to alphanumeric format.

HPART Extracts a component of a date-time value in numeric format.

HSETPT Inserts the numeric value of a specified component in a date-time
field.

HTIME Extracts all of the time components from a date-time field and
converts them to a number of milliseconds or microseconds in
numeric format.

HTMTOTS/TIMETOTS Converts a time to a timestamp.

For more information on these functions, see the Using Functions manual.

Reference: Notes Regarding ISO Standard Date-Time Representations

International Standard ISO 8601 describes the standards for numeric representations of date
and time. Some of the relevant standards and notes about their implementation follow:

The international standard date notation is YYYY-MM-DD.

The international standard for the first day of a week is Monday. You can use the
WEEKFIRST parameter with App Studio procedures to control the day used as the first day
of the week by the date-time functions. However, Maintain Data does not support this
setting.

The standard specifies that week 1 of a year is the first week of the year that has a
Thursday. Combined with the standard of Monday as day 1, this rule ensures that week 1
has at least four of its days in the specified year.

2. Expressions Reference

Maintain Data Language Reference 43

The following rules represent an extension to the standard in this implementation:

Whatever day you choose for your WEEKFIRST setting, the date-time functions define
week 1 as the first week with at least four days in the specified year.

With these rules, it is possible for the first few days of January to fall in the week prior
to week 1. The international standard considers these dates to be in week 53 of the
previous year. However, the date-time functions return zero for the week component
when it falls in the week prior to week 1.

The international standard notation for the time of day is hh:mm:ss using the 24-hour
system. However, the date-time data type and date-time functions allow you to use the 12-
hour system.

Writing Character Expressions

A character expression returns an alphanumeric or text value.

A character expression can consist of the following components, highlighted below:

An alphanumeric or text constant (that is, a character string enclosed in single quotation
marks (') or double quotation marks (")). For example:

COMPUTE STATE = 'NY' ;

An alphanumeric or text variable. For example:

COMPUTE AddressPartTwo = STATE ;

A function returning an alphanumeric or text result. For example:

COMPUTE INITIAL/A1= MASK(FIRSTNAME,'9$$$$$$$$$$');

Two or more alphanumeric and/or text expressions combined into a single expression
using the concatenation operator. For example:

COMPUTE TITLE/A19= 'DR.' || LAST_NAME;

Writing Character Expressions

44 Information Builders

Concatenating Character Strings

You can write an expression to concatenate several alphanumeric and/or text values into a
single character string. The concatenation operator takes one of two forms, as shown in the
following table:

Symbol Represents Function

| Weak concatenation. Preserves trailing spaces.

|| Strong concatenation. Suppresses trailing spaces.

Evaluating Character Expressions

Any non-character expression that is embedded in a character expression is automatically
converted to a character string.

A constant must be enclosed in single quotation marks (') or double quotation marks (").
Whichever delimiter you choose, you must use the same one to begin and end the string. The
ability to use either single quotation marks (') or double quotation marks (") provides the
added flexibility of being able to use one kind of quotation mark to enclose the string, and the
other kind as data within the string itself.

The backslash (\) is the escape character. You can use it to:

Include a delimiter of a string (for example, a single quotation mark (')) within the string
itself, as part of the value. Simply precede the character with a backslash (\'), and
Maintain Data will interpret the character as data, not as the end-of-string delimiter.

Include a backslash within the string itself, as part of the value. Simply precede the
backslash with a second backslash (\\).

Generate a line feed (for example, when writing a message to a file or device using the SAY
command). Simply follow the backslash with the letter n (\n).

When the backslash is used as an escape character, it is not included in the length of the
string.

Example: Using Quotation Marks in a Character Expression

Because you can define a character string using single quotation marks (') or double quotation
marks ("), you can use one kind of quotation mark to define the string and the other kind
within the string, as in the following expressions:

2. Expressions Reference

Maintain Data Language Reference 45

COMPUTE LastName = "O'HARA";
COMPUTE Msg/A40 = 'This is a "Message"';

Example: Using a Backslash Character (\) in a Character Expression

You can include a backslash (the escape character) within a string as part of the value by
preceding it with a second backslash. For example, the following source code

COMPUTE Line/A40 = 'The characters \\\' are interpreted as \'';
.
.
.
TYPE "Escape info: <Line"

displays:

Escape info: The characters \' are interpreted as '

When the backslash is used as an escape character, it is not included in the length of the
string. For example, a string of five characters and one escape character fits into a five-
character variable:

COMPUTE Word/A5 = 'Can\'t'

Example: Specifying a Path in a Character Expression

A path may, depending on the operating system, contain backslashes (\). Because the
backslash is the escape character for character expressions, if you specify a path that
contains backslashes in an expression, you must precede each of the backslashes with a
second backslash. For example:

MyLogo/A50 = "C:\\ibi_img\\AcmeLogo.gif";

Example: Extracting Substrings and Using Strong and Weak Concatenation

The following example shows how to use the SUBSTR function to extract the first initial from a
first name, and then use both strong and weak concatenation to produce the last name,
followed by a comma (,), followed by the first initial, followed by a period:

First_Init/A1 = SUBSTR (First_Name, 1, 1);
Name/A19 = Last_Name || (', ' | First_Init | '.');

Suppose that First_Name has the value Chris and Last_Name has the value Edwards. The
above request evaluates the expressions as follows:

1. The SUBSTR function extracts the initial C from First_Name.

Writing Character Expressions

46 Information Builders

2. The expression in parentheses is evaluated. It returns the value

, C.

3. Last_Name is concatenated to the string derived in step 2 to produce the following:

Edwards, C.

Note that while Last_Name has the format A15, strong concatenation suppresses the
trailing spaces.

Variable-Length Character Variables

You can enable a character variable to have a varying length by declaring it either as text (TX)
or as alphanumeric with a length of zero (A0). TX and A0 are equivalent.

Specifying a varying length provides several advantages:

Increased length. The variable can be as long as 32,766 characters. A fixed-length
character variable, by contrast, has a maximum of 256 characters.

Flexible logic. Variable length enables you to declare one variable that can accept values
of many different lengths (ranging from zero to 32,766 characters). Other alphanumeric
variables, by contrast, are always of fixed length.

The default value of a variable-length character variable is a string of length zero.

No padding. If you assign a character string to a longer fixed-length alphanumeric variable,
the variable pads the value of the string with spaces to make up the difference. If you
assign the same string to a variable-length variable, it stores the original value without
padding it with spaces.

Of course, if you assign a string with trailing spaces to either a fixed-length or variable-
length character variable, the variable preserves those trailing spaces.

Optimized memory usage. The memory used by a variable-length character variable is
proportional to its size. The shorter the value, the less memory is used.

Note that the characteristics of variable-length data source fields differ from those of
temporary variables. When declaring a data source field, TX is supported for relational data
sources, and has a maximum length of 4094 characters. A0 is not supported for data source
fields. For information about data source text fields in Maintain Data applications, see
theDescribing Data With WebFOCUS Language manual.

2. Expressions Reference

Maintain Data Language Reference 47

Example: Padding and Trailing Spaces in Character Variables

Variable-length character variables, unlike those of fixed length, never pad strings with spaces.

For example, if you assign a string of 11 characters to a 15-character fixed-length
alphanumeric variable, the variable pads the value with four spaces to make up the difference.

For example, the following source code

COMPUTE Name/A15 = 'Fred Harvey' ;
TYPE "<<Name End of string" ;

displays:

Fred Harvey End of string

If you assign the same string of 11 characters to a variable-length variable, the variable stores
the original value without padding it. For example, the following source code, in which Name is
changed to be of variable length (specified by A0)

COMPUTE Name/A0 = 'Fred Harvey' ;
TYPE "<<Name End of string" ;

displays:

Fred HarveyEnd of string

If you assign a string with trailing spaces to a variable (of either fixed or varying length), the
variable preserves those spaces. For example, the following source code

COMPUTE Name/A0 = 'Fred Harvey ' ;
TYPE "<<Name End of string" ;

displays:

Fred Harvey End of string

Writing Logical Expressions

A logical expression determines whether a particular condition is true. There are two kinds of
logical expressions, relational and Boolean. The entities to compare determine the kind of
expression.

A relational expression returns TRUE or FALSE based on comparison of two individual
values (either variables or constants).

A Boolean expression returns TRUE or FALSE based on the outcome of two or more
relational expressions.

Writing Logical Expressions

48 Information Builders

You can use a logical expression to assign a value to a numeric variable. If the expression is
true, the variable receives the value 1. If the expression is false, the variable receives the
value 0.

Relational Expressions

A relational expression returns TRUE or FALSE based on the comparison of two individual
values (either variables or constants). The following syntax lists the operators you can use in a
relational expression:

character_expression char_operator character_constant

numeric_expression numeric_operator numeric_constant

where:

char_operator

Can be any of the following: EQ, NE, OMITS, CONTAINS.

numeric_operator

Can be any of the following: EQ, NE, LE, LT, GE, GT.

Boolean Expressions

Boolean expressions return a value of true (1) or false (0) based on the outcome of two or
more relational expressions. Boolean expressions are often used in conditional expressions,
which are described in Writing Conditional Expressions on page 51. You can also assign the
result of a Boolean expression to a numeric or character variable, which will be set to 1 (if the
expression is true) or 0 (if it is false). They are constructed using variables and constants
connected by operators.

Syntax: How to Use Boolean Expressions

The syntax of a Boolean expression is:

(relational_expression) {AND|OR} (relational_expression)
NOT (logical_expression)

Boolean expressions can themselves be used as building blocks for more complex
expressions. Use AND or OR to connect the expressions and enclose each expression in
parentheses.

2. Expressions Reference

Maintain Data Language Reference 49

Evaluating Logical Expressions

If you assign a Boolean expression to a character variable, it may have the values TRUE,
FALSE, 1, or 0. TRUE and 1 are equivalent, as are FALSE and 0. A numeric variable may have
the values 1 or 0.

Alphanumeric constants with embedded blanks used in the expression must be enclosed in
single quotation marks ('). An example is:

IF NAME EQ 'JOHN DOE'

OR cannot be used between constants in a relational expression. For example, the following
expression is not valid

IF COUNTRY EQ 'US' OR 'BRAZIL' OR 'GERMANY'

Instead, it should be coded as a sequence of relational expressions:

IF (COUNTRY EQ 'US') OR (COUNTRY EQ 'BRAZIL') OR (COUNTRY EQ 'GERMANY')

Reference: Logical Operators

The following list shows the logical operators you can use in an expression:

Description Operator

Equality EQ

Inequality NE

Less than LT

Greater than GT

Less than or equal to LE

Greater than or equal to GE

Contains the specified character string CONTAINS

Omits the specified character string OMITS

Negation NOT

Writing Logical Expressions

50 Information Builders

Description Operator

Conjunction AND

Disjunction OR

Boolean operators are evaluated after numeric operators from left to right in the following order
of priority:

Order Operators

1 EQ NE LE LT GE GT NOT CONTAINS OMITS

2 AND

3 OR

Writing Conditional Expressions

A conditional expression assigns a value based on the result of a logical expression. The
assigned value can be numeric or character.

Syntax: How to Use Conditional Expressions

The syntax of a conditional expression is

IF boolean THEN {expression1} [ELSE {expression2}]

where:

boolean

Is a Boolean expression. Boolean expressions are described in Boolean Expressions on
page 49.

expression

Is a numeric, character, date, or conditional expression.

When the Boolean expression is true, the conditional expression returns the THEN expression.
Otherwise, it returns the ELSE expression if one is provided.

2. Expressions Reference

Maintain Data Language Reference 51

The THEN and ELSE expressions can themselves be conditional expressions. If the expression
following THEN is conditional, it must be enclosed in parentheses. A conditional expression
can have up to 16 IF statements.

The variable to which you assign the conditional expression must have a format compatible
with the formats of the THEN and ELSE expressions.

Handling Null Values in Expressions

When data does not exist for a variable, Maintain Data assigns the following default value,
depending on how the format of the variable has been defined:

Data Type Default value without the
MISSING attribute

Default value with the
MISSING attribute

Numeric zero (0) null

Date and time space null

Character space null

A null value (sometimes known as missing data) appears as a period (.) by default. You can
change the character representation of the null value by issuing the SET NODATA command.
For details, see the Developing Reporting Applications manual.

Null values affect the results of expressions that perform aggregating calculations such as
averaging and summing. For information about the MISSING attribute in Master Files and the
effect of null values in calculations, see the topics about null data and missing data in
Assigning Null Values: The MISSING Constant on page 52.

Assigning Null Values: The MISSING Constant

You can assign the MISSING constant (that is, the null value) to variables (data source fields
and temporary variables) that were defined with the MISSING attribute.

When you create a user-defined variable with the MISSING attribute and do not explicitly assign
a value, it is created with the null value. For example, in the following command, Name is
created with a null value:

COMPUTE Name/A15 MISSING ON = ;

Syntax: How to Assign Null Values: The MISSING Constant

The syntax for assigning a null value to an existing variable is:

Handling Null Values in Expressions

52 Information Builders

COMPUTE target_variable = MISSING;

Example: Assigning Null Values

Suppose that the variable AcctBalance had been defined with the MISSING attribute. The
command below assigns the null value to AcctBalance:

COMPUTE AcctBalance = MISSING;

Conversion in Mixed-Format Null Expressions

When a variable with a null value is assigned to a variable that is not defined with the MISSING
attribute, the null value is converted to a zero or a space. For example, when the variable Q is
assigned to R, the null value from Q is converted to a zero, because zero is the default value
for numeric variables without the MISSING attribute.

Q/I4 MISSING ON = MISSING;
R/I4 = Q;

The same conversion occurs before any mathematical operations are applied if the variables
are used as operands in arithmetic expressions.

Testing Null Values

You may test for the null value using comparison operators EQ or NE in an expression. You can
test any variable that has been declared with the MISSING attribute. The null value is
represented by the MISSING constant.

Syntax: How to Test Null Values

The syntax for testing whether a value is null is:

target_variable {EQ|NE} MISSING

Example: Testing Null Values

In this example, an IF command executes a BEGIN block if the variable Returns is null:

IF Returns EQ MISSING THEN BEGIN
.
.
.
ENDBEGIN

2. Expressions Reference

Maintain Data Language Reference 53

Handling Null Values in Expressions

54 Information Builders

Chapter3
Command Reference

This topic provides a summary of the Maintain Data language commands and system
variables, grouped by primary use. It also describes some commands that are outside
the language but can be used to manage Maintain Data procedures. It then describes
each command and system variable in detail.

When you develop a project, you can generate Maintain Data commands by:

Using the Language Wizard in the Maintain Data Editor. The Wizard asks you
questions about the logic you need to create, and automatically generates the
required commands.

Coding the commands yourself in the Maintain Data Editor.

Language Summary

This topic summarizes all Maintain Data language commands, grouping them by their primary
use, such as transferring control or selecting records. Each command and system variable is
described in detail later in this chapter.

Defining a Procedure

The basic syntax consists of the commands that start and terminate a Maintain Data
procedure. The commands are:

MAINTAIN

Initiates the parsing and execution of a Maintain Data procedure. It is always the first line
of the procedure.

END

Terminates the execution of a Maintain Data procedure.

Defining a Maintain Data Function (a Case)

The following command defines Maintain Data functions:

CASE

Defines a Maintain Data function. Maintain Data functions are also known as cases.

Maintain Data Language Reference 55

Defining Blocks of Code

The following command defines a block a code:

BEGIN

Defines a group of commands as a single block and enables you to issue them as a group.
You can place a BEGIN block anywhere individual commands can appear.

Transferring Control

You can transfer control to another function within the current procedure, as well as to another
procedure.

The commands that transfer control are:

PERFORM

Transfers control to another function. When the function finishes, control is returned to the
command following PERFORM. You can also call a function directly, without PERFORM.

GOTO

Transfers control to another function or to a special label within the current function. When
the function finishes, control does not return. You can also call a function directly, without
GOTO.

CALL

Executes another Maintain Data procedure.

EXEC

Executes an external (non-Maintain Data) procedure.

Executing Procedures

The following commands run procedures, or prepare them for execution:

CALL

Executes a Maintain Data procedure, and enables you to pass data from the calling
procedure.

EXEC

Executes an App Studio procedure.

Language Summary

56 Information Builders

Using Loops

The following command supports looping:

REPEAT

Enables a circular flow of control.

Using Forms

The following command is responsible for presentation logic:

Winform

Displays a form by which end users can read, enter, and edit data.

Defining Classes

The following command enables you to define classes:

DESCRIBE

Defines classes and data type synonyms.

Creating Variables

The following commands enable you to create variables:

DECLARE

Creates local and global variables, including objects.

COMPUTE

Creates global variables, including global objects. It can also assign values to existing
variables.

Assigning Values

Maintain Data enables you to assign values to existing variables using the following command:

COMPUTE

Assigns values to existing variables.

Manipulating Stacks

Maintain Data provides several stack commands to manage the contents of stacks. Unless
otherwise specified, each command operates on all rows in the stack. The following example
copies the contents of the Indata stack to the Outdata stack:

FOR ALL COPY FROM Indata INTO Outdata;

3. Command Reference

Maintain Data Language Reference 57

One row or a range of rows may be specified to limit which rows are affected. For example, the
following copies 100 records of the Indata stack, starting from the fourth record, and places
them into the Outdata stack.

FOR 100 COPY FROM Indata(4) INTO Outdata;

The stack commands are:

COPY

Copies data from one stack to another.

STACK SORT

Sorts data in a stack.

STACK CLEAR

Initializes a stack.

INFER

Defines the columns in a stack.

In addition, there are two variables associated with a stack which can be used to manipulate
individual rows or groups of rows in the stack. The stack variables are:

FocCount

Is the number of rows in the stack.

FocIndex

Is a pointer to the current instance in the stack.

Selecting and Reading Records

The record selection commands retrieve data from the data source and change position in the
data source.

The commands are:

NEXT

Starts at the current position and moves forward through the data source. NEXT can
retrieve data from one or more rows.

MATCH

Searches the entire segment for a matching field value. It retrieves an exact match in the
data source.

Language Summary

58 Information Builders

REPOSITION

Changes the data source position to be at the beginning of the chain.

In addition, there is a system variable that provides a return code for NEXT and MATCH:

FocFetch

Signals the success or failure of a NEXT or MATCH command.

You can use the following commands to directly interface with a DBMS:

SYS_MGR.PRE_MATCH

Turns off preliminary database operation checking before an update.

SYS_MGR.GET_PRE_MATCH

Determines whether prematch checking is on or off.

SYS_MGR.ENGINE

Passes SQL commands directly to a DBMS.

SYS_MGR.DBMS_ERRORCODE

Retrieves a DBMS return code after an operation.

Conditional Actions

The conditional commands are:

IF

Issues a command depending on how an expression is evaluated.

ON MATCH

Determines the action to take when the prior MATCH command succeeds.

ON NOMATCH

Defines the action to take if the prior MATCH fails.

ON NEXT

Defines the action to take if the prior NEXT command succeeds.

ON NONEXT

Defines the action to take if the prior NEXT command fails.

3. Command Reference

Maintain Data Language Reference 59

Writing Transactions

The commands that can be used to control transactions are:

INCLUDE

Adds one or more new data source records.

UPDATE

Updates the specified data source fields or columns. Can update one or more records at a
time.

REVISE

Adds new records to the data source and updates existing records.

DELETE

Deletes one or more records from the data source.

COMMIT

Makes all data source changes since the last COMMIT permanent.

ROLLBACK

Cancels all data source changes made since the last COMMIT.

There are several system variables that you can use to determine the success or failure of a
data source operation or an entire logical transaction:

FocCurrent

Signals the success or failure of a COMMIT or ROLLBACK command.

FocError

Signals the success or failure of an INCLUDE, UPDATE, REVISE, or DELETE command.

FocErrorRow

If an INCLUDE, UPDATE, REVISE, or DELETE command that writes from a stack fails, this
returns the number of the row that caused the error.

You can use the following commands to directly interface with a DBMS:

SYS_MGR.PRE_MATCH

Turns off preliminary database operation checking before an update.

SYS_MGR.GET_PRE_MATCH

Determines whether prematch checking is on or off.

Language Summary

60 Information Builders

SYS_MGR.ENGINE

Passes SQL commands directly to a DBMS.

SYS_MGR.DBMS_ERRORCODE

Retrieves a DBMS return code after an operation.

Setting Reporting Server Parameters

You can communicate with the Reporting Server using the following commands:

SET

Sets Reporting Server parameters. This command is outside the Maintain Data language,
but is described in this chapter for your convenience.

SYS_MGR.FOCSET

Sets Reporting Server parameters, without having to set them in EDASPROF.

Using Libraries of Classes and Functions

You can import libraries using the following command:

MODULE

Imports a library of shared class definitions or functions into a Maintain Data procedure.

Messages and Logs

You can write messages to files, consoles, and forms using the following commands:

SAY

Writes messages to a file or to the default output device.

TYPE

Writes messages to a file or a form.

In addition, there is a system stack that is automatically populated with messages posted to
the default output device by Maintain Data procedures, except for the starting procedure and
external procedures:

FocMsg

Contains messages posted by Maintain Data and App Studio procedures.

3. Command Reference

Maintain Data Language Reference 61

BEGIN

The BEGIN/ENDBEGIN construction enables you to issue a set of commands. Because you can
use this construction anywhere an individual Maintain Data command can be used, you can
use a set of commands where before you could issue only one command. For example, it can
follow ON MATCH, ON NOMATCH, ON NEXT, ON NONEXT, or IF.

Syntax: How to Use the BEGIN Command

The syntax for the BEGIN command is

BEGIN
 command
 .
 .
 .
ENDBEGIN

where:

BEGIN

Specifies the start of a BEGIN/ENDBEGIN block.

Note: You cannot assign a label to a BEGIN/ENDBEGIN block of code or execute it outside
the bounds of the BEGIN/ENDBEGIN construction in a procedure.

command

Is one or more Maintain Data commands, except for CASE, DECLARE, DESCRIBE, END,
MAINTAIN, and MODULE. BEGIN blocks can be nested, allowing you to place BEGIN and
ENDBEGIN commands between BEGIN and ENDBEGIN commands.

ENDBEGIN

Specifies the end of a BEGIN block.

Example: BEGIN With ON MATCH

The following example illustrates a block of code that executes when MATCH is successful:

MATCH Emp_ID
 ON MATCH BEGIN
 COMPUTE Curr_Sal = Curr_Sal * 1.05;
 UPDATE Curr_Sal;
 COMMIT;
 ENDBEGIN

Example: BEGIN With ON NEXT

The following example shows BEGIN and ENDBEGIN with ON NEXT:

BEGIN

62 Information Builders

ON NEXT BEGIN
 TYPE "Next successful.";
 COMPUTE New_Sal = Curr_Sal * 1.05;
 PERFORM Cleanup;
 ENDBEGIN

Example: BEGIN With IF

You can also use BEGIN and ENDBEGIN with IF to run a set of commands depending on how
an expression is evaluated. In the following example, BEGIN and ENDBEGIN are used with IF
and FocError to run a series of commands when the prior command fails:

IF FocError NE 0 THEN BEGIN
 TYPE "There was a problem.";
 .
 .
 .
 ENDBEGIN

Example: Nested BEGIN Blocks

The following example nests two BEGIN blocks. The first block starts if there is a MATCH on
Emp_ID and the second block starts if UPDATE fails:

MATCH Emp_ID FROM Emps(Cnt);
ON MATCH BEGIN
 TYPE "Found employee ID <Emps(Cnt).Emp_ID";
 UPDATE Department Curr_Sal Curr_JobCode Ed_Hrs
 FROM Emps(Cnt);
 IF FocError GT 0 THEN BEGIN
 TYPE "Was not able to update the data source.";
 PERFORM Errorhnd;
 ENDBEGIN
 ENDBEGIN

CALL

Use the CALL command when you need one procedure to call another. When you use CALL,
both the calling and called procedures communicate using variables. Local variables that you
pass between them and the global transaction variables FocError, FocErrorRow, and
FocCurrent. CALL allows you to link modular procedures, so each procedure can perform its
own set of discrete operations within the context of your application. Since called procedures
can reside on different servers, you can physically partition applications across different
platforms.

3. Command Reference

Maintain Data Language Reference 63

For additional information about requirements for passing variables, see the Developing
WebFOCUS Maintain Applications manual.

Syntax: How to Use the CALL Command

The syntax of the CALL command is:

CALL procedure [KEEP|DROP] [PATH {VAR|LIST}] [FROM var_list]
 [INTO var_list] [;]
 var_list: {variable} [{variable} ...]

where:

procedure

Is the name of the Maintain Data procedure to run.

KEEP|DROP

The DROP parameter terminates the server session. The KEEP parameter leaves the
server session active for reuse by subsequent calls. KEEP is the default value.

PATH

Is used to specify additional locations (search paths) the system should use when
searching for dependent resources (Master Files, imported modules, and others). The path
location names are application names existing within the APPROOT directory structure or
application names that have been introduced with the APP MAP command. The search
path value can be in the form of a Maintain Data variable or a list of literal values enclosed
in double quotation marks ("), as follows:

CALL Procedure PATH "AppDir1 AppDir2 AppDir3" ;
CALL Procedure PATH MyVariable ;

FROM

Is included if the Maintain Data procedure passes one or more variables to the called
procedure.

INTO

Is included if the called Maintain Data procedure passes one or more variables back to
this procedure.

var_list

Are the scalar variables and stacks that are passed to or from this procedure. Multiple
variables are separated by blank spaces.

CALL

64 Information Builders

variable

Is the name of a scalar variable or stack. You can pass any variable except for those
defined as variable-length character (that is, those defined as A0 or TX) and those defined
using STACK OF.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

Example: Calling Procedures to Validate Data

The following example shows three Maintain Data procedures. The first displays a form to
collect employee IDs and salaries. It then calls Validate to make sure that the salaries are in a
range. If they are all valid, it calls PutData and includes them in the data source. If not, it sets
FocError to the invalid row and redisplays the data.

MAINTAIN FILE EMPLOYEE
INFER EMP_ID CURR_SAL INTO EMPSTACK;
Winform Show EMPL;

CASE VALIDATE_DATA
CALL VALIDATE FROM EMPSTACK;
IF FOCERROR EQ 0 THEN BEGIN
 CALL PUTDATA FROM EMPSTACK;
 TYPE "DATA ACCEPTED";
ENDBEGIN

ELSE BEGIN
 TYPE "THERE WAS AN ERROR IN ROW <FOCERROR";
 TYPE "TRY AGAIN";
ENDBEGIN
ENDCASE
END

The Validate procedure contains:

MAINTAIN FILE EMPLOYEE FROM EMPSTACK
INFER EMP_ID INTO EMPSTACK;
COMPUTE CNT/I4=1;
REPEAT EMPSTACK.FOCCOUNT;
 IF EMPSTACK(CNT).CURR_SAL GT 100000 THEN BEGIN
 COMPUTE FOCERROR=CNT;
 GOTO EXITREPEAT;
 ENDBEGIN
 ELSE COMPUTE CNT=CNT+1;
ENDREPEAT
END

3. Command Reference

Maintain Data Language Reference 65

The PutData procedure, residing on a remote Reporting Server, contains:

MAINTAIN FILE EMPLOYEE FROM EMPSTACK
INFER EMP_ID INTO EMPSTACK;
FOR ALL INCLUDE EMP_ID CURR_SAL FROM EMPSTACK;
END

Example: Calling Procedures to Populate Stacks

The following example shows all of the models and body types for the displayed country and
car. The first calls GETCARS to populate the stack containing Country and Car. Maintain Data
then calls GETMODEL to populate the other stack with the proper information. Each time a new
Country and Car combination is introduced, Maintain Data calls GETMODEL to repopulate the
stack.

MAINTAIN FILE CAR
INFER COUNTRY CAR INTO CARSTK;
INFER COUNTRY CAR MODEL BODYTYPE INTO DETSTK;
CALL GETCARS INTO CARSTK;
PERFORM GET_DETAIL;
Winform Show CARFORM;

CASE GET_DETAIL
CALL GETMODEL FROM CARSTK INTO DETSTK;
ENDCASE

CASE NEXTCAR
IF CARSTK.FOCINDEX LT CARSTK.FOCCOUNT
 THEN COMPUTE CARSTK.FOCINDEX= CARSTK.FOCINDEX +1;
 ELSE COMPUTE CARSTK.FOCINDEX = 1;
PERFORM GET_DETAIL;
ENDCASE

CASE PREVCAR
IF CARSTK.FOCINDEX GT 1
 THEN COMPUTE CARSTK.FOCINDEX= CARSTK.FOCINDEX -1;
 ELSE COMPUTE CARSTK.FOCINDEX = CARSTK.FOCCOUNT;
PERFORM GET_DETAIL;
ENDCASE

The procedure GETCARS loads all Country and Car combinations into CARSTK.

MAINTAIN FILE CAR INTO CARSTK
FOR ALL NEXT COUNTRY CAR INTO CARSTK;
END

The procedure GETMODEL loads all model and body type combinations into CARSTK for
displayed Country and Car combinations.

CALL

66 Information Builders

MAINTAIN FILE CAR FROM CARSTK INTO DETSTK
INFER COUNTRY CAR INTO CARSTK;
STACK CLEAR DETSTK;
REPOSITION COUNTRY;
FOR ALL NEXT COUNTRY CAR MODEL BODYTYPE INTO DETSTK
 WHERE COUNTRY EQ CARSTK(CARSTK.FOCINDEX).COUNTRY
 AND CAR EQ CARSTK(CARSTK.FOCINDEX).CAR;
END

CASE

The CASE command allows you to define a Maintain Data function. Maintain Data functions are
sometimes also called cases. The CASE keyword defines the beginning of the function, and
the ENDCASE keyword defines its end.

You can pass values to a Maintain Data function using its parameters, and you can pass
values from a Maintain Data function using its parameters and its return value.

You can call a Maintain Data function in one of the following ways:

Issuing a PERFORM or GOTO command.

Calling the function directly.

Once control has branched to the function, it proceeds to execute the commands within it. If
control reached the end of the function (that is, the ENDCASE command), it returns or exits
depending on how the function was called:

Branch and return. If the function was called by a branch-and-return command (that is, by a
PERFORM command or an event handler), or called directly, control returns to the point
immediately following the PERFORM, event handler, or function reference.

Branch. If the function was called by a simple branch command, for example, a GOTO
command, and control reaches the end of the function, it means that you have not provided
any logic to direct control elsewhere and so it exits the procedure. If this is not the result
you want, simply call the function using PERFORM instead of GOTO, or else issue a
command before ENDCASE to transfer control elsewhere.

A CASE command that is encountered in the sequential flow of a procedure is not executed.

You assign a unique name to each function using the CASE command.

Syntax: How to Use the CASE Command

The syntax for the CASE command is:

3. Command Reference

Maintain Data Language Reference 67

CASE functionname [TAKES p1/t1[,..., pn/tn]] [RETURNS result/t] [;]
 [declarations]
 commands
 .
 .
 .
ENDCASE

where:

functionname

Is the name you give to the function, and it can be up to 66 characters long. The name
must begin with a letter, and can include any combination of letters, digits, and
underscores (_).

TAKES p1/t1

Specifies that the function takes parameters. p1/t1...pn/tn defines the parameters of the
function (p) and the data type of each parameter (t). When you call the function, you pass
it variables or constants to substitute for these parameters. Parameters must be scalar.
They cannot be stacks.

If the function is the Top function or a task, it cannot take parameters.

RETURNS result/t

Specifies that the function returns a value. result is the name of the variable being
returned, and t is the data type of the variable. The return value must be scalar. It cannot
be a stack.

If the function is the Top function or a task, it cannot return a value.

declarations

Is an optional DECLARE command to declare any variables that are local to the function.
These declarations must precede all other commands in the function.

commands

Is one or more commands, except for CASE, DESCRIBE, END, MAINTAIN, and MODULE.

;

Terminates the parameter and return variable definitions of the CASE command. Although
the semicolon is optional, it is recommended that you include it to allow for flexible syntax
and better processing. For more information about the benefits of including the semicolon,
see Terminating Command Syntax on page 22.

CASE

68 Information Builders

Reference: Usage Notes for CASE

The first function in a procedure must be an explicit or implicit Top function.

CASE commands cannot be nested.

Reference: Commands Related to CASE

PERFORM. Transfers control to another function. When control reaches the end of the
function, it returns to the command following PERFORM.

GOTO. Transfers control to another function or to the end of the current function. Unlike the
PERFORM command, it does not return the control of the command that called the function.

Calling a Function: Flow of Control

When a function is called, and control in the function is complete, control returns to the next
command after the call.

When the Increase function in the following example is complete, processing resumes with the
line after the PERFORM command, the TYPE command:

PERFORM Increase;
TYPE "Returned from Increase";
.
.
.
CASE Increase
COMPUTE Salary = Salary * 1.05;
.
.
.
ENDCASE

Passing Parameters to a Function

In general, the parameters of a Maintain Data function are both input and output parameters:

When one function calls another, the calling function passes the current values of the
parameters.

When the called function terminates, it passes back the current values of the parameters.

If the called function changes the values of any of its parameters, when it returns control to
the calling function, the parameter variables in the calling function are set to those new
values. The parameters are global to the calling and called functions.

3. Command Reference

Maintain Data Language Reference 69

This method of passing parameters is known as a call by reference, because the calling
function passes a reference to the parameter variable (specifically, its address), not a copy of
its value.

Note: There is one exception to this behavior. If you declare a function parameter (in the
Function Editor or a CASE command) with one data type, but at run time you pass the function
a value of a different data type, the value of the parameter is converted to the new data type.
Data types, in this context, refer to basic data types, such as fixed-length character (An where
n is greater than zero (0)), variable-length character (A0), text, date, date-time, integer, single-
precision floating point, double-precision floating point, 8-byte packed decimal, and 16-byte
packed decimal. Other data attributes, such as length, precision, MISSING, and display
options, can differ without causing a conversion. Any changes that the called function makes
to the value of the parameter will not get passed back to the calling function. The parameter is
local to the called function.

This method of passing parameters is known as a call by value, because the calling function
passes a copy of the value of the parameter variable, not a pointer to the actual parameter
variable itself.

Note that you should not pass a constant as a function parameter if the function may change
the value of that parameter.

Using the Return Value of a Function

If a function returns a value using the RETURNS phrase, you can call that function anywhere
you can use an expression. For example:

MAINTAIN FILE HousePlan
.
.
.
COMPUTE ConferenceRoom/D6.2 = FindArea(CRlength,CRwidth);
.
.
.
CASE FindArea TAKES Length/D6.2, Width/D6.2 RETURNS Area/D6.2;
Area = Length * Width;
ENDCASE
.
.
.
END

CASE

70 Information Builders

Using the Top Function

When you run a Maintain Data procedure, the procedure begins by executing its Top function.
Every Maintain Data procedure has a Top function. Top does not take or return parameters.
You can choose to define the Top function, beginning it with a CASE command and ending it
with an ENDCASE command, as all other Maintain Data functions are defined. This is the
recommended method for defining Top, and is how Maintain Data generates Top when creating
a new procedure.

For example:

CASE Top
.
.
.
ENDCASE

COMMIT

The COMMIT command processes a logical transaction. A logical transaction is a group of data
source operations in an application that are treated as one. The COMMIT operation signals a
successful end of a transaction and writes the INCLUDE, UPDATE, and DELETE operations to
the data source. The data source is, or should be, in a consistent state and all of the updates
made by that transaction are now made permanent.

Syntax: How to Use the COMMIT Command

The syntax of the COMMIT command is

COMMIT [;]

where:

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Language Rules Reference on page 15.

Reference: Usage Notes for COMMIT

When you issue a transaction that writes to multiple types of data sources, each DBMS
evaluates its part of the transaction independently. When a COMMIT command ends the
transaction, the success of the COMMIT against each data source type is independent of
the success of the COMMIT against the other data source types.

3. Command Reference

Maintain Data Language Reference 71

For example, if you run a procedure that accesses the App Studio data sources Employee
and JobFile and the SQL Server data source Salary, the success or failure of the COMMIT
for Salary is independent of the success of the COMMIT for Employee and JobFile. This is
known as a broadcast commit.

COMMIT is automatically issued when a procedure does not contain any COMMIT
commands, and the application is exited normally. This means an error did not cause
program termination. If a procedure does not contain any COMMIT commands and it is
terminates abnormally (for example, if the system has run out of memory), a COMMIT is not
issued. When a called procedure is exited, an automatic COMMIT is not issued. COMMIT is
only issued when exiting the application.

The variable FocCurrent is set after a COMMIT finishes. If the COMMIT is successful,
FocCurrent is set to zero (0). If FocCurrent is non-zero, the COMMIT failed, and all of the
records in the logical unit of work will be rolled back because an internal ROLLBACK will be
issued.

COMPUTE

The COMPUTE command enables you to:

Create a global variable, including global objects, and optionally assign it an initial value.
You can use the DECLARE command to create both local and global variables. See Local
and Global Declarations on page 84 for more information about local and global variables.

Assign a value to an existing variable.

Dynamically change the property of an object.

Syntax: How to Use the COMPUTE Command

The syntax of the COMPUTE command is:

[COMPUTE]
target_variable[/datatype [DFC cc YRT yy] [missing]][= expression];
.
.
.
 missing: [MISSING {ON|OFF} [NEEDS] [SOME|ALL] [DATA]]

COMPUTE

72 Information Builders

where:

COMPUTE

Is an optional keyword. It is required if the preceding command can take an optional
semicolon (;) terminator, but was coded without one. In all other situations, it is
unnecessary.

When the COMPUTE keyword is required, and there is a sequence of COMPUTE
commands, the keyword needs to be specified only once for the sequence, for the first
command in the sequence.

target_variable

Is the name of the variable which is being created and/or to which a value is being
assigned. A variable name must start with a letter and can only contain letters, numbers,
and underscores (_).

datatype

Is included in order to create a new variable. If you are creating a simple variable, you can
specify all built-in formats and edit options, except for TX, as described for the Master File
FORMAT attribute in the Describing Data With WebFOCUS Language manual. If you are
creating an object, you can specify a class. You must specify a data type when you create
a new variable. You can only specify the data type of a variable once, and you cannot
redefine the data type of an existing variable.

DFC cc

Specifies a default century that will be used to interpret any dates with unspecified
centuries in expressions assigned to this variable. cc is a two-digit number indicating the
century (for example, 19 would indicate the twentieth century). If this is not specified, it
defaults to 19.

Specifying DFC cc is optional if the data type is a built-in format. It is not specified if the
data type is a class, as it is relevant only for scalar variables.

YRT yy

Specifies a default threshold year for applying the default century identified in DFC cc. yy is
a two-digit number indicating the year. If this is not specified, it defaults to 00.

When the year of the date being evaluated is less than the threshold year, the century of
the date being evaluated defaults to the century defined in DFC cc plus one. When the year
is equal to or greater than the threshold year, the century of the date being evaluated
defaults to the century defined in DFC cc.

3. Command Reference

Maintain Data Language Reference 73

Specifying YRT yy is optional if the data type is a built-in format. It is not specified if the
data type is a class, as it is relevant only for scalar variables.

missing

Is used to allow or disallow null values. This is optional if the data type is a built-in format.
It is not specified if the data type is a class, as it is relevant only for scalar variables.

MISSING

If the MISSING syntax is omitted, the default value of the variable is zero (0) for numeric
variables and a space for character and date and time variables. If it is included, its
default value is null.

ON

Sets the default value to null.

OFF

Sets the default value to zero (0) or a space.

NEEDS

Is an optional keyword that clarifies the meaning of the command for a reader.

SOME

Indicates that for the target variable to have a value, some (at least one) of the variables
in the expression must have a value. If all of the variables in the expression are null, the
target variable will be null. This is the default.

ALL

Indicates that for the target variable to have a value, all the variables in the expression
must have values. If any of the variables in the expression are null, the target variable will
be null.

DATA

Is an optional keyword that clarifies the meaning of the command for a reader.

=

Is optional when COMPUTE is used solely to establish format. The equal sign is required
when expression is used.

COMPUTE

74 Information Builders

expression

Is any standard Maintain Data expression, as defined in Expressions Reference on page
25. Each expression must end with a semicolon (;). When creating a new variable using a
class data type, you must omit expression.

Example: Moving the COMPUTE Keyword

You can place an expression on the same line as the COMPUTE keyword, or on a different line,
so that

COMPUTE
TempEmp_ID/A9 = '000000000';

is the same as:

COMPUTE TempEmp_ID/A9 = '000000000';

Example: Multi-Statement COMPUTE Commands

You can type a COMPUTE command over as many lines as you need. You can also specify a
series of assignments as long as each expression is ended with a semicolon (;). For example:

COMPUTE TempEmp_ID/A9 = '000000000';
 TempLast_Name/A15 ;
 TempFirst_Name/A10;

Example: Combining Several Statements Into One Line

Several expressions can be placed on one line as long as each expression ends with a
semicolon (;). The following shows two COMPUTE expressions on one line and a third
COMPUTE on the next line. The first computes a five percent raise and the second increases
education hours by eight. The third concatenates two name fields into one field:

COMPUTE Raise/D12.2=Curr_Sal*1.05; Ed_Hrs=Ed_Hrs+8;
Name/A25 = First_Name || Last_Name;

3. Command Reference

Maintain Data Language Reference 75

Reference: Usage Notes for COMPUTE

If the names of incoming data fields are not listed in the Master File, they must be defined
before they can be used. Otherwise, rejected fields are unidentified and the procedure
terminates.

There are two different ways these fields can be defined. The first uses the notation:

COMPUTE target_variable/format =;

Because there is no expression after the equal sign (=), the field and its format is made
known, but nothing else happens. If this style is used for a field in a form, the field appears
on the form without a default value. Because COMPUTE is used solely to establish format,
the equal sign is optional and the following syntax is also correct:

COMPUTE target_variable/format;

The second method of defining a user-defined field can be used when an initial value is
desired. The syntax is:

COMPUTE target_variable/format = expression;

Each field referred to or created in a Maintain Data procedure counts as one field toward
the 3,072 field limit, regardless of how often its value is changed by COMPUTE commands.
However, if a data source field is read by a Winform command and also has its value
changed by a COMPUTE command, it counts as two fields.

Reference: Commands Related to COMPUTE

DEFINE. Is a Master File attribute (not a command) that defines temporary fields and
derives their values from other fields in the data source. This type of temporary field is
called a virtual field. DEFINE automatically creates a corresponding virtual column in every
stack that includes the segment of the field. For more information, see the Describing Data
With WebFOCUS Language manual.

DECLARE. Creates local and global variables.

Using COMPUTE to Call Functions

When you call a function as a separate statement (that is, outside of a larger expression), if
the preceding command can take an optional semicolon (;) terminator, but was coded without
one, you must call the function in a COMPUTE or PERFORM command. You can use PERFORM
for Maintain Data functions only, though not for Maintain Data functions that return a value.
For example, in the following source code, the NEXT command does not end with a semicolon
(;), so the function that follows it must be called in a COMPUTE command:

COMPUTE

76 Information Builders

NEXT CustID INTO CustStack
COMPUTE VerifyCustID();

However, in all other situations, you can call functions directly, without a COMPUTE command.
For example, in the following source code, the NEXT command ends with a semicolon (;), so
the function that follows it can be called without a COMPUTE command:

NEXT CustID INTO CustStack;
VerifyCustID();

For more information about terminating commands with a semicolon (;), see Terminating
Command Syntax on page 22.

Using COMPUTE to Dynamically Change the Property of an Object

Instead of using WINFORM SET to dynamically change the property of an object, compute a
variable to a value, and assign that variable to the property of the object. When the variable is
evaluated, the property of the object is dynamically set.

For example, instead of issuing the following WINFORM SET command:

WINFORM SET FORM.OBJECT.FOCUS TO HERE;

Issue the following COMPUTE command and assign the variable to the FOCUS property of the
object.

COMPUTE VAR/I1=1;

where:

VAR

Is the name of the variable used in the dynamic set.

Note: In App Studio Maintain Data, assign the variable to the FOCUS property of the desired
object.

COPY

The COPY command copies some or all of the rows of one stack into another stack. You can
use the COPY command to overwrite existing rows in the target stack, to add new rows, or to
create the entire target stack.

You must define the contents of a stack before copying data into it. This can be accomplished
by issuing a NEXT or an INFER command for data source fields, and COMPUTE for non-data
source fields.

3. Command Reference

Maintain Data Language Reference 77

Source and target database stacks used in the COPY command must be derived from the
same data source description. The COPY command checks that the data source and segment
names are the same, and copies all columns in the source stack whose names and data types
exactly match columns in the target stack. In this context, data type refers to the basic data
type (such as integer) and all other data attributes including length, precision, null (MISSING),
and display options such as zero (0) suppression. Source and target columns do not need to
be in the same sequence.

Syntax: How to Use the COPY Command

The syntax of the COPY command is

[FOR {int|ALL}|STACK] COPY FROM {stk[(row)]|CURRENT}
INTO {stk[(row)]|CURRENT} [WHERE expression] [;]

where:

FOR

Is a prefix used with int or ALL to specify the number of rows to copy from the source
(FROM) stack into the target (INTO) stack. If you omit both FOR and STACK, only the first
row of the source stack is copied.

int

Is an integer expression that specifies how many source stack rows to copy into the target
stack. If int exceeds the number of source stack rows between the starting row and the
end of the stack, all of those rows are copied.

ALL

Indicates that all of the rows starting with either the first row or the subscripted row are
copied from the source (FROM) stack into the target (INTO) stack.

STACK

Is a synonym for the prefix FOR ALL. If you omit both FOR and STACK, only the first row of
the source stack is copied.

FROM

Is used with a stack name to specify the stack from which to copy the data.

INTO

Is used with a stack name to specify the stack to be created or modified.

stk

Is the name of the source or target stack. You can specify the same stack as the source
and target stacks.

COPY

78 Information Builders

row

Is a stack subscript that specifies a starting row number. It can be a constant, an integer
variable, or any Maintain Data expression that results in an integer value. If you omit row,
it defaults to 1.

CURRENT

Specifies the Current Area. If you specify CURRENT for the source stack, all Current Area
fields that also exist in the target stack are copied to the target stack. You cannot specify
CURRENT if you specify FOR or STACK.

WHERE

Specifies selection criteria for copying stack rows. If you specify a WHERE phrase, you
must also specify a FOR or STACK phrase.

expression

Is any Maintain Data expression that resolves to a Boolean expression. Unlike an
expression in the WHERE phrase of the NEXT command, it does not need to refer to a data
source field.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

Example: Copying All Rows of a Stack

The following example copies the entire Emp stack into a new stack called Newemp:

FOR ALL COPY FROM Emp INTO Newemp;

Example: Copying a Specified Number of Stack Rows

The following example copies 100 rows from the Emp stack starting with row number 101. The
rows are inserted beginning with row one of the stack Subemp:

FOR 100 COPY FROM Emp(101) INTO Subemp;

Example: Copying the First Row of a Stack

The following example copies the first row of the Emp stack into the first row in the Temp
stack. Only the first row in the source (FROM) stack is copied because this is the default when
a prefix is not specified for the COPY command. The data is copied into the first row of the
Temp stack because the first row is the default when a row number is not supplied for the
target (INTO) stack:

3. Command Reference

Maintain Data Language Reference 79

COPY FROM Emp INTO Temp;

Example: Copying a Row Into the Current Area

The following example copies the tenth row of the Emp stack into the Current Area. Only one
row is copied from the Emp stack because the COPY command does not have a prefix. Every
column in the stack is copied into the Current Area. If there is already a field in the Current
Area with the same name as a column in the stack, the Current Area variable is replaced with
data from the Emp stack:

COPY FROM Emp(10) INTO CURRENT;

Example: Copying Rows Based on Selection Criteria

You can also copy selected rows based on selection criteria. The following example copies
every row in the World stack that has a Country equal to USA into a new stack called USA:

FOR ALL COPY FROM World INTO USA WHERE Country EQ 'USA';

The following takes data from one stack and places it into three different stacks: one to add
data, one to change data, and one to update data.

FOR ALL COPY FROM Inputstk INTO Addstk WHERE Flag EQ 'A';
FOR ALL COPY FROM Inputstk INTO Delstk WHERE Flag EQ 'D';
FOR ALL COPY FROM Inputstk INTO Chngstk WHERE Flag EQ 'C';
FOR ALL INCLUDE Dbfield FROM Addstk;
FOR ALL DELETE Dbfield FROM Delstk;
FOR ALL UPDATE Dbfield1 Dbfield2 FROM Chngstk;

Example: Appending One Stack to Another

The following example takes an entire stack and adds it to the end of an existing stack. The
subscript consists of an expression. Yeardata.FocCount is a stack variable where Yeardata is
the name of the stack and FocCount contains the number of rows currently in the stack. By
adding one to FocCount, the data is added after the last row:

FOR ALL COPY FROM Junedata INTO Yeardata(Yeardata.FocCount+1);

Reference: Usage Notes for COPY

If the FOR int prefix specifies more rows than are in the source (FROM) stack, all of the
rows are copied.

Only the first row of the source (FROM) stack is copied if the COPY command does not
include FOR.

COPY

80 Information Builders

The entire stack is copied if the source (FROM) stack is not subscripted and FOR ALL is
used.

The row to start copying from defaults to the first row unless the source (FROM) stack is
subscripted. If the source (FROM) stack is subscripted, the copy process starts with the
row number and copies as many rows as specified in the FOR n prefix, or the remainder of
the stack if FOR ALL is specified.

No change is made to the source (FROM) stack unless it is also the target (INTO) stack.

INTO CURRENT cannot be used with the FOR phrase and generates an error if specified.

To copy an entire stack, specify FOR ALL without a subscripted source (FROM) stack.

Stack columns created using the COMPUTE command cannot be copied into the Current
Area.

If the source (FROM) stack is the Current Area, the only Current Area fields that are copied
are those that have a corresponding column name in the target (INTO) stack.

If the target (INTO) stack is not subscripted, the data is copied into the first row in the
stack. If the target (INTO) stack is subscripted, the copied row or rows are inserted at this
row.

If the COPY command specifies the command output destination as a row or rows of an
existing stack that already have data in them, then the old data in these rows is overwritten
with the new data when the COPY is executed.

If the source (FROM) stack has fewer columns than the target (INTO) stack, the columns
that do not have any data are initialized to blank, zero (0) , or null (missing) as appropriate.

Source (FROM) stack rows will overwrite the specified target (INTO) stack rows if they
already exist.

If the COPY command creates rows in the target (INTO) stack, and the target (INTO) stack
contains columns that are not in the source (FROM) stack, those columns in the new rows
will be initialized to their default values of blank, zero (0), or null (missing).

If the source (FROM) stack has more columns than the target (INTO) stack, only
corresponding columns are copied.

The FOR prefix copies rows from the source (FROM) stack one row at a time, not all at the
same time. For example, the following command:

FOR ALL COPY FROM Car(Car.FocIndex) INTO Car(Car.FocIndex+1);

3. Command Reference

Maintain Data Language Reference 81

copies the first row into the second, then copies those same values from the second row
into the third, and keeps going. When the command has finished executing, all rows will
have the same values as the first row.

Reference: Commands Related to COPY

INFER. Defines the columns in a stack.

COMPUTE. Defines the columns in a stack for non-data source fields.

NEXT. Defines the columns in a stack and places data into it.

DECLARE

The DECLARE command creates global and local variables (including objects), and gives you
the option of assigning an initial value.

Where you place a DECLARE command within a procedure depends on whether you want it to
define local or global variables. See Local and Global Declarations on page 84 for more
information.

Syntax: How to Use the DECLARE Command

The syntax of the DECLARE command is

DECLARE
[(]
objectname/datatype [DFC cc YRT yy] [missing]][= expression];
.
.
.
[)]
 missing:[MISSING {ON|OFF} [NEEDS] [SOME|ALL] [DATA]]

where:

objectname

Is the name of the object or other variable that you are creating. The name is subject to
the standard naming rules of the Maintain Data language. See Specifying Names on page
17 for more information.

datatype

Is a data type (a class or built-in format).

DECLARE

82 Information Builders

expression

Is an optional expression that will provide the initial value of the variable. If the expression
is omitted, the initial value of the variable is the default for that data type: a space or null
for character and date and time data types, and zero (0) or null for numeric data types.
When declaring a new variable using a class data type, you must omit expression.

DFC cc

Specifies a default century that will be used to interpret any dates with unspecified
centuries in expressions assigned to this variable. cc is a two-digit number indicating the
century (for example, 19 would indicate the twentieth century). If this is not specified, it
defaults to 19.

This is optional if the data type is a built-in format. It is not specified if the data type is a
class, as it is relevant only for scalar variables.

YRT yy

Specifies a default threshold year for applying the default century identified in DFC cc. yy is
a two-digit number indicating the year. If this is not specified, it defaults to 00.

When the year of the date being evaluated is less than the threshold year, the century of
the date being evaluated defaults to the century defined in DFC cc plus one. When the year
is equal to or greater than the threshold year, the century of the date being evaluated
defaults to the century defined in DFC cc.

This is optional if the data type is a built-in format. It is not specified if the data type is a
class, as it is relevant only for scalar variables.

missing

Is used to allow or disallow null values. This is optional if the data type is a built-in format.
It is not specified if the data type is a class, as it is relevant only for scalar variables.

MISSING

If the MISSING syntax is omitted, the default value of the variable is zero (0) for numeric
variables and a space for character and date and time variables. If it is included, its
default value is null.

ON

Sets the default value to null.

OFF

Sets the default value to zero (0) or a space.

3. Command Reference

Maintain Data Language Reference 83

NEEDS

Is an optional keyword that clarifies the meaning of the command for a reader.

SOME

Indicates that for the target variable to have a value, some (at least one) of the variables
in the expression must have a value. If all of the variables in the expression are null, the
target variable will be null. This is the default.

ALL

Indicates that for the target variable to have a value, all the variables in the expression
must have values. If any of the variables in the expression is null, the target variable will
be null.

DATA

Is an optional keyword that clarifies the meaning of the command for a reader.

()

Groups a sequence of declarations into a single DECLARE command. The parentheses are
required for groups of local declarations, otherwise they are optional.

Reference: Commands Related to DECLARE

DESCRIBE. Defines classes and data type synonyms.

COMPUTE. Creates global variables, including objects, and assigns values to existing
variables.

Local and Global Declarations

When you declare a new variable, you choose between making the variable:

Local. To declare a local variable, issue the DECLARE command inside the desired
function. The DECLARE command must precede all other commands in the function. A local
variable is known only to the function in which it is declared.

To declare a local variable in the Top function, note that you cannot issue a DECLARE
command in an implied Top function, but you can issue it within an explicit Top function.

DECLARE

84 Information Builders

Global. To declare a global variable, place the DECLARE command outside of a function (for
example, at the beginning of the procedure prior to all functions), or define it using the
COMPUTE command anywhere in the procedure. Note that if you place any DECLARE
commands at the beginning of the procedure, you must have an explicit Top case in order
to end the global declarations. A global variable is known to all the functions in the
procedure.

We recommend declaring your variables locally, and to work with a variable outside the
function in which it was declared, passing it to the other function as an argument. Local
variables are preferable to global variables because they are protected from unintended
changes made in other functions.

DELETE

The DELETE command identifies segment instances from a transaction source (a stack or the
Current Area) and deletes the corresponding instances from the data source.

When you issue the command, you specify an anchor segment. For each row in the transaction
source, DELETE searches the data source for a matching segment instance. When it finds a
match, it deletes that anchor instance and all the descendants of the anchor.

If the anchor segment is not the root, you must establish a current instance in each of the
ancestor segments of the anchor, or provide ancestor segment key values in the source stack.
This ensures that DELETE can navigate from the root to the first instance of the anchor
segment.

Syntax: How to Use the DELETE Command

The syntax of the DELETE command is

[FOR {int|ALL}] DELETE segment [FROM stack[(row)]] [;]

where:

FOR

Is used with ALL or an integer to specify how many stack rows to use to identify segment
instances. If FOR is omitted, one stack row will be used.

When you specify FOR, you must also specify FROM to identify a source stack.

int

Is an integer constant or variable that indicates the number of stack rows to use to identify
segment instances to be deleted.

3. Command Reference

Maintain Data Language Reference 85

ALL

Specifies that the entire stack is used to delete the corresponding records in the data
source.

segment

Specifies the anchor segment of the path to delete. To specify a segment, provide the
name of the segment or of a field within the segment.

FROM

Is used to specify a stack whose key columns identify records to delete. If no stack is
specified, data from the Current Area is used.

stack

Is a stack name. Only one stack can be specified.

row

Is a subscript that specifies which stack row to begin with.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

Example: Specifying Which Segments to Delete

The DELETE command removes the lowest specified segment and all of its descendant
segments. For example, if a data source structure has four segments in a single path (named
First, Second, Third, and Fourth), the command

DELETE First.Field1 Second.Field2;

will delete instances from the Second, Third, and Fourth segments.

If you issue the command

DELETE First.Field1;

you will delete the entire data source path.

Example: Deleting Records Identified in a Stack

In the following example, the data in rows 2, 3, and 4 of the Stkemp stack is used to delete
data from the data source. The stack subscript indicates start in the second row of the stack
and the FOR 3 means DELETE data in the data source based on the data in the next three
rows.

DELETE

86 Information Builders

FOR 3 DELETE Emp_ID FROM Stkemp(2);

Example: Deleting a Record Identified in a Form

The first example prompts the user for the employee ID in the EmployeeIDForm form. If the
employee is already in the data source, all records for that employee are deleted from the data
source. This includes the employee instance in the root segment and all descendent
instances, such as pay dates, addresses, and so on. In order to find out if the employee is in
the data source, a MATCH command is issued:

MAINTAIN FILE Employee
Winform Show EmployeeIDForm;
CASE DELEMP
MATCH Emp_ID;
ON MATCH DELETE Emp_ID;
ON NOMATCH TYPE "Employee id <Emp_ID not found. Reenter";
COMMIT;
ENDCASE
END

When the user presses Enter, function DELEMP is triggered as an event handler from a form.
Control is then passed back to EmployeeIDForm.

The second example provides the same functionality. The only difference is that a MATCH is
not used to determine whether the employee already exists in the data source. The DELETE
can only work if the record exists. Therefore, if an employee ID is entered that does not exist,
the only action that can be taken is to display a message. In this case, the variable FocError is
checked. If FocError is not equal to zero (0), then the DELETE failed and a message displays:

MAINTAIN FILE Employee
INFER EMP_ID INTO STACKEMP
Winform Show EmployeeIDForm;
CASE DELEMP
DELETE Emp_ID;
IF FocError NE 0 THEN
 TYPE "Employee id <Stackemp.Emp_ID not found. Reenter";
COMMIT;
ENDCASE
END

Reference: Usage Notes for DELETE

Because the DELETE command removes the instance pointed to by the segment position
marker, after the deletion, the marker has a null value and the segment has no current
position. To reestablish position, you can issue the REPOSITION command.

3. Command Reference

Maintain Data Language Reference 87

You delete a unique segment by deleting its parent. To erase the fields of a unique
segment without affecting its parent, you can instead update its fields to space, zero (0), or
null.

In order for the DELETE to work, the data must exist in the data source. When a set of rows
are changed without first finding out if they already exist in the data source, then it is
possible that some of the rows in the stack will be rejected. Upon the first rejection, the
process stops and the rest of the set is rejected. If you want all rows to be accepted or
rejected as a unit, you should treat the stack as a logical transaction, evaluate the FocError
transaction variable, and then issue a ROLLBACK command if the entire stack is not
accepted. The transaction variable FocErrorRow is automatically set to the number of the
first row that failed.

After the DELETE is processed, the transaction variable FocError is given a value. If the
DELETE is successful, FocError is zero (0). If the DELETE fails (for example, the key values
do not exist in the data source), FocError is set to a non-zero value and (if the DELETE is
set-based) FocErrorRow is set to the number of the row that failed. If there is a concurrency
conflict at COMMIT time, the transaction variable FocCurrent is set to a non-zero value.

A DELETE command cannot have more than one input (FROM) stack.

When a DELETE command is complete, the variable FocError is set. If the DELETE is
successful (the records to be deleted exist in the data source), then FocError is set to zero
(0). If the records do not exist, FocError is set to a non-zero value. If the DELETE operation
was set-based, Maintain Data sets FocErrorRow to the number of the row that failed.

Maintain Data requires that the data sources to which it writes have unique keys.

Reference: Commands Related to DELETE

COMMIT. Makes all data source changes since the last COMMIT permanent.

ROLLBACK. Cancels all data source changes made since the last COMMIT.

DESCRIBE

The DESCRIBE command enables you to define and work with objects (called classes) that
cannot be defined using the standard set of classifications. Standard classifications include
data types such as Alphanumeric, Numeric, and Integer (a subset of Numeric).

A class can represent a data type synonym. You can assign a name to a specific data type and
then use this name as the format specification for variables. In this way, you can change the
formats of multiple variables by changing the class definition.

DESCRIBE

88 Information Builders

A class can also represent an object consisting of other objects, called components of the
class. You can define two types of components for a class, fields and functions (cases).

The DESCRIBE command defines the structure and behavior of a class. You then use the
COMPUTE or DECLARE command to create an instance of the class. The COMPUTE command
defines a global instance of the class. To create an instance that is local to a specific case,
use the DECLARE command within that case.

To reference a component of a class instance, qualify the name of the component with the
class instance name, separating them with a period (.). For example, consider a class called
Room, which has components length and width. You can create a class instance named
MyRoom in a COMPUTE or DECLARE command. For example:

COMPUTE MyRoom/Room;

To reference the length component of the MyRoom instance, qualify the component name with
the class instance name:

MyRoom.length

This is similar to qualifying a field name in a data source with its file or segment name.

Within the DESCRIBE and ENDDESCRIBE commands that define a class, you do not qualify
component names for that class.

Syntax: How to Use the DESCRIBE Command

You must issue the DESCRIBE command outside of a function (case), for example, at the
beginning of the procedure prior to all functions.

The syntax of the DESCRIBE command to define a new class is

DESCRIBE classname = ([superclass +] memvar/type [, memvar/type] ...)
[;]
[memfunction [memfunction] ...
ENDDESCRIBE]

where:

classname

Is the name of the class that you are defining. The name is subject to the standard naming
rules of the Maintain Data language. See Specifying Names on page 17 for more
information.

superclass

Is the name of the superclass from which to derive this class. Used only to describe a
subclass.

3. Command Reference

Maintain Data Language Reference 89

memvar

Names one of the member variables of the class. The name is subject to the standard
naming rules of the Maintain Data language. See Specifying Names on page 17 for more
information.

type

Is a data type (a built-in format or a class).

memfunction

Defines one of the member functions of the class. Member functions are defined the same
way as other Maintain Data functions, using the CASE command. See CASE on page 67 for
more information.

;

For class definitions, this terminates the definition if the definition omits member
functions. If it includes member functions, the semicolon is omitted and the
ENDDESCRIBE command is required.

For synonym definitions, this terminates the definition and is required.

ENDDESCRIBE

Ends the class definition if it includes member functions. If it omits member functions, the
ENDDESCRIBE command must also be omitted, and the definition terminates with a
semicolon (;).

The syntax of the DESCRIBE command to define a synonym for a data type is

DESCRIBE synonym = datatype ;

where:

synonym

Is a synonym for a data type (a class or format). The synonym is subject to the standard
naming rules of the Maintain Data language. See Specifying Names on page 17 for more
information.

;

For class definitions, this terminates the definition if the definition omits member
functions. If it includes member functions, the semicolon is omitted and the
ENDDESCRIBE command is required.

For synonym definitions, this terminates the definition and is required.

DESCRIBE

90 Information Builders

Example: Data Type Synonyms

Data type synonyms can make it easier for you to maintain variable declarations. For example,
if your procedure creates many variables for names of people, and defines them all as A30,
you would define a data type synonym for A30:

DESCRIBE NameType = A30;

You would then define all of the name variables as NameType:

DECLARE UserName/NameType;
COMPUTE ManagerName/NameType;
DECLARE CustomerName/NameType;

To change all name variables to A40, you could change all of them at once simply by changing
one data type synonym:

DESCRIBE NameType = A40;

Example: Defining a Class and Creating an Instance

The following DESCRIBE command defines a class named Room in an architecture application.
The components of the class are three fields, Width, Height, and Length:

DESCRIBE Room = (Width/I4, Height/I4, Length/I4);

The following COMPUTE command creates an instance of the Room class named abc and
assigns values to the components, qualifying each component with the class name:

COMPUTE abc/Room;
abc.Width = 10;
abc.Height = 20;
abc.Length = 30;

Once the instance is created, you can use it in other Maintain Data commands. For example,
the following TYPE command types each component value:

TYPE "Width=<abc.Width Height=<abc.Height Length=<abc.Length"

Class Member Functions

Functions included within a class definition specify operations that can be performed using the
components of the class.

Two function names, StartUp and CleanUp, are reserved and have specific uses.

3. Command Reference

Maintain Data Language Reference 91

If you define a case called StartUp, that case is executed whenever an instance of the class is
created. A global instance is created at the beginning of the Maintain Data procedure. A local
instance is created each time the case in which it is declared is performed.

If you define a case called CleanUp, that case is executed whenever an instance of the class
reaches the end of its scope. The scope of a global instance ends after execution of the
Maintain Data procedure. The scope of a local instance ends each time execution returns to
the procedure that performed the case in which it was declared.

Reference: Startup Case Considerations

You can create a global instance of a class using the COMPUTE command anywhere in the
Maintain Data procedure. To create an instance local to a specific case, use the DECLARE
command within that case.

You can use the Startup case to assign initial values to the components of a global instance of
a class.

To pass initial values for class components to the Startup case:

Define the Startup case to take arguments representing those components (with argument
names different from the component names).

In the Startup case, assign the incoming parameter values to the component field names.

Then, in the COMPUTE command that creates the instance, specify argument values to
pass to case Startup. For example, if the class is named Room, the instance is named
MyRoom, and you want to assign component values length=15 and width= 10, use the
following syntax to pass the values to the Startup case:

COMPUTE MyRoom/Room(15,10);

Note: The DECLARE command does not support passing arguments to the Startup case.
However, you can always use a COMPUTE or DECLARE command to assign initial or non-initial
values:

[COMPUTE|DECLARE] MyRoom/Room;
MyRoom.length = 20;
MyRoom.width = 15;

DESCRIBE

92 Information Builders

Reference: Executing Member Functions

Just as you can reference components of the class by qualifying the component names with
the class instance name, you can execute a function within the class by qualifying the function
name with the class instance name. For example, if the Room class contains a function called
FINDAREA that takes the arguments length and width and returns the area, you can execute
this function and type the returned value with the following commands:

AREA/I4 = MyRoom.FINDAREA(MyRoom.length, MyRoom.width)
TYPE "AREA = <AREA";

If the function operates on the components of the class, those components are available to
the function without passing them as arguments. Therefore, if length and width are
components of the Room class, the FINDAREA function does not need to take any arguments.
In this case, you invoke the function as follows:

AREA/I4 = MyRoom.FINDAREA()
TYPE "AREA = <AREA";

Note that parentheses are required when invoking a member function even if the function does
not take arguments.

Example: Defining a Class

The DESCRIBE command in the following Maintain Data procedure defines a class named Floor
in an architecture application. The components of the class are three fields (Length, Width,
and Area) and one case (PrintFloor). The COMPUTE command creates an instance of the class
named MYFLOOR, assigns values to the components, and calls the PrintFloor function.
Although the PrintFloor function does not take arguments, the parentheses are needed to
identify PrintFloor as a function:

MAINTAIN
DESCRIBE Floor = (Length/I4, Width/I4, Area/I4)
 CASE PrintFloor
 TYPE "length=<Length width=<Width area=<Area";
 ENDCASE
ENDDESCRIBE

COMPUTE MYFLOOR/FLOOR;
MYFLOOR.Length = 15;
MYFLOOR.Width = 10;
MYFLOOR.Area = MYFLOOR.Length * MYFLOOR.Width;
MYFLOOR.PrintFloor();
END

The output is:

3. Command Reference

Maintain Data Language Reference 93

length=15 width=10 area=150

Example: Defining a Class With a Startup Case

The DESCRIBE command in the following Maintain Data procedure defines a class named Floor
in an architecture application. The components of the class are three fields (Length, Width,
and Area) and one case (PrintFloor). The COMPUTE command creates an instance of the class
named MYFLOOR, passes values for the components to the Startup case, and calls the
PrintFloor function. The Startup case initializes the component fields with the values passed in
the COMPUTE command:

MAINTAIN
DESCRIBE Floor = (Length/I4, Width/I4, Area/I4)
 CASE Startup TAKES L/I4, W/I4, A/I4
 Length = L;
 Width = W;
 Area = A;
 ENDCASE
 CASE PrintFloor
 TYPE "In PrintFloor: length=<Length width=<Width area=<Area";
 ENDCASE
ENDDESCRIBE

COMPUTE MYFLOOR/FLOOR(15, 10, 150);
TYPE "After Startup: LENGTH=<MYFLOOR.LENGTH" |
 " WIDTH=<MYFLOOR.WIDTH AREA=<MYFLOOR.AREA";
MYFLOOR.PrintFloor();
END

The output is:

After Startup: LENGTH=15 WIDTH=10 AREA=150
In PrintFloor: length=15 width=10 area=150

Example: Defining and Using a Local Class Instance

In the following Maintain Data procedure, the DESCRIBE command defines a class named
FNAME with components LAST and FIRST. The FORMNAME case concatenates the last and
first names and separates them with a comma (,) and a space.

The main procedure loops through the first five records of the EMPLOYEE data source, and
passes each last name and first name to case PRTFULL.

Case PRTFULL creates a local instance of the FNAME class, invokes the FORMNAME member
function, and types the full name returned from that class. Although FORMNAME does not take
any arguments, the parentheses used when invoking FORMNAME identify it as a function.

DESCRIBE

94 Information Builders

TYPE commands in each case illustrate the flow of control:

MAINTAIN FILE VIDEOTRK
 DESCRIBE FNAME = (LAST/A15, FIRST/A10)

 CASE STARTUP;
 TYPE "IN CASE STARTUP: I = <I";
 ENDCASE

 CASE FORMNAME RETURNS FULLNAME/A30;
 FULLNAME/A30 = LAST || ', ' | FIRST;
 TYPE "IN CASE FORMNAME: I = <I FULLNAME = <FULLNAME";
 ENDCASE

 CASE CLEANUP;
 TYPE "IN CASE CLEANUP: I = <I";
 ENDCASE
 ENDDESCRIBE

-* MAIN PROCEDURE

FOR 5 NEXT CUSTID INTO CUSTSTK;
REPEAT 5 I/I1 = 1;
COMPUTE LAST/A15 = CUSTSTK(I).LASTNAME;
COMPUTE FIRST/A10 = CUSTSTK(I).FIRSTNAME;
TYPE "IN MAIN PROCEDURE: I = <I LAST = <LAST FIRST = <FIRST";
PERFORM PRTFULL(LAST, FIRST);
ENDREPEAT I = I+1;

 CASE PRTFULL TAKES LAST/A15, FIRST/A10;
-* MEMNAME IS A LOCAL VARIABLE
 DECLARE MEMNAME/FNAME;
 MEMNAME.LAST=LAST;
 MEMNAME.FIRST=FIRST;
 NEWNAME/A30 = MEMNAME.FORMNAME();
 TYPE "IN CASE PRTFULL: I = <I MEMBER NAME IS <NEWNAME";
 ENDCASE
END

The output shows that the Startup case is called prior to each invocation of case PRTFULL
(which defines the local instance), and the Cleanup case is called at the end of each
invocation of case PRTFULL:

3. Command Reference

Maintain Data Language Reference 95

IN MAIN PROCEDURE: I = 1 LAST = CRUZ FIRST = IVY
IN CASE STARTUP: I = 1
IN CASE FORMNAME: I = 1 FULLNAME = CRUZ, IVY
IN CASE PRTFULL: I = 1 MEMBER NAME IS CRUZ, IVY
IN CASE CLEANUP: I = 1
IN MAIN PROCEDURE: I = 2 LAST = HANDLER FIRST = EVAN
IN CASE STARTUP: I = 2
IN CASE FORMNAME: I = 2 FULLNAME = HANDLER, EVAN
IN CASE PRTFULL: I = 2 MEMBER NAME IS HANDLER, EVAN
IN CASE CLEANUP: I = 2
IN MAIN PROCEDURE: I = 3 LAST = WILSON FIRST = KELLY
IN CASE STARTUP: I = 3
IN CASE FORMNAME: I = 3 FULLNAME = WILSON, KELLY
IN CASE PRTFULL: I = 3 MEMBER NAME IS WILSON, KELLY
IN CASE CLEANUP: I = 3
IN MAIN PROCEDURE: I = 4 LAST = KRAMER FIRST = CHERYL
IN CASE STARTUP: I = 4
IN CASE FORMNAME: I = 4 FULLNAME = KRAMER, CHERYL
IN CASE PRTFULL: I = 4 MEMBER NAME IS KRAMER, CHERYL
IN CASE CLEANUP: I = 4
IN MAIN PROCEDURE: I = 5 LAST = GOODMAN FIRST = JOHN
IN CASE STARTUP: I = 5
IN CASE FORMNAME: I = 5 FULLNAME = GOODMAN, JOHN
IN CASE PRTFULL: I = 5 MEMBER NAME IS GOODMAN, JOHN
IN CASE CLEANUP: I = 5

TRANSACTIONS: COMMITS = 1 ROLLBACKS = 0
SEGMENTS : INCLUDED = 0 UPDATED = 0 DELETED = 0

Example: Defining and Using a Global Class Instance

In the following Maintain Data procedure, the DESCRIBE command defines a class named
FNAME with components LAST and FIRST. The FORMNAME case concatenates the last and
first names and separates them with a comma (,) and a space.

The main procedure loops through the first five records of the EMPLOYEE data source, and
passes each last name and first name to case PRTFULL.

Case PRTFULL creates a global instance of the FNAME class, invokes the FORMNAME member
function, and types the full name returned from that class. Although FORMNAME does not take
any arguments, the parentheses used when invoking FORMNAME identify it as a function.

TYPE commands in each case illustrate the flow of control:

DESCRIBE

96 Information Builders

MAINTAIN FILE VIDEOTRK
 DESCRIBE FNAME = (LAST/A15, FIRST/A10)
 CASE STARTUP TAKES LASTNAME/A15, FIRSTNAME/A10;
 TYPE "IN CASE STARTUP: I = <I LAST = <LASTNAME FIRST = <FIRSTNAME";
 LAST = LASTNAME;
 FIRST = FIRSTNAME;
 ENDCASE

 CASE FORMNAME RETURNS FULLNAME/A30;
 FULLNAME/A30 = LAST || ', ' | FIRST;
 TYPE "IN CASE FORMNAME: I = <I FULLNAME = <FULLNAME";
 ENDCASE

 CASE CLEANUP;
 TYPE "IN CASE CLEANUP: I = <I ";
 ENDCASE
 ENDDESCRIBE

-*MAIN PROCEDURE

FOR 5 NEXT CUSTID INTO CUSTSTK;

REPEAT 5 I/I1 = 1;
 COMPUTE LAST/A15 = CUSTSTK(I).LASTNAME;
 COMPUTE FIRST/A10 = CUSTSTK(I).FIRSTNAME;
 TYPE "IN MAIN PROCEDURE: I = <I LAST = <LAST FIRST = <FIRST";
 PERFORM PRTFULL(LAST, FIRST);
ENDREPEAT I = I+1;

 CASE PRTFULL TAKES LAST/A15, FIRST/A10;
 COMPUTE MEMNAME/FNAME('ABEL', 'AARON');
 NEWNAME/A30 = MEMNAME.FORMNAME();
 TYPE "IN CASE PRTFULL: I = <I MEMBER NAME IS <NEWNAME";
 ENDCASE
END

The output shows that the Startup case is called at the start of the Maintain Data procedure,
and the Cleanup case is called following the execution of the entire Maintain Data procedure:

3. Command Reference

Maintain Data Language Reference 97

IN CASE STARTUP: I = 0 LAST = ABEL FIRST = AARON

IN MAIN PROCEDURE: I = 1 LAST = CRUZ FIRST = IVY
IN CASE FORMNAME: I = 1 FULLNAME = CRUZ, IVY
IN CASE PRTFULL: I = 1 MEMBER NAME IS CRUZ, IVY
IN MAIN PROCEDURE: I = 2 LAST = HANDLER FIRST = EVAN
IN CASE FORMNAME: I = 2 FULLNAME = HANDLER, EVAN
IN CASE PRTFULL: I = 2 MEMBER NAME IS HANDLER, EVAN
IN MAIN PROCEDURE: I = 3 LAST = WILSON FIRST = KELLY
IN CASE FORMNAME: I = 3 FULLNAME = WILSON, KELLY
IN CASE PRTFULL: I = 3 MEMBER NAME IS WILSON, KELLY
IN MAIN PROCEDURE: I = 4 LAST = KRAMER FIRST = CHERYL
IN CASE FORMNAME: I = 4 FULLNAME = KRAMER, CHERYL
IN CASE PRTFULL: I = 4 MEMBER NAME IS KRAMER, CHERYL
IN MAIN PROCEDURE: I = 5 LAST = GOODMAN FIRST = JOHN
IN CASE FORMNAME: I = 5 FULLNAME = GOODMAN, JOHN
IN CASE PRTFULL: I = 5 MEMBER NAME IS GOODMAN, JOHN

TRANSACTIONS: COMMITS = 1 ROLLBACKS = 0
SEGMENTS : INCLUDED = 0 UPDATED = 0 DELETED = 0

IN CASE CLEANUP: I = 6

Defining and Using Superclasses and Subclasses

After you describe a class, you can derive other classes from it. Subclasses inherit member
variables and functions from their superclasses.

Order of classes matters when defining superclasses and subclasses. You must describe a
superclass prior to its subclasses.

A class can also use another class as one of its components. Again, order matters. You must
describe the class you are using as a component prior to the class that uses it.

Example: Defining a Subclass

The following example describes two classes, Floor and Room. Floor consists of components
Length and Width and member function FloorArea.

Room is a subclass of Floor. It inherits components Length and Width and member function
FloorArea. It adds component Depth and function RoomVolume.

The main procedure creates an instance of Room called MYROOM. It then assigns values to
the components, including inherited components Length and Width. It invokes the inherited
member function FloorArea as well as the RoomVolume function.

The main procedure then types the component values and the values returned by the member
functions.

DESCRIBE

98 Information Builders

MAINTAIN

 DESCRIBE Floor = (Length/I4, Width/I4)
 CASE FloorArea RETURNS Area/I4;
 Area = Length * Width;
 ENDCASE
 ENDDESCRIBE

 DESCRIBE Room = (Floor + Depth/I4)
 CASE RoomVolume RETURNS Volume/I4;
 Volume = FLOORAREA() * Depth;
 ENDCASE
 ENDDESCRIBE

COMPUTE MYROOM/ROOM;
MYROOM.LENGTH = 15;
MYROOM.WIDTH = 10;
MYROOM.DEPTH = 10;
AREA/I4 = MYROOM.FLOORAREA();
VOLUME/I4 = MYROOM.RoomVolume();
TYPE "LENGTH=<MYROOM.Length, WIDTH=<MYROOM.Width, " |
 "DEPTH=<MYROOM.DEPTH, AREA=<AREA, " |
 "VOLUME=<VOLUME";
END

The output is:

LENGTH=15, WIDTH=10, DEPTH=10, AREA=150, VOLUME=1500

Example: Using a Class as a Component of Another Class

The following example describes three classes: RoomDetail, Floor, and Room.

RoomDetail has no member functions. It consists of two components, Depth and RmType.

Floor consists of components Length and Width and member function FloorArea.

Room is a subclass of Floor. It inherits components Length and Width and member function
FloorArea. In addition, it has member function RoomVolume and component RmType, which is
an instance of class RoomDetail. When referring to the components of RoomDetail, you must
qualify them with their instance name. For example, the Rtype component is referenced as
follows:

RmType.Rtype

3. Command Reference

Maintain Data Language Reference 99

The main procedure creates an instance of Room called MYROOM. It then assigns values to
the components, including inherited components Length and Width. When assigning values to
the components of the RmType instance of the RoomDetail class, it must qualify them with the
instance name, MYROOM. Since these names already had one level of qualification when they
were referenced in the Room class, they now have two levels of qualification. For example, the
following assigns the value 10 to the Depth component:

MYROOM.RmType.Depth = 10;

Note that when no ambiguity in the variable name will result, only one level of qualification is
actually enforced. MYROOM.Depth is understood as MYROOM.RmType.Depth since Depth
does not appear in any other context.

The main procedure invokes the inherited member function FloorArea, as well as the
RoomVolume function, then types the component values and the values returned by the
member functions.

MAINTAIN
 DESCRIBE RoomDetail = (Depth/I4, Rtype/A10);

 DESCRIBE Floor = (Length/I4, Width/I4)
 CASE FloorArea RETURNS Area/I4;
 Area = Length * Width;
 ENDCASE
 ENDDESCRIBE

 DESCRIBE Room = (Floor + RmType/RoomDetail)
 CASE RoomVolume RETURNS Volume/I4;
 Volume = FLOORAREA() * RmType.Depth;
 TYPE "ROOM TYPE IS <RmType.Rtype";
 ENDCASE
 ENDDESCRIBE

COMPUTE MYROOM/ROOM;
MYROOM.LENGTH = 15;
MYROOM.WIDTH = 10;
MYROOM.RmType.Depth = 10;
MYROOM.RmType.Rtype = 'DINING ';
AREA/I4 = MYROOM.FLOORAREA();
VOLUME/I4 = MYROOM.RoomVolume();
TYPE "LENGTH=<MYROOM.LENGTH, WIDTH=<MYROOM.WIDTH, "|
"DEPTH=<MYROOM.rmtype.DEPTH, AREA=<AREA," |
 " VOLUME=<VOLUME";
END

The output is:

DESCRIBE

100 Information Builders

ROOM TYPE IS DINING
LENGTH=15, WIDTH=10, DEPTH=10, AREA=150, VOLUME=1500

Reference: Commands Related to DESCRIBE

DECLARE. Creates local and global variables, including objects.

COMPUTE. Creates global variables, including global objects, and assigns values to
existing variables.

END

The END command marks the end of a Maintain Data procedure and terminates its execution.

Syntax: How to Use the END Command

The syntax of the END command is

END

where:
END

Is the last line of the procedure, and must be coded in uppercase letters.

Reference: Commands Related to END

MAINTAIN. Is used to initiate the parsing and execution of a Maintain Data procedure.

CALL. Is used to call one procedure from another.

EXEC

The EXEC command enables you to call an App Studio procedure and pass parameters to and
from the procedure. You can run any App Studio procedure residing on a Reporting Server
accessible to the Reporting Server where the calling procedure resides. From an App Studio
procedure you can run many other types of procedures, including compiled C programs, CICS
transactions, and native RDBMS command files.

For more information, see the Developing WebFOCUS Maintain Applications manual.

Syntax: How to Use the EXEC Command

The syntax of the EXEC command is

EXEC progname [KEEP|DROP] [PATH {VAR|LIST}] [FROM var_list] [INTO
stacks] [;]

3. Command Reference

Maintain Data Language Reference 101

where:

progname

Is the name of the external procedure residing on the remote Reporting Server.

KEEP|DROP

The DROP parameter terminates the server session. The KEEP parameter leaves the
server session active for reuse by subsequent external procedures. KEEP is the default.

PATH

Is used to specify additional locations (search paths) the system should use when
searching for dependent resources (Master Files, imported modules, and others). The path
location names are application names existing within the APPROOT directory structure or
application names that have been introduced with the APP MAP command. The search
path value can be in the form of a Maintain Data variable or a list of literal values enclosed
in double quotation marks ("), as follows:

EXEC Procedure PATH "AppDir1 AppDir2 AppDir3" ;
EXEC Procedure PATH MyVariable ;

FROM

Is included to pass one or more variables to the external procedure.

INTO

Is included to identify the data stack to receive the answer set or sets coming from the
external procedure.

var_list

Is one or more scalar variables that you pass to the target procedure, where they are
received as numbered amper variables. You can pass any scalar variable except for those
defined as variable-length character variables (that is, except for those defined as A0 or
TX). Unlike the CALL command, you cannot pass stacks to the target procedure.

The length of a single parameter cannot exceed 32,000 characters. The total length of all
specified parameters cannot exceed 32,000 characters.

stacks

Is one or more stacks, each of which will receive an answer set from the target procedure.
To retrieve multiple answer sets, specify multiple stacks. The stacks are populated
sequentially as each answer set is returned by the external procedure. You can pass any
stack except for those defined using STACK OF.

EXEC

102 Information Builders

The number of variables specified in the EXEC command must not exceed the number
returned by the external procedure. If the number specified is fewer than the number
returned, the extra returned parameters are ignored.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
semicolon, see Terminating Command Syntax on page 22.

FocCount

The FocCount stack variable contains the number of rows in the stack. In an empty stack,
FocCount is 0. This variable is automatically maintained and the user does not need to do
anything when new rows are added or deleted from the stack. For example, the following stack
variable contains the number of rows in the EmpInfo stack:

EmpInfo.FocCount

The FocCount variable is useful as a test to see whether a data source retrieval command is
successful. For example, after putting data into a stack, FocCount can be checked to see if its
value is greater than zero (0). FocCount can also be used to perform an action on every row in
a stack. A repeat loop can be set up to loop the number of times specified by the FocCount
variable.

The following example computes a new salary for each row retrieved from the data source:

FOR ALL NEXT Emp_ID Curr_Sal INTO Pay;
COMPUTE Pay.NewSal/D12.2=;
REPEAT Pay.FocCount Cnt/I4=1;
 COMPUTE Pay(Cnt).NewSal/D12.2 = Pay(Cnt).Curr_Sal * 1.05;
ENDREPEAT Cnt=Cnt+1;

FocCurrent

FocCurrent contains the return code from logical transaction processing. This variable indicates
whether or not there is a conflict with another transaction. If the variable value is zero (0),
there is no conflict and the transaction is accepted. If the value is non-zero, there is a conflict.
FocCurrent is set after each COMMIT and ROLLBACK command.

FocCurrent is local to a procedure. If you need a given FocCurrent value to be available to
another procedure, you must pass it to that procedure as an argument.

3. Command Reference

Maintain Data Language Reference 103

FocError

FocError contains the return code from the INCLUDE, UPDATE, and DELETE commands. If all
the rows in the stack are successfully processed, FocError is set to zero (0). FocError is set to
a non-zero value if:

INCLUDE rejects the input.

UPDATE rejects the update.

DELETE rejects the delete.

REVISE rejects the changes.

FocError is a global variable. You do not need to pass it between procedures. Its value is
cleared each time a Maintain Data procedure is called.

FocErrorRow

After any set-based data source operation (FOR ... UPDATE, DELETE, REVISE, or INCLUDE), if
FocError is set to a non-zero value, then FocErrorRow is the number of the row that caused the
error.

FocErrorRow is local to a procedure. If you need a given FocErrorRow value to be available to
another procedure, you must pass it to that procedure as an argument.

FocFetch

FocFetch contains the return code of the most recently issued NEXT or MATCH command. If
the NEXT or MATCH command returned data, FocFetch is set to zero (0). Otherwise, it is set to
a non-zero value.

It is recommended that you test FocFetch in place of issuing the ON NEXT, ON NONEXT, ON
MATCH, and ON NOMATCH commands. FocFetch accomplishes the same thing more
efficiently.

For example:

FOR ALL NEXT CustID INTO CustOrderStack;
IF FocFetch NE 0 THEN ReadFailed();

FocFetch is local to a procedure. If you need a given FocFetch value to be available to another
procedure, you must pass it to that procedure as an argument.

FocIndex

The FocIndex stack variable is a pointer to the current instance in a stack. In an empty stack,
FocIndex is 1.

FocError

104 Information Builders

This variable is manipulated by the developer and can be used to do things such as determine
which row of a stack is to be displayed on a form. A form displays data from a stack based on
the value of FocIndex. For example, if a form currently displays data from the PayInfo stack and
the following compute is issued:

COMPUTE PayInfo.FocIndex=15;

The fifteenth row of the stack displays in the form.

FocMsg

FocMsg is a system stack with one A80 column named Msg. When a Maintain Data procedure
executes either an external procedure or a Maintain Data procedure on a remote server (that
is, a Maintain Data procedure called using the CALL procname command), all of the messages
that the called procedure writes to the default output device are automatically copied to the
FocMsg stack of the calling procedure. This includes messages issued by TYPE and SAY
commands that do not specify a file, and informational and error messages.

If the external procedure calls other external procedures, all messages posted by the chain of
external procedures are copied to the same FocMsg stack in the calling Maintain Data
procedure. Non-App Studio logic (such as a compiled 3GL program or a CICS transaction) that
is called from an external procedure does not copy to FocMsg.

FocMsg is global to each Maintain Data procedure.

Example: Cycling Through All the Messages in FocMsg

You can use FocCount to cycle through all of the messages that have been posted to FocMsg:

COMPUTE Counter/I3=1;
REPEAT FocMsg.FocCount;
 TYPE "<FocMsg(Counter).Msg";
 COMPUTE Counter=Counter+1;
ENDREPEAT

Example: Retrieving Messages Posted by an External Procedure

This example illustrates how to retrieve messages that were posted by an external procedure.

Client Procedure

3. Command Reference

Maintain Data Language Reference 105

1. MAINTAIN FILE MOVIES
2. INFER MovieCode Title INTO MoviesInfo;
3. EXEC GetMovie INTO MoviesInfo;
4. COMPUTE I/I4=1;
5. REPEAT 3;
6. TYPE
7. "Movie code is: << MoviesInfo(I).MovieCode"
8. " Title: << MoviesInfo(I).Title";
9. COMPUTE I=I+1;
10. ENDREPEAT
11.
12. COMPUTE I=1;
13. REPEAT FocMsg.FocCount;
14. TYPE "Here are the messages from the server: <<FocMsg(I).Msg";
15. COMPUTE I=I+1;
16. ENDREPEAT
17. END

External procedure GetMovie

1. TABLE FILE MOVIES
2. PRINT MOVIECODE TITLE
3. ON TABLE PCHOLD
4. END
5. RUN
6. -TYPE "Finished with the movies retrieval"

GOTO

The GOTO command is used to transfer control to a different Maintain Data function, to a
special point within the current function, or to terminate the application.

To transfer control to a different function, it is recommended that you use the PERFORM
command instead of GOTO.

GOTO

106 Information Builders

Syntax: How to Use the GOTO Command

The syntax of the GOTO command is

GOTO destination [;]

where:

destination

Is one of the following:

functionname

Specifies the name of the function to which control is transferred. Maintain Data
expects to find a function by that name in the procedure. You cannot use GOTO with a
function that has parameters.

Top

Transfers control to the beginning of the Top function. All local variables are freed and
current data source positions are retained, as are any uncommitted data source
transactions.

END [KEEP|RESET]

Terminates the procedure. Control returns to whatever called the procedure. No function
may be named END, as such a function would be ignored and never executed.

KEEP

Terminates a called procedure, but keeps its data (the values of its variables and data
source position pointers) in memory. It remains in memory through the next call or, if it
is not called again, until the application terminates.

RESET

Terminates a called procedure and clears its data from memory. This is the default.

EXIT

This is similar to GOTO END but immediately terminates all procedures in an application.
This means that if one procedure calls another and the called procedure issues a GOTO
EXIT, both procedures are ended by the GOTO EXIT command. No function may be named
EXIT.

ENDCASE

Transfers control to the ENDCASE command in the function, and the function is exited. For
information about the ENDCASE command, see CASE on page 67.

3. Command Reference

Maintain Data Language Reference 107

ENDREPEAT

Transfers control to the ENDREPEAT command in the current REPEAT loop. The loop is not
exited. All appropriate loop counters specified on the ENDREPEAT command are
incremented. For information about the REPEAT and ENDREPEAT commands, see REPEAT
on page 145.

EXITREPEAT

Exits the current REPEAT loop. Control transfers to the next line after the ENDREPEAT
command. For information about the REPEAT and ENDREPEAT commands, see REPEAT on
page 145.

;

Terminates the command. Although the semicolon is optional, you should include it to
allow for flexible syntax and better processing. For more information about the benefits of
including the semicolon, see Terminating Command Syntax on page 22.

For example, to branch to the function named MainMenu, you would issue the command:

GOTO MainMenu

Reference: Usage Notes for GOTO

If the GOTO specifies a function name that does not exist in the program, an error occurs at
parse time, which occurs before execution.

When one procedure calls another, and the called procedure has a GOTO END command,
GOTO END ends only the called procedure. The calling procedure is unaffected. A GOTO
END does not cause a COMMIT. This allows a called procedure to exit and have the calling
program issue the COMMIT when appropriate. For information about the COMMIT
command, see COMMIT on page 71.

Reference: Commands Related to GOTO

PERFORM. Control to another function. When the function finishes, control is returned to
the command following the PERFORM.

CASE/ENDCASE. Allows a set of commands to be grouped together.

REPEAT/ENDREPEAT. Provides a general looping facility.

GOTO

108 Information Builders

Using GOTO With Data Source Commands

A GOTO command can be executed in a MATCH command following an ON MATCH or ON
NOMATCH command, or in NEXT following ON NEXT or ON NONEXT. The following syntax
branches to the function MatchEdit when a MATCH occurs:

ON MATCH GOTO MatchEdit;

GOTO and ENDCASE

When control is transferred to a function with the GOTO command, every condition for exiting
that function must contain a command indicating where control should be passed to. If an
ENDCASE command is reached by either GOTO or normal program flow, and Maintain Data has
not received any instructions as to where to go next, Maintain Data takes a default action and
exits the procedure. ENDCASE is treated differently when GOTO and PERFORM are combined.
See PERFORM on page 143 for more information.

GOTO and PERFORM

It is recommended that you do not issue a GOTO command within the scope of a PERFORM
command.

The scope of a PERFORM command extends from the moment at which it is issued to the
moment at which control returns normally to the command or form control point immediately
following it. The scope includes any additional PERFORM commands nested within it.

For example, if the Top function issues a PERFORM command to call Case One, Case One
issues a PERFORM command to call Case Two. Case Two issues a PERFORM command to call
Case Three, and control then returns to Case Two, returns from there to Case One, and finally
returns to the Top function. You should not issue a GOTO command from the time the original
PERFORM branches out of the Top function until it returns to the Top function.

If, when you code your application, you cannot know every potential run time combination of
PERFORM and GOTO branches, it is recommended that you refrain from coding any GOTO
commands in your application.

IF

The IF command allows conditional processing depending on how an expression is evaluated.

Syntax: How to Use the IF Command

The syntax of the IF command is

IF boolean_expr THEN maint_command [ELSE maint_command]

3. Command Reference

Maintain Data Language Reference 109

where:

boolean_expr

Is an expression that resolves to a value of true (1) or false (0), and can include stack
cells and user-defined fields. For more information about Boolean expressions, see
Expressions Reference on page 25.

Maintain Data handles the format conversion in cases where the expressions have a
format mismatch. If the conversion is not possible, a message displays. For additional
information, see Expressions Reference on page 25.

It is highly recommended that parentheses be used when combining expressions. If
parentheses are not used, the operators are evaluated in the following order:

1. **

2. * /

3. + -

4. LT LE GT GE

5. EQ NE

6. OMITS CONTAINS

7. AND

8. OR

maint_command

You can place any Maintain Data command inside an IF command except for CASE,
DECLARE, DESCRIBE, END, MAINTAIN, and MODULE.

Example: Simple Conditional Branching

The following uses an IF command to compare variable values. The function No_ID is
performed if the Current Area value of Emp_ID does not equal the value of Emp_ID in
StackEmp:

IF Emp_ID NE StackEmp(StackEmp.FocIndex).Emp_ID THEN PERFORM No_ID;
 ELSE PERFORM Yes_ID;

IF

110 Information Builders

You might also use an IF command to issue another Maintain Data command. This example
causes a COMMIT if there are no errors:

IF FocCurrent EQ 0 THEN COMMIT;

Example: Using BEGIN to Execute a Block of Conditional Code

This example executes a set of code depending on the value of Department. Additional IF
commands could be placed within the BEGIN block of code:

IF Department EQ 'MIS' THEN BEGIN
 .
 .
 .
 ENDBEGIN
ELSE IF Department EQ 'MARKETING' THEN BEGIN
 .
 .
 .

Example: Nesting IF Commands

IF commands can be nested as deeply as needed, allowing only for memory constraints. The
following shows an IF command nested two levels. There is only one IF command after each
ELSE:

IF Dept EQ 1 THEN TYPE "DEPT EQ 1";
 ELSE IF Dept EQ 2 THEN TYPE "DEPT EQ 2";
 ELSE IF Dept EQ 3 THEN TYPE "DEPT EQ 3";
 ELSE IF Dept EQ 4 THEN TYPE "DEPT EQ 4";

This example can be executed more efficiently by issuing the following command:

TYPE "DEPT EQ <Dept";

You can also use the BEGIN command to place another IF within a THEN phrase. For example:

3. Command Reference

Maintain Data Language Reference 111

IF A EQ 1 THEN BEGIN
 IF B EQ 1 THEN BEGIN
 IF C EQ 1 THEN PERFORM C111;
 IF C EQ 2 THEN PERFORM C112;
 IF C EQ 3 THEN PERFORM C113;
 ENDBEGIN
 ELSE IF B EQ 2 THEN BEGIN
 IF C EQ 1 THEN PERFORM C121;
 IF C EQ 2 THEN PERFORM C122;
 IF C EQ 3 THEN PERFORM C123;
 ENDBEGIN
 ENDBEGIN
ELSE IF A EQ 2 THEN BEGIN
 IF B EQ 1 THEN BEGIN
 IF C EQ 1 THEN PERFORM C211;
 IF C EQ 2 THEN PERFORM C212;
 IF C EQ 3 THEN PERFORM C213;
 ENDBEGIN
 ELSE IF B EQ 2 THEN BEGIN
 IF C EQ 1 THEN PERFORM C221;
 IF C EQ 2 THEN PERFORM C222;
 IF C EQ 3 THEN PERFORM C223;
 ENDBEGIN
 ENDBEGIN
 ELSE TYPE "A, B AND C did not have expected values";

Coding Conditional COMPUTE Commands

To assign a value to a variable, and the value you assign is conditional upon the truth of an
expression, you can use a conditional COMPUTE command. Maintain Data offers you two
methods of coding this, using either:

An IF command with two COMPUTE commands embedded within it. For example:

IF Amount GT 100
 THEN COMPUTE Tfactor/I6 = Amount;
 ELSE COMPUTE Tfactor = Amount * (Factor - Price) / Price;

A conditional expression within a COMPUTE command. For example:

COMPUTE Tfactor/I6 = IF Amount GT 100 THEN Amount
 ELSE Amount * (Factor - Price) / Price;

The two methods are equivalent.

INCLUDE

The INCLUDE command inserts segment instances from a transaction source (a stack or the
Current Area) into a data source.

INCLUDE

112 Information Builders

When you issue the command, you specify a path running from an anchor segment to a target
segment. For each row in the transaction source, INCLUDE searches the data source for
matching segment instances and, if none exist, writes the new instances from the transaction
source to the data source.

If the anchor segment is not the root, you must establish a current instance in each of the
ancestor segments of the anchor, or provide ancestor segment key values in the source stack.
This ensures that INCLUDE can navigate from the root to the first instance of the anchor
segment.

Syntax: How to Use the INCLUDE Command

The syntax of the INCLUDE command is

[FOR {int|ALL}] INCLUDE path_spec [FROM stack[(row)]] [;]

where:

FOR

Is used with ALL or an integer to specify how many stack rows to add to the data source. If
FOR is omitted, one stack row will be added.

When you specify FOR, you must also specify FROM to identify a source stack.

int

Is an integer constant or variable that indicates the number of stack rows to add to the
data source.

ALL

Specifies that the entire stack is to be added to the data source.

path_spec

Identifies the path to be added to the data source. To identify a path, specify its anchor
and target segments. You cannot specify a unique segment as the anchor. If the path
contains only one segment, and the anchor and target are identical, simply specify the
segment once. For paths with multiple segments, to make the source code clearer to
readers, you can also specify segments between the anchor and target.

To add a unique segment instance to a data source, you must explicitly specify the
segment in path_spec. Otherwise, the unique segment instance will not be added even if it
is on the path between the anchor and target segments. This preserves the advantage of
assigning space for a unique segment instance only when the instance is needed.

To specify a segment, provide the name of the segment or of a field within the segment.

3. Command Reference

Maintain Data Language Reference 113

FROM

Is used to specify a stack containing records to insert. If no stack is specified, data from
the Current Area is used.

stack

Is a stack name. Only one stack can be specified.

row

Is a subscript that specifies the first stack row to add to the data source.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
semicolon, see Terminating Command Syntax on page 22.

Example: Adding Data From Multiple Stack Rows

The following example tries to add the data in rows 2, 3, and 4 of Stkemp into the data
source. The stack subscript instructs the system to start in the second row of the stack. The
FOR 3 instructs the system to INCLUDE the next three rows.

FOR 3 INCLUDE Emp_ID FROM Stkemp(2);

Example: Preventing Duplicate Records

You can execute the INCLUDE command after a MATCH command that fails to find a matching
record. For example:

MATCH Emp_ID FROM Newemp;
ON NOMATCH INCLUDE Emp_ID FROM Newemp;

The INCLUDE command can also be issued without a preceding MATCH. In this situation, the
key field values are taken from the source stack or Current Area and a MATCH is performed
internally. When a set of rows is input without a prior confirmation that it does not already exist
in the data source, one or more of the rows in the stack may be rejected. Upon the first
rejection, the process stops and the rest of the set is rejected. For all of the rows to be
accepted or rejected as a unit, the set should be treated as a logical unit of work and a
ROLLBACK issued if the entire set was not accepted. After an INCLUDE, the transaction
variable FocError is given a value. If the INCLUDE is successful, FocError is zero (0). If the
INCLUDE fails (for example, if the key values already exist in the data source), Maintain Data
assigns a non-zero value to FocError, and (if the include was set-based) assigns the value of
the row that failed to FocErrorRow. If at COMMIT time there is a concurrency conflict, Maintain
Data sets FocCurrent to a non-zero value.

INCLUDE

114 Information Builders

Example: Adding Multiple Segments

This example shows how data is added from two segments in the same path. The data comes
from a stack named EmpInfo and the entire stack is used. When the INCLUDE is complete, the
variable FocError is checked to see if the INCLUDE was successful. If it failed, a general error
handling function is called:

FOR ALL INCLUDE Emp_ID Dat_Inc FROM EmpInfo;
IF FocError NE 0 THEN PERFORM Errhandle;

Example: Adding Data From the Current Area

The user is prompted for the employee ID and name. The data is included if it does not already
exist in the data source. If the data already exists, it is not included, and the variable FocError
is set to a non-zero value. Since the procedure does not check FocError, no error handling
takes place and the user does not know whether or not the data is added:

NEXT Emp_ID Last_Name First_Name;
INCLUDE Emp_ID;

Reference: Usage Notes for INCLUDE

If there is a FOR prefix, a stack must be mentioned in the FROM phrase.

When an INCLUDE command is complete, the variable FocError is set. If the INCLUDE is
successful (the records to be added do not exist in the data source), then FocError is set to
zero (0). If the records do exist, FocError is set to a non-zero value, and (if it is a set-based
INCLUDE) FocErrorRow is set to the number of the row that failed.

Maintain Data requires that data sources to which it writes have unique keys.

Reference: Commands Related to INCLUDE

COMMIT. Makes permanent all data source changes since the last COMMIT.

ROLLBACK. Cancels all data source changes made since the last COMMIT.

Data Source Position

A Maintain Data procedure always has a position either within a segment or just prior to the
first segment instance. If data has been retrieved, the position is the last record successfully
retrieved on that segment. If a retrieval operation fails, the data source position remains
unchanged.

3. Command Reference

Maintain Data Language Reference 115

If an INCLUDE is successful, the data source position is changed to the new record. On the
other hand, if the INCLUDE fails, it might be because there is already a record in the data
source with the same keys. In this case, the attempted retrieval prior to the INCLUDE is
successful, and the position is on that record. Therefore, the position in the data source
changes.

Null Values

If you add a segment instance that contains fields for which no data has been provided, and
those fields have been defined in the Master File with the MISSING attribute, they are
assigned a null value. If those fields have been defined in the Master File without the MISSING
attribute, they are assigned a default value of a space for character and date and time fields,
or zero (0) for numeric fields.

INFER

Stacks are array variables containing rows and columns. When defining a stack and its
structure, provide a name for the stack and a name, format, and order for each of the columns
in the stack.

Stacks can be defined in two ways:

Performing actual data retrieval with the NEXT command, the stack is defined and
populated at the same time. The stack is defined with all the segments that are retrieved.
This is convenient when the procedure is processing on the same physical platform as the
data source.

If the procedure referring to a stack does not retrieve data, you must issue the INFER
command to define the structure of the stack. When you issue the command, you specify a
data source path. INFER defines the stack with columns corresponding to each field in the
specified path. The Master File provides the names and formats of the columns. INFER may
only be used to define stack columns that correspond to data source fields. To define user-
defined variables, use the COMPUTE command.

A procedure that includes an INFER command must specify the name of the corresponding
Master File in the MAINTAIN command, and must have access to the Master File.

INFER

116 Information Builders

Syntax: How to Use the INFER Command

The syntax of the INFER command is

INFER path_spec INTO stackname [;]

where:

path_spec

Identifies the path to be defined for the data source. To identify a path, specify its anchor
and target segments. If the path contains only one segment, the anchor and target are
identical. Simply specify the segment once. For paths with multiple segments, to make the
code clearer to readers, you can also specify segments between the anchor and target.

To specify a segment, provide the name of the segment or of a field within the segment.

stackname

Is the name of the stack.

;

Terminates the command. Although the semicolon is optional, you should include it to
allow for flexible syntax and better processing. For more information about the benefits of
including the semicolon, see Terminating Command Syntax on page 22.

Example: Inferring Two Stacks

In the following called procedure, two INFER commands define the EmpClasses and
ClassCredits stacks:

MAINTAIN FROM EmpClasses INTO ClassCredits
INFER Emp_ID Ed_Hrs Date_Attend Course_Code INTO EmpClasses;
INFER Emp_ID Course_Code Grade Credits INTO ClassCredits;
.
.
.
END

Reference: Commands Related to INFER

CALL. Can be used to call one Maintain Data procedure from another.

COPY. Can be used to copy data from one stack to another.

COMPUTE. Can be used to define the contents of a stack for non-data source fields.

3. Command Reference

Maintain Data Language Reference 117

Defining Non-Data Source Columns

To define stack columns in a procedure for non-data source fields (fields created with the
COMPUTE command), you do not need to provide a value for the column. The syntax is:

COMPUTE stackname.target_variable/format = ;

Note that the equal sign is optional when the COMPUTE is issued solely to establish format.

In the following example, the stack column TempEmp was passed to the called procedure. The
COMPUTE is issued in the called procedure to define the variable prior to use:

COMPUTE EmpClasses.TempEmp_ID/A9 ;

MAINTAIN

The MAINTAIN command marks the beginning of a Maintain Data procedure. You can identify
any data sources the procedure will access using the FILE phrase. If the request is to be called
from another procedure, you can identify variables to be passed from and to the calling
procedure using the FROM and INTO phrases.

Syntax: How to Use the MAINTAIN Command

The syntax of the MAINTAIN command is

MAINTAIN [FILE[S] filelist] [FROM varlist] [INTO varlist]
 filelist:filedesc [{AND|,} filedesc ...]
 varlist: {variable} [{variable} ...]

where:

MAINTAIN

Identifies the beginning of a Maintain Data request. It must be coded in uppercase letters.

FILE[S]

Indicates that the procedure accesses Master Files. The S can be added to FILE for clarity.
The keywords FILE and FILES may be used interchangeably.

You access a Master File when you read or write to a data source, and when you use an
INFER command to define the data source columns of a stack. For example, when you
redefine a stack that has been passed from a parent procedure.

FROM

Is included if this procedure is called by another procedure, and that procedure passes
one or more variables.

MAINTAIN

118 Information Builders

INTO

Is included if this procedure is called by another procedure, and this procedure passes one
or more variables back to the calling procedure.

filelist

Are the names of the Master Files this procedure accesses.

filedesc

Are the names of the Master Files that describe the data sources that are accessed in the
procedure.

AND

Is used to separate Master File names.

,

Is used to separate Master File names.

varlist

Are the variables, both scalar variables and stacks, which are passed to or from this
procedure. Multiple variables are separated by blank spaces.

variable

Are the names of the scalar variables or stacks. You can pass any variable, except for
those defined as variable-length character (that is, those defined as TX or A0) and those
defined using STACK OF.

Reference: Usage Notes for MAINTAIN

To access more than one data source, you can specify up to 15 Master Files per MAINTAIN
command. If you must access more than 15 data sources, you can call other procedures
that can each access an additional 15 data sources.

There is a limit of 64 segments per procedure for all referenced data sources, although
additional procedures can reference additional segments.

Reference: Commands Related to MAINTAIN

END. Terminates the execution of a Maintain Data procedure.

CALL. Is used to call one procedure from another.

3. Command Reference

Maintain Data Language Reference 119

Specifying Data Sources With the MAINTAIN Command

The MAINTAIN command does not require any parameters. This means that Maintain Data
procedures do not need to access data sources or stacks. You can use a procedure as a
subroutine when sharing functions among different procedures, or when certain logic is not
executed very frequently. For example, to begin a procedure that does not access any data
sources and does not have any stacks as input or output, you simply begin the procedure with
the keyword MAINTAIN.

However, the keyword FILE and the name of the Master File are required if you want to access
a data source. The following example accesses the Employee data source:

MAINTAIN FILE Employee

A Maintain Data procedure can access several data sources by naming the corresponding
Master Files in the MAINTAIN command:

MAINTAIN FILES Employee AND EducFile AND JobFile

Calling a Procedure From Another Procedure

You can use the CALL command to pass control to another procedure. When the CALL
command is issued, control is passed to the named procedure. Once that procedure is
complete, control returns to the item that follows the CALL command in the calling procedure.

Called procedures can also reside on remote Reporting Servers, allowing you to partition the
logic of your application between machines.

For information about the CALL command, see CALL on page 63.

Example: Passing Variables Between Procedures

You can pass stacks and variables between procedures by using FROM and INTO variable lists.
In the following example, when the CALL Validate command is reached, control is passed to
the procedure named Validate along with the Emps stack. Once Validate is complete, the data
in the ValidEmps stack is sent back to the calling procedure. Notice that the calling and called
procedures both have the same FROM and INTO stack names. Although this is not required, it
is good practice to avoid giving the same stacks different names in different procedures.

The calling procedure contains:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Emps;
INFER emp_id into Validemps;

MAINTAIN

120 Information Builders

CALL Validate FROM Emps INTO ValidEmps;
.
.
.
END

The called procedure (Validate) contains:

MAINTAIN FILE Employee FROM Emps INTO ValidEmps
.
.
.
END

MATCH

The MATCH command enables you to identify and retrieve a single segment instance or path
instance by key value. You provide the key value using a stack or the Current Area. MATCH
finds the first instance in the segment chain that has that key.

You specify which path to retrieve by identifying its anchor and target segments. If the anchor
segment is not the root, you must establish a current instance in each of the ancestor
segments of the anchor. This enables MATCH to navigate from the root to the anchor segment
instance.

The command always matches on the full key. To match on a partial key, use the NEXT
command and identify the value of the partial key in the WHERE phrase of the command.

If the data source has been defined without a key, you can retrieve a segment instance or path
using the NEXT command, and identify the desired instance using the WHERE phrase of the
command.

Syntax: How to Use the MATCH Command

The syntax of the MATCH command is

MATCH path_spec [FROM stack[(row)]] [INTO stack[(row)]] [;]

where:

path_spec

Identifies the path to be read from the data source. To identify a path, specify its anchor
and target segments. If the path contains only one segment, the anchor and target are
identical. Specify the segment once. For paths with multiple segments, to make the code
clearer to readers, you can also specify segments between the anchor and target.

To specify a segment, provide the name of the segment or of a field within the segment.

3. Command Reference

Maintain Data Language Reference 121

FROM

Is used to specify a stack containing a key value on which to match. If you omit this,
Maintain Data uses a value in the Current Area. In either case, the columns containing the
key value must have the same names as the corresponding key fields in the data source.

INTO

Is used to specify the stack that the data source values are to be placed into. Values
retrieved by MATCH are placed into the Current Area when an INTO stack is not supplied.

stack

Is a stack name. Only one stack can be specified for each FROM or INTO phrase. The
stack name should have a subscript specifying which row is to be used. If a stack is not
specified, the values retrieved by the MATCH go into the Current Area.

row

Is a subscript that specifies which row is used. The first row in the stack is matched
against the data source if the FROM stack does not have a subscript. The data is placed in
the first row in the stack if the INTO stack does not have a subscript.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

Example: Matching Keys in the Employee Data Source

The following example performs a MATCH on the key field in the PayInfo segment. It gets the
value for Pay_Date from the Pay_Date field, which is in the Current Area. After the match is
found, all of the field values in the PayInfo segment are copied from the data source into the
Current Area:

MATCH Pay_Date;

The next example shows a MATCH on the key in the EmpInfo segment. It gets the value for
Emp_ID from the Emp_ID column in the Cnt row of the Stackemp stack. After the match is
found, all of the fields in the EmpInfo segment are copied into the Current Area:

MATCH Emp_ID FROM Stackemp(Cnt);

The last example is the same as the previous example except that an output stack is
mentioned. The only difference in execution is that after the match is found, all of the fields in
the EmpInfo segment are copied into a specific row of a stack rather than into the Current
Area:

MATCH

122 Information Builders

MATCH Emp_ID FROM Stackemp(Cnt) INTO Empout(Cnt);

Reference: Commands Related to MATCH

NEXT. Starts at the current position and moves forward through the data source. NEXT can
retrieve data from one or more records.

REPOSITION. Changes the data source position to be at the beginning of the chain.

How the MATCH Command Works

When a MATCH command is issued, Maintain Data tries to retrieve a corresponding record
from the data source. If there is no corresponding value and an ON NOMATCH command
follows, the command is executed.

The MATCH command looks through the entire segment to find a match. The NEXT command
with a WHERE qualifier also locates a data source record, but does it as a forward search. That
is to say, it starts at its current position and moves forward. It is not an exhaustive search
unless positioned at the start of a segment. This can always be done with the REPOSITION
command. A MATCH is equivalent to a REPOSITION on the segment followed by a NEXT
command with a WHERE phrase specifying the key. If any type of test other than the equality
test that the MATCH command provides is needed, the NEXT command should be used.

MODULE

The MODULE command accesses a source code library so the current procedure can use the
class definitions of the library and Maintain Data functions. A library is a nonexecutable
procedure, and is implemented as a component called an import module.

Syntax: How to Use the MODULE Command

The MODULE command must immediately follow the MAINTAIN command. The syntax of the
MODULE command is

MODULE IMPORT (library_name [,library_name] ...);

where:

library_name

Is the name of the library to import as a source code library. Specify its file name without
an extension. The file must reside in the path defined by the EDASYNR environment
variable.

3. Command Reference

Maintain Data Language Reference 123

If a library is specified multiple times in a MODULE command, Maintain Data will include
the library only once in order to avoid a loop.

Reference: Commands Related to MODULE

DESCRIBE. Defines classes. You can use DESCRIBE to include classes in a library.

CASE. Defines a function. You can use CASE to include functions in a library.

What You Can and Cannot Include in a Library

You can include most Maintain Data language commands and structures in a library. However,
there are some special opportunities and restrictions of which you should take note:

Other libraries. You can place one library within another, and can nest libraries to any
depth. For example, to nest library B within library A, issue a MODULE IMPORT B command
within library A.

If a given library is specified more than once in a series of nested libraries, Maintain Data
will only include the library once in order to avoid a loop.

Top function. Because a library is a nonexecutable procedure, it has no Top function.

Forms. A library cannot contain forms.

Data sources. A library cannot refer to data sources. For example, it cannot contain data
source commands (such as NEXT and INCLUDE) and cannot refer to data source stacks.

NEXT

The NEXT command selects and reads segment instances from a data source. You can use
NEXT to read an entire set of records at a time, or just a single segment instance. You can
select segments by field value or sequentially.

You specify a path running from an anchor segment to a target segment. NEXT reads all the
fields from the anchor through the target, and (if the anchor segment is not the root) all the
keys of the ancestor segments of the anchor. It copies what it has read to the stack that you
specify or, if you omit a stack name, to the Current Area.

If the anchor segment is not the root, you must establish a current instance in each of the
ancestor segments of the anchor. This enables NEXT to navigate from the root to the current
instance of the anchor segment.

NEXT

124 Information Builders

In each segment that it reads, NEXT works its way forward through the segment chain. When
no more records are available, the NONEXT condition arises and no more records are retrieved
unless the procedure issues a REPOSITION command. REPOSITION causes a reposition to just
prior to the beginning of the segment chain. If you are familiar with the SQL language, the
NEXT command acts as a combination of the SQL commands SELECT and FETCH, and allows
you to use the structure of the data source to your advantage when retrieving data.

Syntax: How to Use the NEXT Command

The syntax of the NEXT command is

[FOR {int|ALL}] NEXT path [INTO stack[(row)]] [WHERE where_expression1
[AND where_expression2 ...]] [;]

where:

FOR

Is a prefix that is used with int or ALL to specify how many data source records are to be
retrieved. If FOR is not specified, NEXT works like FOR 1 and the next record is retrieved. If
the FOR phrase is used, the INTO phrase must also be used.

int

Is an integer constant or variable that specifies the number of data source records that are
retrieved from the data source. Retrieval starts at the current position in the data source.

ALL

Specifies that starting at the current data source position, all data source segments
referred to in the field list are examined.

path

Identifies the path to be read from the data source. To identify a path, specify its anchor
and target segments. If the path contains only one segment, the anchor and target are
identical, simply specify the segment once. For paths with multiple segments, to make the
code clearer to readers, you can also specify segments between the anchor and target.

To specify a segment, provide the name of the segment or of a field within the segment.

INTO

Is used with a stack name to specify the name of the stack into which the data source
records are copied.

stack

Is the name of the stack that the data source values are placed into. Only one stack can
be specified.

3. Command Reference

Maintain Data Language Reference 125

row

Is a subscript that specifies in which row of the stack the data source values are placed. If
no subscript is provided, the data is placed in the stack starting with the first row.

where_expression1, where_expression2

Is any valid NEXT WHERE expression. You can use any valid relational expression,
described in Relational Expressions on page 49. NEXT can also use some enhanced
screening conditions not available in other situations. For more information, see Using
Selection Logic to Retrieve Rows on page 128.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

Reference: Usage Notes for NEXT

If an INTO stack is specified, and that stack already exists, new rows are added starting at
the row specified. If no stack row number is specified, then data is added starting at the
first row. In either case, it is possible that some existing rows may be written over. If a
NEXT command causes only some of the rows in a stack to be overwritten, the rest of the
stack remains intact. If the subscript provided on the INTO stack is past the end of the
existing stack, the intervening rows are initialized to spaces, zeroes (0), or nulls (missing
values), as appropriate. If the new stack overwrites some of the rows of the existing stack,
only those rows are affected. The rest of the stack remains intact.

If no FOR prefix is used and no stack name is supplied, the values retrieved by the NEXT
command go into the Current Area.

Reference: Commands Related to NEXT

REPOSITION. Changes the data source position to be at the beginning of the chain.

MATCH. Searches the entire segment for a matching field value. It retrieves an exact
match in the data source.

NEXT

126 Information Builders

Copying Data Between Data Sources

You can use the NEXT command to copy data between data sources. It is helpful to copy data
between data sources when transaction data is gathered by one application and must be
stored for use by another application. It is also helpful when the transaction data is to be
applied to the data source at a later time or in a batch environment.

Example: Copying Data to the Movies Data Source

For example, assume that you want to copy data from a fixed-format data source named
FilmData into an App Studio data source named Movies. You describe FilmData using the
following Master File:

FILENAME=FILMDATA, SUFFIX=FIX
SEGNAME=MOVINFO, SEGTYPE=S0
 FIELDNAME=MOVIECODE, ALIAS=MCOD, USAGE=A6, ACTUAL=A6,$
 FIELDNAME=TITLE, ALIAS=MTL, USAGE=A39, ACTUAL=A39,$
 FIELDNAME=CATEGORY, ALIAS=CLASS, USAGE=A8, ACTUAL=A8,$
 FIELDNAME=DIRECTOR, ALIAS=DIR, USAGE=A17, ACTUAL=A17,$
 FIELDNAME=RATING, ALIAS=RTG, USAGE=A4, ACTUAL=A4,$
 FIELDNAME=RELDATE, ALIAS=RDAT, USAGE=YMD, ACTUAL=A6,$
 FIELDNAME=WHOLESALEPR, ALIAS=WPRC, USAGE=F6.2, ACTUAL=A6,$
 FIELDNAME=LISTPR, ALIAS=LPRC, USAGE=F6.2, ACTUAL=A6,$
 FIELDNAME=COPIES, ALIAS=NOC, USAGE=I3, ACTUAL=A3,$

The fields in FilmData have been named identically to those in Movies to establish the
correspondence between them in the INCLUDE command that writes the data to Movies.

You can read FilmData into Movies using the following procedure:

MAINTAIN FILE Movies AND FilmData
FOR ALL NEXT FilmData.MovieCode INTO FilmStack;
FOR ALL INCLUDE Movies.MovieCode FROM FilmStack;
END

All field names in the procedure are qualified to distinguish between identically-named fields in
the input data source (FilmData) and the output data source (Movies).

Loading Multi-Path Transaction Data

To load data from a transaction data source into multiple paths of a data source, you should
process each path independently. Use one pair of NEXT and INCLUDE commands per path.

For example, assume that you have a transaction data source named TranFile whose structure
is identical to that of the VideoTrk data source.

To load the transaction data from both paths of TranFile into both paths of VideoTrk, you could
use the following procedure:

3. Command Reference

Maintain Data Language Reference 127

MAINTAIN FILES TranFile AND VideoTrk
FOR ALL NEXT TranFile.CustID TranFile.ProdCode INTO ProdStack;
REPOSITION CustID;
FOR ALL NEXT TranFile.CustID TranFile.MovieCode INTO MovieStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.ProdCode FROM ProdStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.MovieCode FROM MovieStack;
END

Alternatively, if you choose to store each path of transaction data in a separate single-segment
transaction data source, the same principles apply. For example, if the two paths of TranFile
are stored separately in transaction data sources TranProd and TranMove, the previous
procedure would change as highlighted below:

MAINTAIN FILES TranProd AND TranMove AND VideoTrk
FOR ALL NEXT TranProd.CustID INTO ProdStack;
FOR ALL NEXT TranMove.CustID
 INTO MovieStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.ProdCode FROM ProdStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.MovieCode FROM MovieStack;
END

Retrieving Multiple Rows: The FOR Phrase

The FOR phrase is used to specify the number of data source records that are to be retrieved.
As an example, if FOR 10 is used, ten records are retrieved. A subsequent FOR 10 retrieves
the next ten records starting from the last position. If an attempt to retrieve ten records only
returns seven because the end of the chain is reached, the command retrieves seven records,
and the ON NONEXT condition is raised.

The following retrieves the next ten instances of the EmpInfo segment and places them into
Stackemp:

FOR 10 NEXT Emp_ID INTO Stackemp;

Using Selection Logic to Retrieve Rows

When you are retrieving rows using the NEXT command, you have the option to restrict the
rows you retrieve using the WHERE clause. The syntax for this option is

WHERE operand1 comparison_op1 operand2
[AND operand3 comparison_op1 operand4 ...]

NEXT

128 Information Builders

where:

operand1, operand2, operand3, operand4, ...

Are operands. In each NEXT WHERE expression, one operand must be a data source field,
and one must be a valid Maintain Data expression that does not refer to a data source
field.

For more information about Maintain Data expressions, see Expressions Reference on page
25.

comparison_op1, comparison_op2, ...

Can be any of the comparison operators listed in Logical Operators on page 50 or any of
the comparison operators listed in Comparison Operators on page 130. Some comparison
operators may be listed in both places. This means that they can be used in a WHERE
clause in an enhanced way.

The following example retrieves every instance of the EmpInfo segment that has a department
value of MIS:

FOR ALL NEXT Emp_ID INTO EmpStack WHERE Department EQ 'MIS';

Literals can be enclosed in either single quotation marks (') or double quotation marks ("). For
example, the following produces exactly the same results as the last example:

FOR ALL NEXT Emp_ID INTO EmpStack WHERE Department EQ "MIS";

The ability to use either single quotation marks (') or double quotation marks (") provides the
added flexibility of being able to use either single quotation marks (') or double quotation
marks (") in text. For example:

NEXT Emp_ID WHERE Last_Name EQ "O'HARA";
NEXT Product WHERE Descr CONTAINS '"TEST"';

This example starts at the beginning of the segment chain and searches for all employees that
are in the MIS department. All retrieved segment instances are copied into a stack:

REPOSITION Emp_ID;
FOR ALL NEXT Emp_ID INTO Misdept WHERE Department EQ 'MIS';

After FOR ALL NEXT is processed, you are positioned at the end of the segment chain.
Therefore, before issuing an additional NEXT command on the same segment chain, you
should issue a REPOSITION command to be positioned prior to the first instance in the
segment chain.

3. Command Reference

Maintain Data Language Reference 129

Reference: Comparison Operators

IS, EQ, NE, IS_NOT

Select data source values using wildcard characters (you embed the wildcards in a
character constant in the non-data source operand). You can use dollar sign wildcards ($)
throughout the constant to signify that any character is acceptable in the corresponding
position of the data source value.

To allow any value of any length at the end of the data source value, you can combine a
dollar sign wildcard with an asterisk ($*) at the end of the constant.

For example:

WHERE ZipCode IS '112$$'

CONTAINS, OMITS

Select data source values that contain or omit a character string stored in a variable.

For example, the following returns all data where the word BANK is part of the bank name:

COMPUTE name/A4 = 'BANK';

FOR ALL NEXT bank_code
bank_name into stackname

 WHERE bank_name CONTAINS name;

The following returns all data where the bank name does not include the word BANK:

COMPUTE name/A4 = 'BANK';

FOR ALL NEXT bank_code
bank_name into stackname

 WHERE bank_name OMITS name;

EXCEEDS

Selects data source values that are greater than a numeric value.

For example:

 WHERE TOTAL Curr_sal EXCEEDS 110000

IN (list), NOT_IN (list)

Select data source values that are in or not in a list. IN and NOT_IN can be used with all
data types.

NEXT

130 Information Builders

For example, the following returns all data where the bank name is not in the list:

FOR ALL NEXT emp_id bank_name INTO stackname

WHERE bank_name NOT_IN
('ASSOCIATED BANK', CITIBANK)

EQ_MASK, NE_MASK

Select data source values that match or do not match a mask.

Use the $ sign to replace each letter in the value. Masks can only be used with
alphanumeric data. The masked value may be hard coded or a variable.

For example, the following returns all data where the bank code starts with AAA and has
any character at the end:

COMPUTE code/A4='AAA$';

FOR ALL NEXT bank_name
INTO stackname

WHERE bank_code EQ_Mask code;

The following returns all data where the bank code does not match the mask:

COMPUTE code/A4='AAA$';

FOR ALL NEXT bank_name
INTO Stackname

WHERE bank_code NE_Mask code;

Using NEXT After a MATCH

NEXT can also be used in conjunction with the MATCH command. This example issues a
MATCH for employee ID. If there is not a match, a message displays. If there is a match, all
the instances of the child segment for that employee are retrieved and placed in the stack
Stackemp. The NEXT command can be coded as part of an ON MATCH condition, but it is not
required, as the NEXT will only retrieve data based on the current position of higher-level
segments.

MATCH Emp_ID
ON NOMATCH BEGIN
 TYPE "The employee ID is not in the data source.";
 GOTO Getmore;
 ENDBEGIN
FOR ALL NEXT Dat_Inc INTO Stackemp;

3. Command Reference

Maintain Data Language Reference 131

Using NEXT for Data Source Navigation: Overview

The segments that NEXT operates on are determined by the fields mentioned in the NEXT
command. The list of fields is used to determine the anchor segment (the segment closest to
the root) and the target segment (the segment furthest from the root). Every segment starting
with the anchor and ending with the target make up the scope of the NEXT command, including
segments not mentioned in the NEXT command. Both the target and the anchor must be in
one data source path.

NEXT does not retrieve outside the scope of the anchor and target segment. All segments not
referenced remain constant, which is why NEXT can be used as a get next within parent (GNP).

As an example, look at a partial view of the Employee data source:

If a NEXT command has SalInfo as the anchor segment and the target is the Deduct segment,
it also needs to retrieve data for the EmpInfo segment, which is the parent of the SalInfo
segment based on its current position. The position for the EmpInfo segment can be
established by either a prior MATCH or NEXT command. If no position has been established for
the EmpInfo segment, an error occurs.

NEXT

132 Information Builders

You can use the NEXT command for:

Data Source Navigation: Using NEXT With One Segment on page 133.

Data Source Navigation: Using NEXT With Multiple Segments on page 134.

Data Source Navigation: Using NEXT Following NEXT or MATCH on page 136.

Data Source Navigation: Using NEXT With One Segment

If a NEXT references only one segment and has no WHERE phrase or FOR prefix, it always
moves forward one instance within that segment. If the segment is not the root, all parent
segments must have a position in the data source and only those instances descending from
those parents are examined and potentially retrieved. The NEXT command starts at the current
position within the segment, and each time the command is encountered, it moves forward
one instance. If a prior position has not been established within the segment (no prior NEXT,
MATCH, or REPOSITION command has been issued), the NEXT retrieves the first instance.

The following command references the root segment, so there is no parent segment in which
to have a position:

NEXT Emp_ID;

The following command refers to a child segment, so the parents to this segment must already
have a position and that position does not change during the NEXT operation:

NEXT Pay_Date;

If the NEXT command uses the FOR prefix, it works the same as described above, but rather
than moving forward only one data source instance, it moves forward as many rows as the FOR
specifies. The following retrieves the next three instances of the EmpInfo segment:

FOR 3 NEXT Emp_ID INTO Stemp;

If a FOR prefix is used, an INTO stack must be specified. However, an INTO stack can be
specified without the FOR prefix.

If a WHERE phrase is specified and there is no FOR prefix, the NEXT moves forward as many
times as necessary to retrieve one row that satisfies the selection criteria specified in the
WHERE phrase. The following retrieves the next employee in the MIS department:

NEXT Emp_ID WHERE Department EQ 'MIS';

3. Command Reference

Maintain Data Language Reference 133

If the NEXT command does not have an INTO stack name, the output of the NEXT (the value of
all of the fields in the segment instance) goes into the Current Area. If an INTO stack is
specified, the output goes into the stack named in the command. If more than one row is
retrieved by using a FOR prefix, the number of rows specified in the FOR are placed in the
stack. If the INTO stack specifies a row number (for example, INTO Mystack(10)), then the
rows are added to the stack starting with that row number. If the INTO stack does not specify a
row number, the rows are added to the stack starting at the first row.

The following retrieves all of the fields from the next instance in the segment that Emp_ID is in
and places the output into the first row of the Stemp stack:

NEXT Emp_ID INTO Stemp;

If the NEXT command has both a WHERE phrase and a FOR prefix, it moves forward as many
times as necessary to retrieve the number of rows specified in the FOR phrase that satisfies
the selection criteria specified in the WHERE phrase. The following retrieves the next three
employees in the MIS department and places the output into the stack called Stemp:

FOR 3 NEXT Emp_ID INTO Stemp WHERE Department EQ 'MIS';

If there were not as many rows retrieved as you specified in the FOR prefix, you can determine
how many rows were actually retrieved by checking the FocCount variable of the target stack.

Data Source Navigation: Using NEXT With Multiple Segments

If a NEXT command references more than one segment, each time the command is executed it
moves forward within the target (the lowest-level child segment). Once the target no longer has
any more instances, the next NEXT moves forward on the parent of the target and repositions
itself at the beginning of the chain of the child. In the following example, the REPOSITION
command changes the position of EmpInfo to the beginning of the data source (EmpInfo is in
the root). The first NEXT command finds the first instance of both segments. When the second
NEXT is executed, what happens depends on whether there is another instance of the SalInfo
segment, because the NEXT command does not retrieve short path instances (that is, it does
not retrieve path instances that are missing descendant segments). If there is another
instance, the second NEXT moves forward one instance in the SalInfo segment. If there is only
one instance in the SalInfo segment for the employee retrieved in the first NEXT, the second
NEXT moves forward one instance in the EmpInfo segment. When this happens, the SalInfo
segment is positioned at the beginning of the chain and the first SalInfo instance is retrieved.
If there is no instance of SalInfo, the NEXT command retrieves the next record that has a
SalInfo segment instance.

NEXT

134 Information Builders

REPOSITION Emp_ID;
NEXT Emp_ID Pay_Date;
NEXT Emp_ID Pay_Date;

When there is a possibility of short paths, and the intention is to retrieve the data from the
parent even if there is no data for the child, NEXT should be used on one segment at a time,
as described in Data Source Navigation: Using NEXT Following NEXT or MATCH on page 136. If
a NEXT command uses the FOR n prefix, it works the same as described above, but rather
than moving forward only one data source instance, it moves forward as many records as are
required to retrieve the number specified in the FOR prefix.

For instance, the following command retrieves the next five instances of the EmpInfo and
SalInfo segments and places the output into the Stemp stack. The five records may or may not
all have the same EmpInfo segment:

FOR 5 NEXT Emp_ID Dat_Inc INTO Stemp;

If the data source is populated as follows,

all of the fields from the following segment instances are added to the stack:

1. EMP_ID 071382660, DAT_INC 820101

2. EMP_ID 071382660, DAT_INC 810101

3. EMP_ID 112847612, DAT_INC 820101

4. EMP_ID 117593129, DAT_INC 820601

5. EMP_ID 117593129, DAT_INC 820501

If a WHERE phrase is specified, the NEXT moves forward as many times as necessary to
retrieve one record that satisfies the selection criteria specified in the WHERE phrase. For
example, the following retrieves the next record where the child segment has the field Gross
greater than 1,000:

NEXT Emp_ID Pay_Date WHERE Gross GT 1000;

3. Command Reference

Maintain Data Language Reference 135

If both a WHERE phrase and a FOR prefix are specified, the NEXT moves forward as many
times as necessary to retrieve the number specified in the FOR prefix that satisfies the
selection criteria specified in the WHERE phrase. For instance, the following retrieves all of the
records where the Gross field is greater than 1,000. As stated above, if more than one
segment is mentioned and there is a FOR prefix, the data retrieved may come from more than
one employee:

FOR ALL NEXT Emp_ID Pay_Date INTO Stemp WHERE Gross GT 1000;

If the NEXT command does not have an INTO stack name provided, the output of the NEXT is
copied into the Current Area. If an INTO stack is specified, the output is copied into the stack
named in the command. The number of records retrieved is the number that is placed in the
stack. If the INTO stack specifies a row number (for example, INTO Mystack(10)) then the
records are added to the stack starting at the row number. If the INTO stack does not specify a
row number, the rows are added to the stack starting with the first row in the stack. If data
already exists in any of the rows, those rows are cleared and replaced with the new values.

If the NEXT command can potentially retrieve more than one record (the FOR prefix is used), an
INTO stack must be specified. If no stack is provided, a message displays and the procedure
terminates.

Data Source Navigation: Using NEXT Following NEXT or MATCH

In order to use NEXT through several segments, specify all the segments in one NEXT
command or use several NEXT commands. If all of the segments are placed into one NEXT
command, there is no way to know when data is retrieved from a parent segment and when it
is retrieved from a child. To have control over when each segment is retrieved, each segment
should have a NEXT command of its own. In this way, the first NEXT establishes the position
for the second NEXT.

A NEXT command following a MATCH command works in a similar way. The first command
(MATCH) establishes the data source position.

In the following example, the REPOSITION command places the position in the EmpInfo
segment and all of its children to the beginning of the chain. Both NEXT commands move
forward to the first instance in the appropriate segment:

REPOSITION Emp_ID;
NEXT Emp_ID;
NEXT Pay_Date;

NEXT

136 Information Builders

If one of the NEXT commands uses the FOR prefix, it works the same as described above, but
rather than moving forward only one segment instance, NEXT moves forward however many
records the FOR specifies. For example, the following retrieves the first instance in the EmpInfo
segment and the next three instances of the SalInfo segment. All three records are for only
one employee because the first NEXT establishes the position:

REPOSITION Emp_ID;
NEXT Emp_ID;
FOR 3 NEXT Pay_Date INTO Stemp;

After this code is executed, the stack contains data from the following segments:

1. Emp_ID instance 1 and Pay_Date instance 1

2. Emp_ID instance 1 and Pay_Date instance 2

3. Emp_ID instance 1 and Pay_Date instance 3

Every NEXT command that uses a FOR prefix does so independent of any other NEXT
command. If there are two NEXT commands, the first executes. When it is complete, the
position is the last instance retrieved. The second NEXT command then executes and retrieves
data from within the parent established by the first NEXT. In the following example, the first
NEXT retrieves the first two instances from the EmpInfo segment and places the instances into
the stack. The second NEXT retrieves the next three instances of the SalInfo segment. Note its
parent instance is the second EmpInfo segment instance. The stack variable FocCount
indicates the number of rows currently in the stack. The prefix Stemp is needed to indicate the
stack.

STACK CLEAR Stemp;
REPOSITION Emp_ID;
FOR 2 NEXT Emp_ID INTO Stemp(1);
FOR 3 NEXT Pay_Date INTO Stemp(Stemp.FocCount);

The stack contains data from the following segments after the first NEXT is executed:

1. Emp_ID instance 1

2. Emp_ID instance 2

The stack contains data from the following segments after the second NEXT is executed:

1. Emp_ID instance 1

2. Emp_ID instance 2 and Pay_Date instance 1

3. Emp_ID instance 2 and Pay_Date instance 2

4. Emp_ID instance 2 and Pay_Date instance 3

3. Command Reference

Maintain Data Language Reference 137

The row in the INTO stack that the output is placed in is specified by supplying the row number
after the stack name. When two NEXT commands are used in a row for the same stack, care
must be taken to ensure that data is written to the appropriate row in the stack. If a stack row
number is not specified for the second NEXT command, data is placed into the last row written
to by the first NEXT, and existing data is overwritten. In order to place data in a different row, a
row number or an expression to calculate the row number can be used. For example, the
second NEXT command specifies the row after the last row by adding one to the variable
FocCount:

FOR 2 NEXT Emp_ID INTO Stemp(1);
FOR 3 NEXT Pay_Date INTO Stemp(Stemp.FocCount+1);

The stack now appears as follows. Notice that there is a new row 2:

1. Emp_ID instance 1

2. Emp_ID instance 2

3. Emp_ID instance 2 and Pay_Date instance 1

4. Emp_ID instance 2 and Pay_Date instance 2

5. Emp_ID instance 2 and Pay_Date instance 3

If a WHERE phrase is specified, the NEXT moves forward as many times as necessary to
retrieve one record that satisfies the selection criteria specified in the WHERE phrase. For
instance, the following retrieves the next record where the Gross field of the child segment is
greater than 1,000. Like the previous example, the data retrieved is only for the employee that
the first NEXT retrieves:

NEXT Emp_ID;
NEXT Pay_Date WHERE Gross GT 1000;

If both a FOR prefix and a WHERE phrase are specified, the NEXT moves forward as many
times as necessary to retrieve the number of records specified in the FOR prefix that satisfy
the selection criteria specified in the WHERE phrase.

For example, the following syntax retrieves the next three records where the Gross field of the
child segment is greater than 1,000. As above, the data retrieved is only for the employee that
the first NEXT retrieves:

NEXT Emp_ID;
FOR 3 NEXT Pay_Date INTO Stemp WHERE Gross GT 1000;

NEXT

138 Information Builders

Unique Segments

Maintain Data allows separate segments to be joined in a one-to-one relation (among other
ways). Unique segments are indicated by specifying a SEGTYPE of U, KU, or DKU in the Master
File, or by issuing a JOIN command. In a NEXT command, you retrieve a unique segment by
specifying a field from the segment in the field list of the command. You cannot specify the
unique segment as an anchor segment.

If an attempt is made to retrieve data from a unique segment and the segment does not exist,
the fields are treated as if they are fields in the parent segment. This means that the returned
data is spaces, zeroes (0), and/or nulls (missing values), depending on how the segment is
defined. In addition, the answer set contains as many rows as the parent of the unique
segment. If an UPDATE or a DELETE command subsequently uses the data in the stack and
the unique segment does not exist, it is not an error, because unique segments are treated as
if the fields are fields in the parent. If an INCLUDE is issued, the data source is not updated.

ON MATCH

The ON MATCH command defines the action to take if the prior MATCH command succeeds (if
it is able to retrieve the specified segment instance). There can be intervening commands
between the MATCH and ON MATCH commands, and they can be in separate functions.

You should query the FocFetch system variable in place of issuing the ON MATCH command.
FocFetch accomplishes the same thing more efficiently. For more information, see FocFetch on
page 104.

Syntax: How to Use the ON MATCH Command

The syntax of the ON MATCH command is

ON MATCH command

where:

command

Is the action that is taken when the prior MATCH command succeeds.

You can specify any Maintain Data command except for CASE, DECLARE, DESCRIBE, END,
MAINTAIN, MODULE, and another ON command.

Example: Using On MATCH

The following example displays a message stating that there was a MATCH:

MATCH Emp_ID;
ON MATCH TYPE "Employee was found in the data source";

3. Command Reference

Maintain Data Language Reference 139

This example shows an UPDATE that is performed after a MATCH occurs:

MATCH Emp_ID;
ON MATCH UPDATE Salary FROM SalStack;

The following shows several commands being executed after a MATCH:

MATCH Emp_ID;
ON MATCH BEGIN
 TYPE "Employee was found in the data source";
 UPDATE Salary FROM Salstack;
 PERFORM Jobs;
 ENDBEGIN

ON NEXT

The ON NEXT command defines the action to take if the prior NEXT command succeeds (if it is
able to retrieve all of the specified records). There can be intervening commands between the
NEXT and ON NEXT commands, and they can be in separate functions.

It is recommended that you query the FocFetch system variable in place of issuing the ON
NEXT command. FocFetch accomplishes the same thing more efficiently. For more information,
see FocFetch on page 104.

Syntax: How to Use the ON NEXT Command

The syntax of the ON NEXT command is

ON NEXT command

where:

command

Is the action that is taken when NEXT is successful.

You can specify any Maintain Data command except for CASE, DECLARE, DESCRIBE, END,
MAINTAIN, MODULE, and another ON command.

Example: Using ON NEXT

The first example displays a message stating that the NEXT was successful:

NEXT Emp_ID;
ON NEXT TYPE "Was able to NEXT another employee";

This example computes a five percent increase for the next employee in the data source:

NEXT Emp_ID;
ON NEXT COMPUTE NewSal/D12.2 = Curr_Sal * 1.05;

ON NEXT

140 Information Builders

The following example shows several commands that are executed after a NEXT:

ON NEXT BEGIN
 TYPE "Was able to NEXT another employee";
 COMPUTE NewSal/D12.2 = Curr_Sal * 1.05;
 ENDBEGIN

ON NOMATCH

The ON NOMATCH command defines the action to take if the prior MATCH command fails (if it
is unable to retrieve the specified segment instance). There can be intervening commands
between the MATCH and ON NOMATCH commands, and they can be in separate functions.

It is recommended that you query the FocFetch system variable in place of issuing the ON
NOMATCH command. FocFetch accomplishes the same thing more efficiently. For more
information, see FocFetch on page 104.

Syntax: How to Use the ON NOMATCH Command

The syntax of the ON NOMATCH command is

ON NOMATCH command

where:

command

Is the action that is taken when the prior MATCH command fails.

You can specify any Maintain Data command except for CASE, DECLARE, DESCRIBE, END,
MAINTAIN, MODULE, and another ON command.

Example: Using ON NOMATCH

The first example displays a message stating that the MATCH was unsuccessful:

MATCH Emp_ID;
ON NOMATCH TYPE "Employee was not found in the data source";

This example shows an INCLUDE of a row from the Emp stack:

MATCH Emp_ID FROM Emp(Cnt);
ON NOMATCH INCLUDE Emp_ID FROM Emp(Cnt);

The following example shows several commands that are executed after a MATCH command
fails:

3. Command Reference

Maintain Data Language Reference 141

MATCH Emp_ID;
ON NOMATCH BEGIN
 TYPE "Employee was not found in the data source";
 INCLUDE Emp_ID;
 PERFORM Cleanup;
 ENDBEGIN

ON NONEXT

The ON NONEXT command defines the action to take if the prior NEXT command fails (if it is
unable to retrieve all of the specified records). There can be intervening commands between
the NEXT and ON NONEXT commands, and they can be in separate functions.

For example, when the following NEXT command is executed

FOR 10 NEXT Emp_ID INTO Stkemp;

only eight employees are left in the data source, so only eight records are retrieved, raising the
ON NONEXT condition.

It is recommended that you query the FocFetch system variable in place of issuing the ON
NONEXT command. FocFetch accomplishes the same thing more efficiently. For more
information, see FocFetch on page 104.

Syntax: How to Use the ON NONEXT Command

The syntax of the ON NONEXT command is

ON NONEXT command

where:

command

Is the action that is taken when NEXT fails.

You can specify any Maintain Data command except for CASE, DECLARE, DESCRIBE, END,
MAINTAIN, MODULE, and another ON command.

Example: Using ON NONEXT

The first example displays a message stating that the NEXT was unsuccessful:

NEXT Emp_ID;
ON NONEXT TYPE "There are no more employees";

If all of the employees have been processed, the program is exited:

ON NONEXT

142 Information Builders

NEXT Emp_ID;
ON NONEXT GOTO EXIT;

The following example shows several commands being executed after a NEXT fails:

ON NONEXT BEGIN
 TYPE "There are no more employees in the data source";
 PERFORM Wrapup;
 ENDBEGIN

PERFORM

You can use the PERFORM command to pass control to a Maintain Data function. Once that
function is executed, control returns to the command immediately following the PERFORM.

Syntax: How to Use the PERFORM Command

The syntax of the PERFORM command is

PERFORM functionname [()] [;]

where:

functionname

Specifies the name of the function to perform.

()

Is optional. If you omit the word PERFORM and only use the function name, parentheses
are required.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

For example, to perform the function named NextSet, issue the command:

PERFORM NextSet;

Reference: Commands Related to PERFORM

CASE/ENDCASE. Defines a Maintain Data function.

GOTO. Transfers control to another function or to the end of the current function.

3. Command Reference

Maintain Data Language Reference 143

Using PERFORM to Call Maintain Data Functions

When you call a function as a separate statement (that is, outside of a larger expression), if
the preceding command can take an optional semicolon (;) terminator but was coded without
one, you must call the function in a COMPUTE or PERFORM command. You can use PERFORM
for Maintain Data functions only, though not for Maintain Data functions that return a value.

For example, in the following source code, the NEXT command does not end with a semicolon
(;), so the function that follows it must be called in a PERFORM command:

NEXT CustID INTO CustStack
PERFORM VerifyCustID();

However, in all other situations, you can call functions directly, without a PERFORM command.
For example, in the following source code, the NEXT command ends with a semicolon (;), so
the function that follows it can be called without a PERFORM command:

NEXT CustID INTO CustStack;
VerifyCustID();

Note: When calling a function without using a PERFORM command, you must include
parentheses.

For more information about terminating commands with a semicolon (;), see Terminating
Command Syntax on page 22.

Using PERFORM With Data Source Commands

A PERFORM can be executed in a MATCH command following an ON MATCH or ON NOMATCH
command, or in NEXT following ON NEXT or ON NONEXT. In the following example, the function
NotHere is performed after a NOMATCH condition occurs:

ON NOMATCH PERFORM NotHere;

Nesting PERFORM Commands

PERFORM commands can branch to functions containing other PERFORM commands. As each
ENDCASE command is encountered, control returns to the command after the most recently
executed PERFORM command. In this manner, control eventually returns to the original
PERFORM.

PERFORM

144 Information Builders

Avoiding GOTO With PERFORM

It is recommended that you do not include a GOTO command within the scope of a PERFORM
command. See GOTO on page 106 for information on the incompatibility of the PERFORM and
GOTO commands.

REPEAT

The REPEAT command enables you to loop through a block of code. REPEAT defines the
beginning of the block, and ENDREPEAT defines the end. You control the loop by specifying the
number of loop iterations, and/or the conditions under which the loop terminates. You can
also define counters to control processing within the loop, for example incrementing a row
counter to loop through the rows of a stack.

Syntax: How to Use the REPEAT Command

The syntax of the REPEAT command is:

REPEAT {int|ALL|WHILE condition|UNTIL condition} [counter [/fmt] =
init_expr;] [;]
 command
 .
 .
 .
ENDREPEAT [counter[/fmt]=increment_expr;...]

where:

int

Specifies the number of times the REPEAT loop is to run. The value of int can be an integer
constant, an integer field, or a more complex expression that resolves to an integer value.
If you use an expression, the expression should resolve to an integer, although other types
of expressions are possible. If the expression resolves to a floating-point or packed-
decimal value, the decimal portion of the value will be truncated. If it resolves to a
character representation of a numeric value, it will be converted to an integer value.

Expressions are described in Expressions Reference on page 25.

ALL

Specifies that the loop is to repeat indefinitely, terminating only when a GOTO EXITREPEAT
command is issued from within the loop.

3. Command Reference

Maintain Data Language Reference 145

WHILE

Specifies that the WHILE condition is to be evaluated prior to each execution of the loop. If
the condition is true, the loop is entered. If the condition is false, the loop terminates and
control passes directly to the command immediately following ENDREPEAT. If the condition
is false when the REPEAT command is first executed, the loop is never entered.

UNTIL

Specifies that the UNTIL condition is to be evaluated prior to each execution of the loop. If
the condition is false, the loop is entered. If the condition is true, the loop terminates and
control passes directly to the command immediately following ENDREPEAT. If the condition
is true when the REPEAT command is first executed, the loop is never entered.

condition

Is a valid Maintain Data expression that can be evaluated as true or false (that is, a
Boolean expression).

counter

Is a variable that you can use as a counter within the loop. You can assign the initial value
of the counter in the REPEAT command, or in a COMPUTE command issued prior to the
REPEAT command. You can increment the counter at the end of each loop iteration in the
ENDREPEAT command. You can also change the value of the counter in a COMPUTE
command within the loop. You can refer to the counter throughout the loop, including:

Inside the loop, as a stack subscript.

Inside the loop, in an expression.

In a WHILE or UNTIL condition in the REPEAT command.

fmt

Is the format of the counter. It can be any valid format except for TX. The format is
required only if you are defining the variable in this command.

init_expr

Is an expression whose value is assigned to the counter before the first iteration of the
loop. It can be any valid Maintain Data expression.

increment_expr

Is an expression whose value is assigned to the counter at the end of each complete loop
iteration. It can be any valid Maintain Data expression.

REPEAT

146 Information Builders

command

Is one or more Maintain Data commands, except for CASE, DECLARE, DESCRIBE, END,
MAINTAIN, and MODULE.

;

Terminates the command. If you do not specify a counter, the semicolon is optional but
recommended. Including it allows for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Terminating Command
Syntax on page 22.

Example: Simple Loops

The following code has a loop that executes ten or fewer times. The REPEAT line initiates the
loop. The number 10 indicates that the loop will run ten times, barring any conditions or
commands to exit the loop. The ON NONEXT GOTO EXITREPEAT command causes the loop to
be exited when there are no more instances of Sales in the data source. The COMPUTE
command calculates TotSales within an execution of the loop. The ENDREPEAT command is
the boundary for the loop. Commands after ENDREPEAT are not part of the loop.

Because there is no loop counter, there is no way to know which repetition of the loop is
currently executing:

COMPUTE TotSales = 0;
REPEAT 10;
 NEXT Sales;
 ON NONEXT GOTO EXITREPEAT;
 COMPUTE TotSales = TotSales + Sales;
ENDREPEAT

Example: Specifying Loop Iterations

You can control the number of times that the flow of control cycles through the loop by
specifying the number of iterations. For example:

REPEAT 27;

You can also specify a condition that must be true or false for looping to continue:

REPEAT WHILE Rows GT 15;

3. Command Reference

Maintain Data Language Reference 147

Example: Repeating a Loop a Variable Number of Times

The REPEAT variable construct indicates that the loop is repeated the number of times
indicated by the value of the variable. In this example, Stk1 is the name of a stack and
FocCount is a stack variable that contains the number of rows in the stack. The loop executes
a variable number of times based on the value of Stk1.FocCount:

FOR ALL NEXT Country INTO Stk1;
COMPUTE Cnt/I4 = 1;
REPEAT Stk1.FocCount;
 TYPE "Country = <Stk1(Cnt).Country";
 COMPUTE Cnt = Cnt +1;
ENDREPEAT

Example: REPEAT WHILE and UNTIL

The REPEAT WHILE construct indicates that the loop should be repeated as long as the
expression is true. Once the expression is no longer true, the loop is exited. In this example,
the loop will be executed Stk1.FocCount number of times. Stk1 is the name of a stack and
FocCount is a stack variable that contains the number of rows in the stack:

FOR ALL NEXT Country INTO Stk1;
COMPUTE CNT/I4 = 1;
REPEAT WHILE Cnt LE Stk1.FocCount;
 TYPE "Country = <Stk1(Cnt).Country ";
 COMPUTE Cnt = Cnt + 1;
ENDREPEAT

The REPEAT UNTIL construct indicates that the loop is repeated as long as the expression is
not true. Once the expression is true, the loop is exited. In this example, the loop is executed
Stk1.FocCount number of times. Stk1 is the name of a stack and FocCount is a stack variable
that contains the number of rows in the stack. The COMPUTE increments the counter, although
this could have been specified on the ENDREPEAT command. ENDREPEAT indicates the end of
the loop:

FOR ALL NEXT Country INTO Stk1;
COMPUTE Cnt/I4 = 1;
REPEAT UNTIL Cnt GT Stk1.FocCount;
 TYPE "Country = <Stk1(Cnt).Country";
 COMPUTE Cnt = Cnt + 1;
ENDREPEAT

REPEAT

148 Information Builders

Example: Establishing Counters

You can use as many counters as you need in each loop. The only restriction is that all counter
initializations performed in the REPEAT command must fit on the single line of the REPEAT
command, and all counter incrementation performed in the ENDREPEAT command must fit on
the single line of the ENDREPEAT command. You can avoid the single-line limitation by defining
and incrementing counters using COMPUTE commands. It is legitimate, however, to have a
REPEAT loop and never refer to any counter within the loop. If this is done, the same row of
data is always worked on and unexpected results can occur.

The following examples do not have any index notation on the Stkemp stack, so each NEXT
puts data into the same row of the stack. In other words, INTO Stkemp is the same as INTO
Stkemp(1). Row one is always referenced because, by default, if there is a stack name without
a row number, the default row number of one is used.

REPEAT 10;
 NEXT Emp_ID INTO Stkemp;
 .
 .
 .
ENDREPEAT

is the same as:

REPEAT 10 Cnt/I4=1;
 NEXT Emp_ID INTO Stkemp;
 .
 .
 .
ENDREPEAT Cnt=Cnt+1;

To resolve this problem, the REPEAT loop can establish counters and how they are
incremented. Inside the loop, individual rows of a stack can be referenced using one of the
REPEAT loop counters. The REPEAT command can be used to initialize many variables that will
be used in the loop. For example

REPEAT 100 Cnt/I4=1; Flag=IF Factor GT 10 THEN 2 ELSE 1;

or:

REPEAT ALL Cnt = IF Factor GT 10 THEN 1 ELSE 10;

On the ENDREPEAT command, the counters are incremented by whatever calculations follow
the keyword ENDREPEAT. Two examples are

ENDREPEAT Cnt = Cnt + 1; Flag = Flag*2;

3. Command Reference

Maintain Data Language Reference 149

and:

ENDREPEAT Cnt=IF Department EQ 'MIS' THEN Cnt+5 ELSE Cnt+1;

The following code sets up a repeat loop and computes the variable New_Sal for every row in
the stack. The REPEAT line initiates the loop. The ALL indicates that the loop continues until a
command in the loop tells the loop to exit. A GOTO EXITREPEAT command is needed in a loop
when REPEAT ALL is used. The Cnt = 1 initializes the counter to 1 the first time through the
loop. The COMPUTE command calculates a five percent raise. It uses the REPEAT counter (Cnt)
to access each row in the stack one at a time. The counter is checked to see if it is greater
than or equal to the number of rows in the Stkemp stack. The stack variable FocCount always
contains the value of the number of rows in the stack. After every row is processed, the loop is
exited.

The ENDREPEAT command contains the instructions for how to increment the counter:

REPEAT ALL Cnt/I4=1;
 COMPUTE Stkemp(Cnt).NewSal/D12.2=Stkemp(Cnt).Curr_Sal * 1.05;
 IF Cnt GE Stkemp.FocCount THEN GOTO EXITREPEAT;
ENDREPEAT Cnt=Cnt+1;

Example: Nested REPEAT Loops

REPEAT loops can be nested. This example shows one repeat loop nested within another loop.
The first REPEAT command indicates that the loop will run as long as the value of A is less
than 3. It also initializes the counter A to 1. The second REPEAT command indicates that the
nested loop will run until the value of B is greater than 4. It initializes the counter B to 1. Two
ENDREPEAT commands are needed, one for each REPEAT command. Each ENDREPEAT
increments its respective counters.

REPEAT WHILE A LT 3; A/I4 = 1;
 TYPE "In A loop with A = <A";
 REPEAT UNTIL B GT 4; B/I4 = 1;
 TYPE " ***In B loop with B = <B ";
 ENDREPEAT B = B + 1;
ENDREPEAT A = A + 1;

The output of these REPEAT loops would look like the following:

REPEAT

150 Information Builders

In A loop with A = 1
 ***In B loop with B = 1
 ***In B loop with B = 2
 ***In B loop with B = 3
 ***In B loop with B = 4
In A loop with A = 2
 ***In B loop with B = 1
 ***In B loop with B = 2
 ***In B loop with B = 3
 ***In B loop with B = 4

Reference: Usage Notes for REPEAT

The actual number of loop iterations can be affected by other phrases and commands in the
loop. The loop can end before completing the specified number of iterations if it is terminated
by a WHERE or UNTIL condition, or by a GOTO EXITREPEAT command issued within the loop.

Reference: Commands Related to REPEAT

COMPUTE. Is used to define user-defined variables and assign values to existing variables.

GOTO. Transfers control to another function or to the end of the current function.

Branching Within a Loop

There are two branching instructions that facilitate the usage of REPEAT and ENDREPEAT to
control loop iterations:

GOTO ENDREPEAT. Causes a branch to the end of the repeat loop and executes any
computes on the ENDREPEAT line.

GOTO EXITREPEAT. Causes the loop to be exited and goes to the next logical instruction
after the ENDREPEAT.

Example: Terminating the Loop From the Inside

You can terminate a REPEAT loop by branching from within the loop to outside the loop. When
you issue the command GOTO EXITREPEAT, Maintain Data branches to the command
immediately following the ENDREPEAT command. It does not increment counters specified in
the ENDREPEAT command. For example:

3. Command Reference

Maintain Data Language Reference 151

REPEAT ALL;
.
.
.
 GOTO EXITREPEAT;
.
.
.
ENDREPEAT

REPOSITION

For a specified segment and each of its descendants, the REPOSITION command resets the
current position to the beginning of chain for that segment. That is, each segment is reset to
just prior to the first instance.

Most data source commands change the current segment position to the instance that they
most recently accessed. To search an entire data source or path for records, start at the
beginning of the data source or path by first issuing the REPOSITION command.

Syntax: How to Use the REPOSITION Command

The syntax of the REPOSITION command is

REPOSITION segment_spec [;]

where:

segment_spec

Is the name of a segment or the name of a field in a segment. The specified segment and
all of its descendants are repositioned to the beginning of the segment chain.

;

Terminates the command. Although the semicolon is optional, you should include it to
allow for flexible syntax and better processing. For more information about the benefits of
including the semicolon, see Terminating Command Syntax on page 22.

Example: Using REPOSITION

The following example repositions the root segment and all of the descendant segments of the
Employee data source:

REPOSITION Emp_ID;

The next example repositions both the SalInfo and Deduct segments in the Employee data
source:

REPOSITION

152 Information Builders

REPOSITION Pay_Date;

Reference: Commands Related to REPOSITION

NEXT. Starts at the current position and moves forward through the data source and can
retrieve data from one or more records.

MATCH. Searches entire segments for a matching field value and can retrieve an exact
match in the data source.

REVISE

The REVISE command reads a stack of transaction data and writes it to a data source,
inserting new segment instances and updating existing instances.

REVISE combines the functionality of the INCLUDE and UPDATE commands. It reads each
stack row and processes each segment in the specified path using the following logic:

MATCH key
ON MATCH UPDATE fields
ON NOMATCH INCLUDE segment

You specify a path running from an anchor segment to a target segment. For each segment in
the path, REVISE matches the instance of the segment in the stack against the corresponding
instances in the data source. If the keys of an instance fail to find a match in the data source,
REVISE adds the instance. If an instance does find a match, REVISE updates it using the fields
that you have specified. The values that REVISE writes to the data source are provided by the
stack.

Data source commands treat a unique segment as an extension of its parent, so that the
unique fields seem to reside in the parent. Therefore, when REVISE adds an instance to a
segment that has a unique child, it automatically also adds an instance of the child.

If the anchor segment is not the root, you must establish a current instance in each of the
ancestor segments of the anchor, or provide ancestor segment key values in the source stack.
This enables REVISE to navigate from the root to the first instance of the anchor segment.

Syntax: How to Use the REVISE Command

The syntax of the REVISE command is

[FOR {int|ALL] REVISE data_spec [FROM stack [(row)]] [;]

3. Command Reference

Maintain Data Language Reference 153

where:

FOR

Indicates that an integer or ALL will be used to specify how many stack rows to write to the
data source.

If you specify FOR, you must also specify a source stack using the FROM phrase. If you
omit FOR, REVISE defaults to writing one row.

int

Is an integer expression that specifies the number of stack rows to write to the data
source.

ALL

Specifies that all of the rows of the stack are to be written to the data source.

data_spec

Identifies the path to be written to the data source and the fields to be updated:

1. Specify each field that you want to update in existing segment instances. You can
update only non-key fields. Because a key uniquely identifies an instance, keys can be
added and deleted but not changed.

2. Specify the path by identifying its anchor and target segments. You can specify a
segment by providing its name or the name of one of its non-key fields.

If you have already identified the anchor and target segments in the process of specifying
update fields, you do not need to do anything further to specify the path. Otherwise, if
either the anchor or the target segment has not been identified using update fields,
specify it using its segment name.

FROM

Indicates that the transaction data will be supplied by a stack. If this is omitted, the
transaction data is supplied by the Current Area.

stack

Is the name of the stack whose data is being written to the data source.

row

Is a subscript that specifies the first stack row to be written to the data source. If omitted,
it defaults to 1.

REVISE

154 Information Builders

;

Terminates the command. Although the semicolon is optional, you should include it to
allow for flexible syntax and better processing. For more information about the semicolon,
see Terminating Command Syntax on page 22.

Example: Using REVISE

In the following example the user is able to enter information for a new employee, or change
the last name of an existing employee. Existing employee records are displayed in a grid. All of
the information is stored in a stack named EmpStk.

MAINTAIN FILE EMPLOYEE
FOR ALL NEXT Emp_ID INTO EmpStk;
Winform Show GetData;

CASE Alter_Data
FOR ALL REVISE Last_Name FROM EmpStk;
ENDCASE

END

When the function Alter_Data is called from an event handler of a form, the REVISE command
reads EmpStk and tries to find the Emp_ID of each row in the Employee data source. If Emp_ID
exists in the data source, REVISE updates the Last_Name field of that segment instance. If it
does not exist, then REVISE inserts a new EmpInfo instance into the data source, and writes
the fields of EmpInfo from the stack to the new instance.

Reference: Usage Notes for REVISE

Maintain Data requires that the data sources to which it writes have unique keys.

Reference: Commands Related to REVISE

INCLUDE. Adds new segment instances to a data source.

UPDATE. Updates data source fields.

COMMIT. Makes all data source changes since the last COMMIT permanent.

ROLLBACK. Cancels all data source changes made since the last COMMIT.

3. Command Reference

Maintain Data Language Reference 155

ROLLBACK

The ROLLBACK command processes a logical transaction. A logical transaction is a group of
data source changes that are treated as one. The ROLLBACK command cancels prior UPDATE,
INCLUDE, and DELETE operations that have not yet been committed to the data source using
the COMMIT command.

Syntax: How to Use the ROLLBACK Command

The syntax of the ROLLBACK command is

ROLLBACK [;]

where:

;

Terminates the command. Although the semicolon is optional, you should include it to
allow for flexible syntax and better processing. For more information about the benefits of
including the semicolon, see Terminating Command Syntax on page 22.

Example: Using ROLLBACK

This example shows part of a procedure where an employee ID needs to be changed. Because
Emp_ID is a key, it cannot be changed. To accomplish this, it is necessary to collect the
existing field values, make the necessary changes, delete the employee from the data source,
and add a new segment instance.

The following shows partial code where the existing instance is deleted and a new one is
added. If for some reason the INCLUDE does not work, the DELETE should not occur.

CASE Chngempid
DELETE Emp_ID;
IF FocError NE 0 PERFORM DeleteError;
INCLUDE Emp_ID Bank_Name Dat_Inc Type Pay_Date Ded_Code;
IF FocError NE 0 PERFORM Undo;
ENDCASE

CASE Undo
ROLLBACK;
ENDCASE

Reference: Usage Notes for ROLLBACK

A ROLLBACK is automatically issued when a program is exited abnormally.

A successful ROLLBACK issued in a called procedure frees the data source position
maintained by that procedure and by all calling procedures.

ROLLBACK

156 Information Builders

A ROLLBACK is automatically issued if an attempt to COMMIT fails.

DBMS Combinations

When an application accesses more than one DBMS (for example, DB2 and Teradata),
ROLLBACK is treated as a broadcast rollback. There is no coordination between the different
types of data sources, therefore the ROLLBACK might succeed against one type of data source
but fail against another.

SAY

The SAY command writes messages to a file or to the default output device. You can use SAY
for application debugging, such as tracing application control flow, and for recording an
accounting trail. To display messages to application users, you should use forms, which
provide superior display capabilities and better control than the SAY command.

Syntax: How to Use the SAY Command

The syntax of the SAY command is

SAY [TO ddname] expression [expression ...] ;

where:

TO ddname

Specifies the logical name of the file to which the SAY message is written. ddname is a
character expression. If you supply a literal for ddname, it must be enclosed in single
quotation marks (') or double quotation marks (").

You must define the logical name using a DYNAM command on z/OS before the SAY
command is executed. In order to append to an existing file (for example, to write to a file
from more than one procedure), specify the appropriate option in the DYNAM command.

If TO ddname is omitted, the message is written to the default output device of the
environment in which the SAY command is issued.

In addition, if TO ddname is omitted and this procedure was called remotely (that is, called
using a CALL procname command), the message will also be copied to the FocMsg stack
of the calling procedure.

expression

Is any Maintain Data expression. Multiple expressions must be separated by spaces.

3. Command Reference

Maintain Data Language Reference 157

Each message is written on the current line, beginning in the column that follows the end
of the previous message. When a message reaches the end of the current line in the file
or display device, or encounters a line feed (the string \n) in the message text, the
message stream continues in column 1 of the next line.

If you write to output devices that buffer messages before displaying them, you may need
to end each message with an explicit line feed to force the buffer to display the last line of
the message.

Note: Literals must be enclosed in single quotation marks (') or double quotation marks ("),
while variables do not appear in quotation marks.

Reference: Commands Related to SAY

TYPE. Writes messages to a file or to a form.

Writing Segment and Stack Values

You can use the SEG and STACK prefixes to write the values of all the fields of a segment or
columns of a stack to a message. This can be helpful when you write messages to log and
checkpoint files.

SEG.fieldname inserts Current Area values for all of the fields of the specified segment.
STACK.stackname(row) inserts, for the specified stack, the values of the specified row.

Choosing Between the SAY and TYPE Commands

The rules for specifying messages using the SAY command are simpler and more powerful
than those for the TYPE command. For example, you can include all kinds of expressions in a
SAY command, but you can only include character string constants and scalar variables in a
TYPE command.

Note that, unlike the TYPE command, the SAY command does not generate a default line feed
at the end of each line.

SET

You can change parameters that control output, work areas, and other features in your
Reporting Server environment by using the SET command from an App Studio procedure (not a
Maintain Data procedure).

This command is outside the Maintain Data language, but is described here for your
convenience, since many of these settings affect how Maintain Data behaves.

However, you can change a limited number of SET parameters from within a Maintain Data
procedure using SYSMGR.FOCSET. For more information, see SYS_MGR.FOCSET on page 166.

SET

158 Information Builders

For a list of SET parameters, see Customizing Your Environment in the Developing Reporting
Applications manual.

Syntax: How to Use SET Parameters

The syntax is

SET parameter = option[, parameter = option,...]

where:

parameter

Is the setting to change.

option

Is one of a number of options available for each parameter.

You can set several parameters in one command by separating each with a comma.

You may include as many parameters as you can fit on one line. Repeat the SET keyword for
each new line.

Note: This syntax is valid only in an App Studio procedure.

Syntax: How to Use SET Parameters in a Request

Many SET commands that change system defaults can be issued from within TABLE requests.
SET used in this manner is temporary, affecting only the current request.

The syntax is

ON TABLE SET parametervalue [AND parametervalue ...]

where:

parameter

Is the system default to change.

value

Is an acceptable value that will replace the default value.

Note: This syntax is valid only in an App Studio report procedure.

3. Command Reference

Maintain Data Language Reference 159

showLayer

Note: The SetLayer command in legacy Maintain has been replaced by the
IbComposer_showLayer command in Maintain Data. The IbComposer_showLayer command
allows layers to be set as visible or invisible at run time. It is used in a JavaScript event.

Syntax: How to Use the showLayer Command

IbComposer_showLayer(layername,bShow);

where:

layername

Alphanumeric

Is the name of the layer, which will be shown or hidden.

bShow

Is an operator that can be set to true to show the layer or false to hide it.

Example: Showing or Hiding a Layer

function button1_onclick(event) {
 var eventObject = event ? event : window.event;
 var ctrl = eventObject.target ? eventObject.target :
 eventObject.srcElement;
 // TODO: Add your event handler code here
 IbComposer_showLayer('Customers','true');
}

STACK CLEAR

STACK CLEAR clears the contents of each of the stacks listed, so that each stack has no
rows. This sets the FocCount variable to zero (0) and FocIndex variable to one (1) for each
stack.

Syntax: How to Use the STACK CLEAR Command

The syntax of the STACK CLEAR command is

STACK CLEAR stacklist [;]

where:

stacklist

Specifies the stacks to be initialized. Stack names are separated by blanks.

showLayer

160 Information Builders

;

Terminates the command. Although the semicolon is optional, including it to allow for
flexible syntax and better processing is recommended. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

Example: Using STACK CLEAR

The following initializes the Emp stack:

STACK CLEAR Emp;

The next example initializes both the Emp and the Dept stacks:

STACK CLEAR Emp Dept;

STACK SORT

The STACK SORT command enables you to sort the contents of a stack in ascending or
descending order based on the values in one or more columns.

Syntax: How to Use the STACK SORT Command

The syntax for the STACK SORT command is

STACK SORT stackname BY [HIGHEST] column [BY [HIGHEST] column ...] [;]

where:

stackname

Specifies the stack to be sorted. The stack name cannot be subscripted with a row range
in order to sort only part of the stack.

HIGHEST

If specified, sorts the stack in descending order. If not specified, the stack is sorted in
ascending order.

column

Is a stack column name or a computed field value. At least one column name must be
specified. The column must exist in the specified stack.

;

Terminates the command. Although the semicolon is optional, it is recommended that you
include it to allow for flexible syntax and better processing. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

3. Command Reference

Maintain Data Language Reference 161

Example: Using STACK SORT

The following sorts the Emp stack using the values in the stack column Emp_ID:

STACK SORT Emp BY Emp_ID;

The following sorts the Emp stack so that the employees with the highest Salary are placed
first in the stack:

STACK SORT Emp BY HIGHEST Salary;

The next example sorts the stack by Department. Within Department, the rows are ordered by
highest Salary:

STACK SORT Emp BY Department BY HIGHEST Salary;

Sorting Data With the Using CASE_INSENSITIVE Parameter

You can sort data in a stack without considering case by using the CASE_INSENSITIVE
parameter.

Syntax: How to Sort Data in a Stack With the Using CASE_INSENSITIVE Parameter

To sort data in a stack and ignore case-sensitivity:

1. Add the using CASE_INSENSITIVE tablename parameter after the BY fields:

STACK SORT stackname BY [HIGHEST] column [BY [HIGHEST] column ...]
[using CASE_INSENSITIVE] [;]

2. Import the MNTUWS function library.

3. Add the following command to the Top case of the Maintain Data procedure:

perform prep_CASE_INSENSITIVE

For example:

STACK SORT

162 Information Builders

MAINTAIN
MODULE IMPORT (mntuws)
$$Declarations
CASE Top
PERFORM prep_CASE_INSENSITIVE;
COMPUTE STK(1).NAME/A10="GEORGE";
STK(2).NAME="Bernard";
STK(3).NAME="Shaw";
.
.
.
STACK SORT STK BY NAME using CASE_INSENSITIVE;
.
.
.

Note: For a back-end procedure without a Top case, the perform prep_CASE_INSENSITIVE
command is not required.

When using MNTCON MATCH_CASE ON, the case of the code must be the same as it
appears above.

SYS_MGR

The SYS_MGR global object provides functions and variables that control the environment for
your Maintain application. It can help developers ensure the most efficient interaction between
Maintain and DBMS servers, as well as manage App Studio environment and run-time
variables.

For use with relational data sources, SYS_MGR can be used from within Maintain procedures
to:

Deactivate preliminary database operation checking by Maintain before an update and rely
on the DBMS to perform its own internal checking, thus reducing processing time and
resources (SYS_MGR.PRE_MATCH).

Retrieve DBMS error codes, allowing developers to code applications to efficiently recover
from error conditions (SYS_MGR.DBMS_ERRORCODE).

Issue native SQL commands directly from a Maintain procedure (SYS_MGR.ENGINE).

The SYS_MGR syntax can also be used from within a Maintain procedure to:

Issue system settings for Reporting Servers dynamically (SYS_MGR.FOCSET).

Set values for Userid and Password for target servers before issuing an EXEC AT or CALL
AT.

3. Command Reference

Maintain Data Language Reference 163

Retrieve input parameter values passed at invocation time
(SYS_MGR.GET_INPUTPARAMS_COUNT, SYS_MGR.GET_NAMEPARM,
SYS_MGR.GET_POSITIONPARM).

Note: All sys_mgr function and variable names are case-insensitive. You can use
SYS_MGR.DBMS_ERRORCODE, sys_mgr.dbms_errorcode, sys_mgr.DBMS_ErrorCode, and so
on, interchangeably.

SYS_MGR.DBMS_ERRORCODE

The SYS_MGR.DBMS_ERRORCODE command enables you to retrieve error codes returned by
the DBMS server and then take appropriate action. For example, a developer might want to
take a different course of action for an INSERT that fails because the user does not have
INSERT rights versus a referential integrity failure.

Note:

The return codes are DBMS specific. The DB2 return codes do not match the Oracle return
codes. Moreover, DBMS vendors have been known to change the return codes on release
boundaries. You should clearly document that you are using this feature so sufficient
testing can be done before rolling in a new DBMS.

DBMS_ERRORCODE is local to the current Maintain procedure.

Syntax: How to Use SYS_MGR.DBMS_ERRORCODE

The syntax is

SYS_MGR.DBMS_ERRORCODE ;

Example: Retrieving an Error Code From a DBMS

For example, the following Maintain code will retrieve an error code from a DBMS, and if it is a
specific code, branches to some appropriate code:

Compute ErrCode/a3 = SYS_MGR.DBMS_ERRORCODE ;
If ErrCode EQ '515' goto BadInsert;

SYS_MGR.ENGINE

You can issue DBMS commands directly (SQL Passthru) from a Maintain procedure using the
SYS_MGR.ENGINE command.

Note: Problems with direct commands are not reported in FOCERROR. You will need to use
DBMS_ERRORCODE to determine the success or failure of these commands.

SYS_MGR.DBMS_ERRORCODE

164 Information Builders

Syntax: How to Use the SYS_MGR.ENGINE Command

The syntax for the SYS_MGR.ENGINE command is

SYS_MGR.ENGINE("enginename", "command");

where:

enginename

Is the name of the RDBMS to which you are passing the command. For a complete list of
the possible values, see the Adapter Administration manual.

command

Is any valid SQL command, including CREATE, DROP, and INSERT.

Example: Issuing the DROP TABLE Command

The following command drops the table NYACCTS. The error code is saved in a variable named
rc.

Compute rc/i8;
rc = sys_mgr.engine("SQLMSS", "DROP TABLE NYACCTS");
Type "Return Code=<<rc DBMS Err=<<SYS_MGR.DBMS_ERRORCODE" ;

Example: Setting Connection Attributes for an MS SQL Server

Compute rc/i8;
rc=sys_mgr.engine("SQLMSS","set connection_attributes mssxyz/
ibiusr1,foo"
);
Type "RC from set is <<rc DBMS Err=<<SYS_MGR.DBMS_ERRORCODE";

Example: Inserting a Row Into a Table (MS SQL)

Compute rc/i8;
Type "Inserting row into table MNTTAB2 ";
rc=sys_mgr.engine("SQLMSS","insert into mntbtab2
values('X2','XDAT2222');");
Type"ReturnCode=<<rc DBMS Err=<<SYS_MGR.DBMS_ERRORCODE";

You will need to test the return code to determine whether the record was inserted
successfully (RC = 0).

If you are using MS SQL, and the value you wanted to insert was a duplicate record, you would
expect to see the following return codes:

Return Code= -1 DBMS Err= 2627

3. Command Reference

Maintain Data Language Reference 165

SYS_MGR.FOCSET

Using SYS_MGR.FOCSET, you can set certain environment settings for the Reporting Server.
Issue this command from a Maintain procedure to set the desired environment variable, then
use a local call from the same procedure to use that setting for your Maintain operations. See
Customizing Your Environment in the Developing Reporting Applications manual for a complete
description of the environment settings.

Syntax: How to Use the SYS_MGR.FOCSET Command

The syntax is

SYS_MGR.FOCSET("parm", "value")

where:

parm

Is one of the following supported SET commands:

CDN
COMMIT
DATEDISPLAY
DEFCENT (DFC)
EMGSRV
LANGUAGE
MESSAGE
NODATA
TRACEON
TRACEOFF
TRACEUSER
WARNING
YRTHRESH
PASS
USER

In addition, the parameter maintain_warning is included in this command set in order to
allow Maintain warning messages to be suppressed.

value

Is an appropriate setting for that command.

Example: Setting DEFCENT From a Maintain Procedure

The following code

SYS_MGR.FOCSET

166 Information Builders

MAINTAIN
COMPUTE MYDATE/YYMD;
SYS_MGR.FOCSET("DEFCENT", "21");
COMPUTE DATE1/YMD='90/01/01';
COMPUTE MYDATE=DATE1;
TYPE "After setting DEFCENT=21, MYDATE=<<MYDATE";
END

produces the following output:

After setting DEFCENT=21, MYDATE=2190/01/01

Example: Setting PASS From a Maintain Procedure

The following code will set the password to DBAUSER2:

SYS_MGR.FOCSET('PASS', 'DBAUSER2.');

Note: When setting a password for DBA access, keep in mind that the last value set from
within the application will be in effect for all transactions for that end user session.

Example: Setting maintain_warning From a Maintain Procedure

The following code allows you to display your own error message:

CASE TEST1
COMPUTE DATE1/A10;
COMPUTE DATE2/MDYY
SYS_MGR.FOCSET("MAINTAIN_WARNING ", "OFF")
COMPUTE DATE2 = DATE1;
IF DATE2 = '' THEN
COMPUTE MSG = 'Date is not valid';
ENDCASE

To set the Maintain warning messages to on, issue the command:

SYS_MGR.FOCSET("MAINTAIN_WARNING ", "ON")

SYS_MGR.GET_INPUTPARAMS_COUNT

Used in conjunction with the MNTCON EX or MNTCON RUN –v syntax, the
SYS_MGR.GET_INPUTPARAMS_COUNT function retrieves the number of positional parameters
passed when invoking a Maintain procedure. If the function is not successful, FOCERROR is
set to -1. For information on retrieving the value of a positional parameter, see the
SYS_MGR.GET_POSITIONPARM function. See the MNTCON EX and MNTCON RUN commands
for information on using the –v option to pass parameters.

3. Command Reference

Maintain Data Language Reference 167

Syntax: How to Use the SYS_MGR.INPUTPARAMS_COUNT Command

The syntax for the SYS_MGR.GET_INPUTPARAMS_COUNT command is

Var/In = SYS_MGR.GET_INPUTPARAMS_COUNT();

where:

Var/In

Is the name of the variable with an integer format that you are assigning to the output of
the function.

Example: Retrieving the Number of Positional Parameters Passed to a Maintain Procedure

MNTCON EX START1 –v abc, '24 Houston Center'

Target Maintain procedure START1 could include:

Posvar/i2=sys_mgr.Get_InputParams_count();

Here it returns 2 for the computed field Posvar, for positional parameters abc and 24 Houston
Center.

SYS_MGR.GET_NAMEPARM

Used in conjunction with the MNTCON EX or MNTCON RUN –v syntax, the
SYS_MGR.GET_NAMEPARM function returns the value of a keyword parameter passed at the
time the Maintain procedure was invoked. If the function is not successful, FOCERROR is set
to -1. See also the MNTCON EX and MNTCON RUN commands using the –v option to pass
parameters.

Syntax: How to Use the SYS_MGR.GET_NAMEPARM Command

The syntax for the SYS_MGR.GET_NAMEPARM command is

MyParm/format = SYS_MGR.GET_NAMEPARM('ParmName')

where:

MyParm/format

Is the name of the variable or format that you are assigning to the output of the function.

ParmName

Is the actual keyword parameter name used when passing the value.

Note: The SYS_MGR.GETNAME_PARM function is case-sensitive. Use the same case for the
parameter name when retrieving the value as used when passing it.

SYS_MGR.GET_NAMEPARM

168 Information Builders

Example: Retrieving the Value for a Keyword Parameter Passed to a Maintain Procedure

MNTCON EX START2 -v ADDR='Cape Canaveral', COUNTRY=USA

Target Maintain procedure START2 could include:

Address/a0=sys_mgr.Get_NameParm('ADDR');

Here it returns Cape Canaveral to the variable Address.

SYS_MGR.GET_POSITIONPARM

Used in conjunction with the MNTCON EX or MNTCON RUN –v syntax, the
SYS_MGR.GET_POSITIONPARM function retrieves the value of positional parameters passed
when invoking a Maintain procedure. If the function is not successful, FOCERROR is set to -1.
See also the SYS_MGR.GET_INPUTPARAMS_COUNT function to retrieve the number of a
positional parameter, and the MNTCON EX and MNTCON RUN commands using the –v option
to pass parameters.

Syntax: How to Use the SYS_MGR.GET_POSITIONPARM Command

The syntax for the SYS_MGR.GET_POSITIONPARM command is

Var/An = SYS_MGR.GET_POSITIONPARM(i);

where:

Var/An

Is the name of the variable, declared with an alphanumeric format (for example, A0) that
you are assigning to the output of the function.

i

Is the position number of the variable to retrieve.

Example: Retrieving the Value of a Positional Parameter Passed to a Maintain Procedure

MNTCON EX START3 -v abc, '24 Houston Center'

Target Maintain procedure START3 could include:

Parm1/a0=sys_mgr.Get_PositionParm(2);

Here it returns 24 Houston Center, the value of the second keyword parameter, for computed
field Parm1.

3. Command Reference

Maintain Data Language Reference 169

SYS_MGR.PRE_MATCH

By default, Maintain first ensures a database row exists before it updates or deletes it and
ensures a database row does NOT exist before including a new row. For example, when
Maintain processes an INCLUDE, it first issues:

SQL SELECT keyfld FROM tablename WHERE keyfld = keyvalue;

Then, it only proceeds with the SQL INSERT if the SELECT returned no rows. Many applications
are structured so that the designer knows that the row does not exist, so the preliminary
SELECT is not needed.

The same is true for DELETE and UPDATE. Only the SELECT must return a row before
MAINTAIN continues with the SQL DELETE or SQL UPDATE.

When the application warrants it, you can turn off the preliminary SELECT against relational
databases by changing the value of SYS_MGR.PRE_MATCH. For high volume transactions, this
can positively affect performance.

Note:

Since you are not checking to see if the row exists or not, it is important to write code that
catches errors by inspecting FOCERROR.

The PRE_MATCH setting is local to the current MAINTAIN procedure. Changing it does not
change the value in the parent procedure or in subsequently called procedures.

Syntax: How to Set PRE_MATCH

The syntax is

SYS_MGR.SET_PRE_MATCH{0|1};

or

SYS_MGR.PRE_MATCH = {0|1}

where:

0

Disables prematching.

1

Turns on prematching.

To check the current setting for pre-match, use:

SYS_MGR.GET_PRE_MATCH();

SYS_MGR.PRE_MATCH

170 Information Builders

or

SYS_MGR.PRE_MATCH;

Example: Setting PRE_MATCH Off

Suppose you have a Maintain procedure with the following code:

SYS_MGR.PRE_MATCH = 0; -* stop pre-selecting
FOR ALL INCLUDE PRODUCTS FROM PRODSTACK;
SYS_MGR.PRE_MATCH = 1; -* restore

If PRODSTACK has 5000 rows, setting PRE_MATCH to 0 before the INCLUDE reduces the
number of database engine interactions from 10,000 to 5,000.

TYPE

The TYPE command writes messages to a file, a web browser, or the Maintain Data output
window. The TYPE command is helpful for application debugging, such as tracing application
flow-of-control, and for recording an accounting trail. To display messages to application users,
it is recommended that you use forms, which provide superior display capabilities and better
control than the TYPE command.

Syntax: How to Use the TYPE Command

The syntax of the TYPE command is

TYPE [ON ddname] "message" [[|] "message"] ... [;]

where:

ON ddname

Specifies the logical name of the file that the TYPE message is written to when ON is
specified. You must define the ddname (using a DYNAM or FILEDEF command) prior to the
first usage. The message string can be up to 256 characters in length. The output starts in
column 1. In order to append to an existing file or to write to a file from more than one
procedure, append to the file by specifying the appropriate option in the DYNAM command.

3. Command Reference

Maintain Data Language Reference 171

In addition, if ON ddname is omitted and this procedure was called remotely (that is, called
using a CALL procname command), the message will also be copied to the FocMsg stack
of the calling procedure.

message

Is the information to be displayed or written. The message must be enclosed in double
quotation marks ("). The message can contain:

Any literal text

Variables

Horizontal spacing information

Vertical spacing information

The layout of the message is exactly what is specified.

;

Terminates the command. Although the semicolon is optional, including it to allow for
flexible syntax and better processing is recommended. For more information about the
benefits of including the semicolon, see Terminating Command Syntax on page 22.

Reference: Commands Related to TYPE

SAY. Writes messages to a file or to the server console. Messages can include multiple
expressions of all types.

Including Variables in a Message

You can embed variables in a message by prefixing the variable with a left angle bracket (<).
Unless the field name is the last item in the string, it must be followed by a space. Maintain
Data does not include the angle bracket and space in the display. For example:

TYPE "Accepted: <Indata(Cnt).Fullname";

Embedding Horizontal Spacing Information

TYPE information can be placed in a specific column or can be moved a number of columns
away from the current position. The following example

TYPE "<20 This starts 20 spaces over";
TYPE "Skip <+8 8 spaces within text";
TYPE "Back up <-4 4 spaces and overwrite";

results in:

TYPE

172 Information Builders

 This starts 20 spaces over
Skip 8 spaces within text
Back4 spaces and overwrite

Embedding Vertical Spacing Information

Lines can be skipped by supplying a left angle bracket (<), slash (/), and the number of lines
to be advanced. If the line advance specification is at the beginning of the line, the specified
number of lines are advanced before the following text.

TYPE "</3 Displays 3 blank lines" |
" before this line";

If </number is encountered in the middle of the line, the line feed occurs when </number is
encountered.

TYPE "This will </2 leave one" |
" blank line before the word leave";

Coding Multi-Line Message Strings

Sometimes, a message string needs to be coded on more than one line of a TYPE command.
This can occur if indented TYPE lines, spacing information, or field prefixes extend the
message string beyond the end of the line. You can wrap a message string onto the next line
of a TYPE command if you:

1. End the first line with an ending double quotation mark ("), followed by a vertical bar (|).

2. Begin the second line with a double quotation mark ("). For example:

TYPE "Name: <Employee(Cnt).First_Name" |
"<Employee(Cnt).Last_Name" |
"Salary: <Employee(Cnt).Salary";

Justifying Variables and Truncating Spaces

To either truncate or display trailing spaces within a field, a left angle bracket (<) or a double
left angle bracket (<<) may be used, respectively. For character fields, the field values are
always left justified. For example:

TYPE "*** <Car.Country ***";
TYPE "*** <<Car.Country ***";

produces:

*** ENGLAND***
*** ENGLAND ***

3. Command Reference

Maintain Data Language Reference 173

For numeric fields, the left angle bracket causes the field values to be left justified, and trailing
spaces are truncated. The double left angle bracket causes the field values to be right justified
and leading spaces are displayed.

For example

TYPE "*** <Car.Seats ***"
TYPE "*** <<Car.Seats ***"

produces:

*** 4***
*** 4***

Writing Information to a File

You can use TYPE commands to write information to a file. The following example writes every
transaction record to a log file:

FOR ALL NEXT Emp_ID Last_Name First_Name INTO Stackemp;
COMPUTE Cnt=Cnt+1;
TYPE ON TransLog "<Stackemp(Cnt).Emp_ID " |
"<Stackemp(Cnt).Last_Name" |
"<Stackemp(Cnt).First_Name";

The next example places a message into an errors log file if the salary in the stack is greater
than allowed:

IF Stackemp(Cnt).Curr_Sal GT Allowamt THEN TYPE ON ErrsFile
 "Salary for employee <Stackemp.Emp_ID" |
 "is greater than is allowed.";

The last example writes three lines to the file NoEmpl if the employee is not in the data
source:

MATCH Emp_ID;
ON NOMATCH TYPE ON NoEmpl "<Emp_ID"
 "<Last_Name"
 "<First_Name";

UPDATE

The UPDATE command writes new values to data source fields using data from a stack or the
Current Area. All of the fields must be in the same data source path. The key fields in the
stack or Current Area identify which segment instances to update.

UPDATE

174 Information Builders

The segment containing the first update field is called the anchor. If the anchor segment is not
the root, you must establish a current instance in each of the ancestor segments of the
anchor, or provide ancestor segment key values in the source stack or Current Area. This
enables UPDATE to navigate from the root to the first instance of the anchor segment.

Syntax: How to Use the UPDATE Command

The syntax of the UPDATE command is

[FOR {int|ALL}] UPDATE fields [FROM stack[(row)]] [;]

where:

FOR

Is used with int or ALL to specify how many rows of the stack to use to update the data
source. When FOR is used, a FROM stack must be supplied. If no FOR prefix is used, the
UPDATE works the same way that FOR 1 UPDATE works.

int

Is an integer constant or variable that indicates the number of rows to use to update the
data source.

ALL

Specifies that the entire stack is used to update the corresponding records in the data
source.

fields

Is used to specify every data source field to update. You cannot update key fields. All
fields must be in the same path.

FROM

Is used to specify a stack containing records to insert. If no stack is specified, data from
the Current Area is used.

stack

Is the name of the stack whose data is used to update the data source. Only one stack
can be specified.

row

Is a subscript that specifies the first stack row to use to update the data source.

3. Command Reference

Maintain Data Language Reference 175

;

Terminates the command. Although the semicolon is optional, including it to allow for
flexible syntax and better processing is recommended. For more information about the
semicolon, see Terminating Command Syntax on page 22.

Example: Using UPDATE

The UPDATE command can be executed after a MATCH command finds a matching record. For
example:

MATCH Emp_ID;
ON MATCH UPDATE Department Curr_Sal Curr_Jobcode Ed_Hrs FROM Chgemp;

Consider an application used when an employee changes his or her last name. The application
user is prompted for the employee ID and new last name in a form. The user enters the name
and triggers the ChngName function. If the employee is in the data source, ChngName updates
the data source. If the employee is not in the data source, ChngName displays a message
asking the user to try again.

CASE ChngName
REPOSITION Emp_ID;
MATCH Emp_ID;
ON MATCH BEGIN
 UPDATE Last_Name;
 COMMIT;
 Winform Close;
 ENDBEGIN
ON NOMATCH BEGIN
 TYPE "Employee ID <Emp_ID was not found"
 "Try again";
 ENDBEGIN
ENDCASE

The command can also be issued without a preceding MATCH. In this situation, the key field
values are taken from the FROM stack or the Current Area and a MATCH is issued internally.
When a set of rows is changed without first finding out if the set already exists in the data
source, it is possible that some of the rows in the stack will be rejected. Upon the first
rejection, the process stops and the rest of the set is rejected. For all rows to be accepted or
rejected as a unit, the set should be treated as a logical unit of work, and a ROLLBACK issued
if the entire set is not accepted.

Reference: Usage Notes for UPDATE

Key fields cannot be updated.

There can only be one input or FROM stack in an UPDATE command.

UPDATE

176 Information Builders

When an UPDATE command is complete, the variable FocError is set. If the UPDATE is
successful, FocError is set to zero (0). If the records do not exist, and are therefore
unchanged, FocError is set to a non-zero value and (if the UPDATE is set-based)
FocErrorRow is set to the number of the row that failed.

Maintain Data requires that the data sources to which it writes have unique keys.

Reference: Commands Related to UPDATE

COMMIT. Makes all data source changes since the last COMMIT permanent.

ROLLBACK. Cancels all data source changes made since the last COMMIT.

Update and Transaction Variables

After the UPDATE is processed, the internal variable FocError is given a value. If the UPDATE is
successful, FocError is zero (0). If the UPDATE fails (that is, the key values did not exist in the
data source) FocError is set to a non-zero value, and (if the UPDATE was set-based)
FocErrorRow is set to the number of the row that failed. If at COMMIT time there is a
concurrency conflict, FocError and the internal variable FocCurrent are set to non-zero values.

Example: Using Stacks

In the following example, the user enters many employee IDs and new names at one time.
Rather than performing a MATCH on each row in the stack, this function checks FocError after
the UPDATE command. If FocError is zero (0), a COMMIT is issued and the function is exited. If
FocError is non-zero, another function, which tries to clean up the data, is performed. The IF
command, which starts at the beginning of the function, checks to see whether there are any
rows in the stack. If the stack does contain have any rows, a form displays allowing the user to
enter new data. If the stack contains rows, the user has made a mistake, so a different form
displays allowing the user to edit the entered data.

The Maintain Data procedure contains:

3. Command Reference

Maintain Data Language Reference 177

STACK CLEAR Namechng;
PERFORM Chngname;
CASE Chngname
IF Namechng.FocCount LE 0
 THEN Winform Show Myform1;
 ELSE Winform Show Myform2;
FOR ALL UPDATE Last_Name FROM Namechng;
IF FocError EQ 0 BEGIN
 COMMIT;
 GOTO ENDCASE;
 ENDBEGIN
PERFORM Fixup;
GOTO Chngname;
ENDCASE

Data Source Position

A Maintain Data procedure always has a position either in a segment or before the beginning
of the chain. If positioned within a segment, the position is the last record successfully
retrieved on that segment. If a retrieval operation fails, then the position of the data source
remains unchanged.

If an UPDATE is successful, the data source position is changed to the last record it updated.
If an UPDATE fails, the position is at the end of the chain because the MATCH prior to the
UPDATE also fails.

Unique Segments

The UPDATE command treats fields in unique segments the same as fields in other types of
segments.

Winform

The Winform command controls the forms that appear on the screen. Forms are used to edit
and display data. They act as a user interface, whereas a procedure controls the application
logic and use of data.

Syntax: How to Use the Winform Command

The syntax of the Winform command for displaying and controlling forms is

Winform command formname [;]

Winform

178 Information Builders

where command is one of the following:

Show

Makes the specified form active. It displays the form and transfers control to it, enabling
an application user to manipulate the controls (of the form), such as buttons and fields.

Show_Active

Can be used for clarity. It is functionally identical to Show.

Show_Inactive

You can use this to change the initial properties of a form, and its controls, dynamically at
run time before the form displays.

Reset

Resets a form and its controls to their original properties. All selectable controls, such as
list boxes, check boxes, and radio buttons, return to their default selections.

Refresh

Repopulates the data values of the form as if control had returned to the form from an
event handler, but without making the form active.

Close_All

Closes all forms. The form environment remains active.

Close

Closes the chain of forms from the currently active form back up to the specified form. If
you do not specify a form, the command closes only the currently active form.

The close operation does the following:

Passes control directly to the beginning of the chain, to the point just following the
Winform Show command that called the specified form.

Removes closed forms from the screen.

Show_And_Exit

Displays the specified form and then immediately terminates the application. This enables
you to end an application while displaying a final form that remains on the screen. Any
client-level logic, such as hypertext links and JavaScript functions, will remain active, but
all native Maintain Data logic, such as event handlers, will not respond because the
application has terminated.

3. Command Reference

Maintain Data Language Reference 179

formname

Is the name of the Maintain Data form.

Reference: Commands Related to Winform

NEXT. Retrieves sets of data from a data source into a stack. You can then display the
data in a form.

TYPE. Displays messages on the screen or writes them to a file.

Displaying Default Values in a Form

If a form displays a variable that has not been assigned a value, the form will display the
default value. The default value of the variable is determined by its data type and whether it
was defined with the MISSING attribute:

Data Type Default value without the
MISSING attribute

Default value with the
MISSING attribute

Character/Alphanumeric space null

Numeric zero (0) null

Date and time space null

A null value displays as a period (.) by default. You can specify a different character using the
SET NODATA command.

WINFORM SET

The WINFORM SET command has been replaced by the COMPUTE command. For more
information on the COMPUTE command, see Using COMPUTE to Dynamically Change the
Property of an Object on page 77.

WINFORM SET

180 Information Builders

AppendixA
Ensuring Transaction Integrity

You are familiar with individual data source operations that insert, update, or delete data
source segment instances. However, most applications are concerned with real-world
transactions, like transferring funds or fulfilling a sales order, that each require several
data source operations. These data source operations may access several data sources,
and may be issued from several procedures. We call such a collection of data source
operations a logical transaction (it is also known as a logical unit of work).

In this appendix:

Transaction Integrity Overview

Why Is Transaction Integrity Important?

Defining a Transaction

Evaluating Whether a Transaction Was Successful

Concurrent Transaction Processing

Ensuring Transaction Integrity for FOCUS Data Sources

Ensuring Transaction Integrity for DB2 Data Sources

Transaction Integrity Overview

This topic describes how App Studio Maintain Data ensures transaction integrity at the
application level. At the data source level, each database management system (DBMS)
implements transaction integrity in its own way. For more information, see your DBMS vendor
documentation for DBMS-specific information. For FOCUS data sources, this DBMS-specific
information is presented in Ensuring Transaction Integrity for FOCUS Data Sources on page
190. For DB2, you can find some suggested strategies for writing Maintain Data transactions
to DB2 data sources in Ensuring Transaction Integrity for DB2 Data Sources on page 197. For
many other types of data sources, you can also apply the strategies described in Ensuring
Transaction Integrity for DB2 Data Sources on page 197, changing DBMS-specific details when
necessary.

Maintain Data Language Reference 181

Example: Describing a Transfer of Funds as a Logical Transaction

A banking application would define a transfer of funds from one account to another as one
logical transaction comprising two update operations:

Subtracting the funds from the source account (UPDATE Savings FROM SourceAccts).

Adding the funds to the target account (UPDATE Checking FROM TargetAccts).

Procedure: How to Process a Logical Transaction

To process a logical transaction, follow these steps:

1. DBMS requirements. The database management system of your data sources (DBMS)
may require that you perform some tasks to enable transaction integrity. For more
information, see your DBMS vendor documentation for information.

You can set some native DBMS parameters using the SYS_MGR.FOCSET command. For
more information, see SYS_MGR.FOCSET on page 166. You can also set some native
DBMS parameters through FOCUS. See your server documentation.

For FOCUS data sources, you must set the COMMIT server parameter to ON, and issue a
USE command to specify which FOCUS Database Server will manage concurrent access to
the data source. For more information, see Ensuring Transaction Integrity for FOCUS Data
Sources on page 190.

2. Develop the transaction logic. Code the data source commands and related logic that
read from the data sources, write to the data sources, and evaluate the success of each
data source command.

3. Define the transaction boundary. Code a COMMIT command, and any other supporting
commands, to define the transaction boundary. For more information, see Defining a
Transaction on page 183.

4. Evaluate the success of the transaction. Test the FocCurrent transaction variable to
determine if the transaction was successfully written to the data source, and then branch
accordingly. For more information, see Evaluating Whether a Transaction Was Successful
on page 188.

Why Is Transaction Integrity Important?

The advantage of describing a group of related data source commands as one logical
transaction is that the transaction is valid and written to the data source only if all of its
component commands are successful. When you attempt to commit a transaction, you are
ensured that if part of the transaction fails, none of the transaction will be written to the data
source. This is called transaction integrity.

Why Is Transaction Integrity Important?

182 Information Builders

When is transaction integrity important? Whenever a group of commands are related and are
only meaningful within the context of the group. In other words, whenever the failure of any one
command in the transaction at commit-time would invalidate the entire transaction.

Transaction integrity is an uncompromising proposition: either all of the transaction is written
to the data source when you commit it, or all of it is rolled back.

Example: Why Transaction Integrity Is Essential to a Bank

Consider a banking application that transfers funds from a savings account to a checking
account. If the application successfully subtracts the funds from the savings account, but is
interrupted by a system problem before it can add the funds to the checking account, the
money would disappear, creating unbalanced bank accounts.

The two update commands (subtracting and adding funds) must be described as parts of a
single logical transaction, so that the subtraction and addition updates are not written to the
data source independently of each other.

Defining a Transaction

You define a logical transaction by issuing a COMMIT or ROLLBACK command following the
last data source command of the transaction. For simplicity, the remainder of this topic refers
to COMMIT only, but unless stated otherwise, both commands are meant. For example, the
beginning of your application is the beginning of its first logical transaction. The data source
commands that follow are part of the transaction. When the application issues its first
COMMIT command, it marks the end of the first transaction.

The data source commands that follow the first COMMIT become part of the second logical
transaction. The next COMMIT to be issued marks the end of the second transaction, and so
on.

The COMMIT command defines the boundary of the transaction. All data source commands
issued between two COMMIT commands are in the same transaction. This explanation
describes the simplest case, in which a transaction exists entirely within a single procedure.
When a transaction spans procedures, you have several options for deciding how to define a
transaction boundary, as described in When an Application Ends With an Open Transaction on
page 187.

Example: Defining a Simple Transfer of Funds Transaction

For example, transferring money from a savings account to a checking account requires two
update commands. If you want to define the transfer, including both updates, as one logical
transaction, you could use the following function:

A. Ensuring Transaction Integrity

Maintain Data Language Reference 183

CASE TransferMoney
 UPDATE Savings FROM SourceAccts
 UPDATE Checking FROM TargetAccts
 COMMIT
ENDCASE

When Does a Data Source Command Cause a Transaction to Fail?

A data source command can fail for many reasons. For example, an UDPATE command might
try to write to a record that never existed because a key was mistyped, or an INCLUDE
command might try to add a record that has already been added by another user.

In some cases, when a command fails, you might want to keep the transaction open and
simply resolve the problem that caused the command to fail. For example, in the first case of
attempting to update a record that does not exist, you might wish to ask the application user
to correctly re-enter the customer code (which is being used as the key of the record). In other
cases, you might wish to roll back the entire transaction.

If a data source command fails, it will only cause the logical transaction that contains it to be
automatically rolled back in certain circumstances. The deciding factor is when a data source
command fails. If a data source command fails when the transaction:

Is open (that is, when the application issues the data source command), the transaction
remains open, and the failed data source command does not become part of the
transaction. This means that, if the application later attempts to commit the transaction,
because the failed data source command is not part of the transaction, it will not affect the
success or failure of the transaction.

You can evaluate the success of a data source command in an open transaction by testing
the value of the FocError system variable immediately after issuing the command. If you
wish the failure of the data source command to roll back the transaction, you must issue a
ROLLBACK command.

Is being closed (that is, when the application tries to commit the transaction), the failure of
the data source command to be written to the data source causes the transaction to fail,
and the entire transaction is automatically rolled back.

Canceling a Transaction

A transaction that is ongoing and has not yet been committed is called an open transaction. To
cancel an open transaction, you must issue a ROLLBACK command. ROLLBACK voids any of
the data source commands of the transaction that have already been issued so that none of
them are written to the data source.

Defining a Transaction

184 Information Builders

Transactions and Data Source Position

When a logical transaction is committed or rolled back, it resets all position markers in all the
data sources that are accessed by the transaction procedures. Resetting the position markers
points them to the beginning of the data source segment chains.

How Large Should a Transaction Be?

A transaction is at its optimal size when it includes only those data source commands that are
mutually dependent upon each other for validity. If you include independent commands in the
transaction and one of the independent commands fails when you try to commit the
transaction, the dependent group of commands will be needlessly rolled back.

For example, in the following banking transaction that transfers funds from a savings account
to a checking account, you should not add an INCLUDE command to create a new account,
since the validity of transferring money from one account to another does not depend upon
creating a new account.

CASE TransferMoney
 UPDATE Savings FROM SourceAccts
 UPDATE Checking FROM TargetAccts
 COMMIT
ENDCASE

Another reason for not extending transactions unnecessarily is that, in a multi-user
environment, the longer a transaction takes, the more likely it is to compete for records with
transactions submitted by other users. Transaction processing in a multi-user environment is
described in Concurrent Transaction Processing on page 188.

Designing Transactions That Span Procedures

Logical transactions can span multiple Maintain Data procedures. If a Maintain Data procedure
with an open transaction passes control to an App Studio procedure, the open transaction is
suspended. When control next passes to a Maintain Data procedure, the transaction picks up
from where it had left off.

When a transaction spans several procedures, you will usually find it easier to define the
boundaries of the transaction if you commit it in the highest procedure in the transaction (that
is, in the procedure closest to the root procedure). Committing a transaction in a descendant
procedure of a complex application, where it is more difficult to track the flow of execution,
makes it difficult to determine the transaction boundaries (that is, to know which data source
commands are being included in the transaction).

A. Ensuring Transaction Integrity

Maintain Data Language Reference 185

When a child procedure returns control to its parent procedure, and the child has an open
logical transaction, you have two options:

You can continue the open transaction of a child into the parent procedure when the child
returns control to the parent. Simply specify the KEEP option when you return control with
the GOTO END command.

You can close the open transaction of the child automatically at the end of the child
procedure. By default, Maintain Data issues an implied COMMIT command to close the
open transaction. You can also specify this behavior explicitly by coding the RESET option
when you return control with the GOTO END command.

KEEP and RESET are described in Command Reference on page 55.

Example: Moving a Transaction Boundary Using GOTO END KEEP

Consider a situation where procedure A calls procedure B, and procedure B then calls
procedure C. The entire application contains no COMMIT commands, so the initial logical
transaction continues from the root procedure (A) through the descendant procedures (B and
C). C and B both return control to their parent procedure using a GOTO END command.

The table below shows how specifying or omitting the KEEP option when procedures B and C
return control affects the transaction boundaries of the application (that is, how the choice
between KEEP and the implied COMMIT determines where the initial transaction ends, and
how many transactions follow).

C returns to B with... B returns to A with... Transaction boundaries (||)

KEEP KEEP A-B-C-B-A one transaction

KEEP implied COMMIT A-B-C-B || A two transactions

implied COMMIT KEEP A-B-C || B-A two transactions

implied COMMIT implied COMMIT A-B-C || B || A three
transactions

Defining a Transaction

186 Information Builders

Designing Transactions That Span Data Source Types

If a transaction writes to multiple types of data sources, each database management system
(DBMS) evaluates its part of the transaction independently. When a COMMIT command ends
the transaction, the success of the COMMIT against each data source type is independent of
the success of the COMMIT against the other data source types. This is known as a broadcast
commit. If any part of the broadcast commit fails, the value of FocCurrent is not zero (0).

For example, if you issue a Maintain Data procedure against the FOCUS data sources
Employee and JobFile, and a DB2 data source named Salary, the success or failure of the
COMMIT against Salary is independent of its success against Employee and JobFile. It is
possible for it to be successful against Salary and write that part of the transaction, while
being unsuccessful against Employee and JobFile and roll back that part of the transaction.
Because it is unsuccessful against Employee and JobFile, the value of FocCurrent is not zero
(0).

Designing Transactions in Multi-Server Applications

In an application that spans multiple WebFOCUS Servers, the server defines the maximum
scope of a logical transaction. No transaction boundary can extend beyond a WebFOCUS
Server. If one of your applications spans several servers, protect its transaction boundaries by
ensuring that:

All of the procedures of the application that read and write to a given data source reside on
the same WebFOCUS Server.

In each of the transactions of the application that span multiple procedures, all of the
transaction procedures that read and write to data sources reside on the same WebFOCUS
Server.

If a procedure with an open transaction calls another procedure that resides on a different
WebFOCUS Server, and the situation violates either of the previous restrictions, the data
source commands on the new server will comprise a new transaction. When control returns to
the calling procedure on the original server, the original open transaction continues from where
it had left off.

When an Application Ends With an Open Transaction

If an application terminates while a logical transaction is still open, Maintain Data issues an
implied COMMIT command to close the open transaction, ensuring that any data source
commands issued after the last explicit COMMIT are accounted for. The only exception is if
your Maintain Data session abnormally terminates. Maintain Data does not issue the implied
COMMIT, and any remaining uncommitted data source commands are rolled back.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 187

Evaluating Whether a Transaction Was Successful

When you close a transaction by issuing a COMMIT or ROLLBACK command, you must
determine whether the command was successful. If a COMMIT command is successful, then
the transaction it closes has been successfully written to the data source. If a ROLLBACK
command is successful, then the transaction it closes has been successfully rolled back.

The system variable FocCurrent provides the return code of the most recently issued COMMIT
or ROLLBACK command. By testing the value of FocCurrent immediately following a COMMIT or
ROLLBACK command, you can determine if the transaction was successfully committed or
rolled back. If the value of FocCurrent is:

Zero (0), the command was successful.

Not zero (0), the command was unsuccessful.

FocCurrent is global to a procedure. If you want a given value of FocCurrent to be available in a
different procedure, you must explicitly pass it as an argument to that procedure.

Example: Evaluating the Success of a Transaction

The following function commits a transaction to a data source. If the transaction is
unsuccessful, the application invokes another function that writes to a log and then begins a
new transaction. The FocCurrent line evaluates the success of the transaction:

CASE TransferMoney
 UPDATE AcctBalance FROM SourceAccts
 UPDATE AcctBalance FROM TargetAccts
 COMMIT
 IF FocCurrent NE 0 THEN PERFORM BadTransfer
ENDCASE

Concurrent Transaction Processing

Several applications or users often need to share the same data source. This sharing can lead
to problems if they try to access a record concurrently, that is, if they try to process the same
data source record at the same time.

To ensure the integrity of a data source, concurrent transactions must execute as if they were
isolated from each other. The changes of one transaction to a data source must be concealed
from all other transactions until that transaction is committed. To do otherwise, runs the risk
of open transactions being exposed to interim inconsistent images of the data source, and
consequently, corrupting the data source.

Evaluating Whether a Transaction Was Successful

188 Information Builders

To prevent users from corrupting the data in this way, the database management system
(DBMS) must coordinate concurrent access. There are many strategies for doing this. No
matter which type of data source you use, Maintain Data respects your DBMS concurrency
strategy and lets it coordinate access to its own data sources.

For more information about how your DBMS handles concurrent access, see your DBMS
documentation. For FOCUS data sources, this information is presented in Ensuring Transaction
Integrity for FOCUS Data Sources on page 190. For DB2, you can find some suggested
strategies for writing Maintain Data transactions to DB2 data sources in Ensuring Transaction
Integrity for DB2 Data Sources on page 197. For many other types of data sources, you can
also apply the strategies described in Ensuring Transaction Integrity for DB2 Data Sources on
page 197, changing DBMS-specific details when necessary.

Example: Why Concurrent Access to a Data Source Must Be Managed Carefully

Consider the following two applications that access the Employee data source:

The Promotion application reads a list of employees who have received promotions, and
updates their job codes to correspond to their new positions.

The Salary application, run once at the beginning of each year, checks every employee job
code and gives each employee an annual raise based on his or her job title. For example,
assistant managers (job code A15) will earn $30,000 in the new year, and managers (A16)
will earn $40,000.

Joan Irving is an assistant manager. Consider what happens when these two applications try to
access and update the same record at the same time, without any coordination:

1. The Promotion application reads the record of Irving and, based on information in a
transaction data source, indicates that she has been promoted to manager, and computes
her new job code (A16).

2. The Salary application reads the record of Irving and, based on her job code in the data
source (A15), computes her new salary ($30,000).

3. The Promotion application writes the new job code (A16) to the data source.

4. The Salary application writes the new salary ($30,000) to the data source.

Remember the earlier business rule (assistant managers earn $30,000, managers earn
$40,000). Because two applications accessed the same record at the same time without any
coordination, the rule has been broken (Joan Irving has a manager job code but the salary of
an assistant manager). The data source has become internally inconsistent.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 189

Ensuring Transaction Integrity for FOCUS Data Sources

Each database management system (DBMS) supports transaction integrity in its own way. The
FOCUS DBMS manages concurrent access to FOCUS data sources using the FOCUS Database
Server, and uses certain commands to identify transaction integrity attributes. The FOCUS
Database Server was formerly known as a sink machine, or Simultaneous Usage (SU) facility
on some platforms.

To ensure transaction integrity for FOCUS data sources, perform the following tasks:

Install the FOCUS Database Server. When installing each WebFOCUS Server that will host
FOCUS data sources, select the FOCUS Database Server option.

Set COMMIT. Set the COMMIT server parameter to ON. This enables the COMMIT and
ROLLBACK commands for FOCUS data sources, and enables the use of the FOCUS
Database Server. For more information, see Setting COMMIT on page 190.

Select which segments will be verified for changes. Set the PATHCHECK server parameter
to specify the type of segments for which the FOCUS Database Server will verify change.
This is optional. You can accept the default setting. For more information, see Selecting
Which Segments Will Be Verified for Changes on page 193.

Identify the FOCUS Database Server. Identify which FOCUS Database Server will manage
concurrent access to each FOCUS data source. For more information, see Identifying the
FOCUS Database Server on page 194.

Start the FOCUS Database Server. Under Windows and UNIX, when you start the
WebFOCUS Server, it automatically starts the FOCUS Database Server. When you stop the
WebFOCUS Server, it automatically stops the FOCUS Database Server. For information
about starting and stopping the FOCUS Database Server under MVS and OS/390, see the
Simultaneous Usage Reference Manual, TSO Version manual.

Setting COMMIT

You must set the COMMIT server parameter to ON before using the COMMIT and ROLLBACK
commands for FOCUS data sources, and before using the FOCUS Database Server. You must
set COMMIT on all WebFOCUS Servers hosting procedures that read or write to FOCUS data
sources in a logical transaction. In most applications, this will mean setting COMMIT on all
WebFOCUS Servers that host procedures with data source commands.

You can set COMMIT:

Comprehensively for all users on a WebFOCUS Server. Issue the SET COMMIT command in
the server global profile (EDASPROF).

Ensuring Transaction Integrity for FOCUS Data Sources

190 Information Builders

Comprehensively for a group of users on a WebFOCUS Server. Issue the SET COMMIT
command in one or more of the group profiles of the server. Group profiles are supported
under UNIX, OS/390, and MVS.

Individually for each user on a WebFOCUS Server. Issue the SET COMMIT command in one
or more of the group profiles of the server (PROFILE). The user in this case is the user
account that launches the application.

If you set COMMIT in a user profile or group profile, you must set it in the profile of the user or
group that runs the application.

You can also set COMMIT directly from a Maintain Data procedure.

Syntax: How to Set COMMIT

The COMMIT server parameter enables transaction integrity for FOCUS data sources. To set
COMMIT, issue the SET COMMIT command in a WebFOCUS Server global profile, or in one or
more of its user or group profiles, using the following syntax:

SET COMMIT={ON|OFF}

To set COMMIT in a Maintain Data procedure, use the following syntax

SYS_MGR.FOCSET("COMMIT" "{ON|OFF})"

where:

ON

Enables the COMMIT and ROLLBACK commands for use with FOCUS data sources, and
enables the use of the FOCUS Database Server to ensure transaction integrity.

OFF

Disables the COMMIT and ROLLBACK commands for use with FOCUS data sources, and
disables the use of the FOCUS Database Server to ensure transaction integrity. OFF is the
default value.

Sharing Access to FOCUS Data Sources

The FOCUS DBMS ensures transaction integrity when multiple users are trying to access the
same data source concurrently. If you are processing a transaction and, in the interval between
beginning your transaction and completing it, the segments updated by your application have
been changed and committed to the data source by another user, Maintain Data will roll back
your transaction. This coordination is performed by the FOCUS Database Server. You can test
if your transaction was rolled back by checking the value of the FocCurrent transaction variable,
and then branch accordingly.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 191

This strategy, where FOCUS verifies that the records to which you wish to write have not been
written to by another user in the interim, is called change verification. It enables many users to
share write access to a data source, and grants update privileges for a given record to the first
user that attempts the update.

Change verification takes advantage of the fact that two users rarely try to update the same
record at the same time. Some DBMSs use strategies that lock out all but one user. Others
grant update privileges to the first user that retrieves a record, even if he or she is the last one
ready to update it, resulting in a performance bottleneck. In contrast, the FOCUS DBMS
strategy of change verification enables the maximum number of users to access the same
data concurrently, and makes it possible to write the maximum number of transactions in the
shortest time. The FOCUS Database Server and change verification strategy are designed for
high-performance transaction processing.

How the FOCUS Database Server and Change Verification Work

The change verification strategy of the FOCUS Database Server is an extension of basic
transaction processing. Each application user who accesses the FOCUS Database Server is
known as a client. To ensure transaction integrity follow this simple change verify protocol:

1. As always, use the NEXT or MATCH commands to retrieve the data source records you
need for the current transaction. When the application issues these commands, the server
sends the application a private client copy of the records.

Note: Do not retrieve data from a data source by running a report procedure. The FOCUS
Database Server does not check this data for changes when you attempt to commit a
transaction.

2. When the application issues a data source write command (such as INCLUDE, UPDATE,
REVISE, or DELETE) against the retrieved records, it updates its private copy of the records.

3. When the application issues a COMMIT command to indicate the end of the transaction,
the application session sends a log of the transaction back to the server. The server now
checks to see if any of the segments that the transaction changed have, in the interim,
been changed and committed to the data source by other clients, and if any segments that
the transaction added have, in the interim, been added by other clients. You can customize
which segments the FOCUS Database Server checks for changes by setting the
PATHCHECK server parameter, as described in Selecting Which Segments Will Be Verified
for Changes on page 193.

The server takes one of the following actions:

No conflict. If none of the records have been changed or added in the interim, then the
transaction is consistent with the current state of the data source. The server writes the
transaction to the data source and sets the FocCurrent transaction variable of the
application to zero (0) to confirm the update.

Ensuring Transaction Integrity for FOCUS Data Sources

192 Information Builders

Conflict. If any records have been changed in the interim, then the transaction might be
inconsistent with the current state of the data source. The server ignores the
transaction changes to the data source, rolls back the transaction, and alerts the
application by setting FocCurrent to a non-zero (0) number.

4. The application evaluates FocCurrent and branches to the appropriate function.

Selecting Which Segments Will Be Verified for Changes

When you use a FOCUS Database Server, you can customize the change verification process
by defining the segments for which the FOCUS Database Server will verify changes. You define
this, using the server parameter described in How to Set PATHCHECK on page 193.

You can choose between:

All segments in the path. The FOCUS Database Server verifies that all segments in the
path extending from the root segment to the target segment have not been changed and
committed in the interim by other users.

Modified segments only. The FOCUS Database Server determines which segments you are
updating or deleting, and verifies that those segments have not been changed and
committed in the interim by other users.

You can set PATHCHECK for each FOCUS Database Server, which affects all applications that
access FOCUS data sources managed by that FOCUS Database Server. To set it under:

Windows and UNIX, issue the SET PATHCHECK command in the batch file (EDASTART.BAT)
that starts the FOCUS Database Server.

OS/390 and MVS, issue the SET PATHCHECK command in the FOCUS Database Server
profile (HLIPROF).

Syntax: How to Set PATHCHECK

The PATHCHECK server parameter defines which segments the FOCUS Database Server will
check for changes. To set PATHCHECK, issue the SET PATHCHECK command in the batch file
that starts the FOCUS Database Server, using the following syntax

SET PATHCHECK={ON|OFF}

A. Ensuring Transaction Integrity

Maintain Data Language Reference 193

where:

ON

Instructs the FOCUS Database Server to verify that all segments in the path extending from
the root segment to the target segment have not been changed and committed in the
interim by other users. This is the default for OS/390 and MVS.

OFF

Instructs the FOCUS Database Server to check only segments that the current transaction
has updated or deleted, and verify that those segments have not been changed and
committed in the interim by other users. This is the default for Windows and UNIX.

Identifying the FOCUS Database Server

To identify which FOCUS Database Server will manage access to a given FOCUS data source,
you must issue a command that associates the server with the data source, as described in
How to Identify a FOCUS Database Server With USE on page 194.

You can issue this command:

Comprehensively, for all users on a WebFOCUS Server. Issue the USE command in the
server profile (EDASPROF).

Individually, for each user on a WebFOCUS Server. Issue the USE command in the user
server profile (PROFILE). The user in this case is the user account that launches the
application.

Syntax: How to Identify a FOCUS Database Server With USE

For each FOCUS data source that will be managed by a FOCUS Database Server, you must
associate the data source with the server by issuing a USE command in a WebFOCUS Server
profile. The USE command syntax is:

USE
datafile ON server_id
[datafile ON server_id]
.
.
.
END

where:

datafile

Is the file specification of a data source to be managed by the FOCUS Database Server.

Ensuring Transaction Integrity for FOCUS Data Sources

194 Information Builders

server_id

Under Windows and UNIX, is the node name of the FOCUS Database Server, as defined in
the FOCUS Database Server node block of the Data Server configuration file.

Under OS/390 and MVS, is the ddname of the communication dataset that points to the
FOCUS Database Server job.

If you wish, you can identify multiple data source and server pairs in one USE command.

Using Report Procedures and a FOCUS Database Server

When a FOCUS Database Server manages access to a FOCUS data source, each logical
transaction that accesses that data source works with its own private copy of the data source
records. This ensures that the transaction sees a consistent image of the data source that is
isolated from changes being attempted by other users.

App Studio procedures, such as report procedures, are not part of a logical transaction. When
control passes from a Maintain Data procedure to an App Studio procedure, the open
transaction is suspended for the duration of the App Studio procedure. Therefore, if the App
Studio procedure reports against a FOCUS data source, it accesses the live data source. It
does not open the private copy of the transaction. Changes made by the open transaction are
not seen by the report, and changes committed by other users since the open transaction
began are seen by the report, though not necessarily by the open transaction.

For similar reasons, you should not use a report procedure to retrieve data for use in a
transaction. The FOCUS Database Server does not check this data for changes when you
attempt to commit a transaction. Always use the NEXT or MATCH commands to retrieve
transaction data.

If you wish to deploy App Studio procedures containing report requests to a WebFOCUS Server
that also hosts Maintain Data procedures, you must represent the server as two different
outbound nodes, and deploy App Studio reporting procedures to one node and Maintain Data
procedures to the other node, as described in Accessing Report Procedures When Using a
FOCUS Database Server on page 196. Otherwise, the App Studio procedures may interfere
with your transaction logic.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 195

Accessing Report Procedures When Using a FOCUS Database Server

If you are using a FOCUS Database Server and you wish to access Maintain Data procedures
and App Studio report procedures that are located on the same WebFOCUS Server (referred to
here as the target server), you must:

1. Represent the target server as two different outbound nodes:

Each WebFOCUS Server that executes Maintain Data procedures or App Studio
procedures that are located on the target server.

This requirement also applies to the target server itself. If it executes Maintain Data
procedures or App Studio procedures that are deployed on itself, it must be represented to
itself as two outbound nodes.

2. Of the procedures that you will be deploying to the target server, deploy the App Studio
report procedures to one of these outbound nodes, and deploy the Maintain Data
procedures to the other outbound node.

This is necessary because deploying both types of procedures to the same outbound node can
cause report logic to corrupt transaction integrity.

Procedure: How to Access Maintain Data and App Studio Report Procedures on the Same Server

In an application that uses a FOCUS Database Server, if you want to deploy to the Maintain
Data procedures of the application and App Studio report procedures on the same WebFOCUS
Server (referred to here as the target server):

1. Represent the target server as two outbound nodes that have different remote server
names but the same protocol options (for the TCP/IP protocol, this means specifying the
two nodes with the same IP address, port number, and compression setting).

2. Represent the target server to WebFOCUS Servers as two outbound nodes. Perform this
step for each WebFOCUS Server that executes Maintain Data procedures or App Studio
procedures that are deployed on the target server. This requirement also applies to the
target server itself. If it executes Maintain Data procedures or App Studio procedures that
are deployed on itself, it must be represented to itself as two outbound nodes.

As in step 1, define the two outbound nodes as having different remote server names but
the same protocol options (for the TCP/IP protocol, this means specifying the same IP
address, port number, and compression setting). You can do this by copying the target
server node block, as described in the WebFOCUS Server Communications Configuration
File Location and Name on page 197, and paste it just below the end of the original block.
The node block begins with the NODE keyword and continues through the END keyword.
Edit the pasted block to provide a new eight-character node name, but leave the other
values unchanged.

Ensuring Transaction Integrity for FOCUS Data Sources

196 Information Builders

If the WebFOCUS Server is the target server, then copy the target server node block from
the App Studio odin.cfg file and paste it twice, into the communications configuration file
of the target server. Edit the second pasted block to provide a new eight-character node
name, but leave the other values of the block unchanged.

For information about the name and location of the communications configuration server
file, see Communications Configuration File Location and Name on page 197.

3. Deploy the application.

Reference: Communications Configuration File Location and Name

The WebFOCUS Server communications configuration file under:

Windows and UNIX is odin.cfg, and resides in the etc subdirectory of the Data Server
configuration directory. Under UNIX, odin.cfg is in the $EDACONF/etc directory. Under
Windows, you can find the name of the configuration directory in the environment variable
EDACONF.

When you install and configure a WebFOCUS Server, the configuration directory defaults to
$HOME/ibi/srv82/server_instance under UNIX, and home\ibi\srv82\server_instance under
Windows. HOME is an environment variable whose value in this context is the name of the
home directory of the user account that installed the WebFOCUS Server. server_instance is
the name of a server configuration directory (there is one directory per server instance. The
convention is to name this directory wfs for a WebFOCUS Server, and wfm for a Maintain
Data Application Server).

OS/390 and MVS is allocated to ddname EDACSG in the server startup JCL.

Sharing Data Sources With Legacy MODIFY Applications

A FOCUS data source being managed by a FOCUS Database Server can be accessed by both
Maintain Data applications and legacy MODIFY applications. Note that while MODIFY allows
creating records with duplicate keys, Maintain Data does not support FOCUS data sources that
have duplicate keys.

Ensuring Transaction Integrity for DB2 Data Sources

DB2 ensures transaction integrity by locking data source rows when they are read. The
behavior of a lock depends on the isolation level of a transaction. The techniques suggested
here for Maintain Data applications all use an isolation level of repeatable read. Repeatable
read involves a trade-off. It ensures absolute transaction integrity, but it can prevent other
users from accessing a row for long periods of time, creating performance bottlenecks.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 197

Under repeatable read, a row is locked when it is retrieved from the data source, and is
released when the transaction that retrieved the row is either committed to the data source or
rolled back. A Maintain Data DB2 transaction is committed or rolled back each time a Maintain
Data application issues a COMMIT or ROLLBACK command. You explicitly code COMMIT and
ROLLBACK commands in your Maintain Data application. In some circumstances the
application may also issue these commands implicitly, as described in Designing Transactions
That Span Procedures on page 185, and in When an Application Ends With an Open Transaction
on page 187.

We recommend two strategies for writing transactions to DB2 data sources:

Using transaction locking to manage DB2 row locks. This locks each row for the duration
of the transaction, from the time a row is retrieved, until the transaction is committed. In
effect, it relies on DB2 to ensure transaction integrity. This is simpler to code, but keeps
rows locked for a longer period of time. This is the preferred strategy, unless the duration
of its locks interferes excessively with your data source concurrency requirements.

Using change verification to manage DB2 row locks. This locks each row while it is being
retrieved, releases the lock, and then relocks the row shortly before writing it to the data
source. This technique ensures transaction integrity by verifying, before writing each row,
that the row has not been changed by other users in the interim. This is more complex to
code, but locks rows for a shorter period of time, increasing data availability.

While these strategies are described for use with DB2 data sources, you can also apply them
to transactions against other kinds of data sources, changing DBMS-specific details when
necessary.

Reference: How Maintain Data DB2 Logic Differs From Other Information Builders Products

If you are familiar with using the Data Adapter for DB2 with Information Builders products other
than Maintain Data, note that Maintain Data works with DB2 a bit differently:

Maintain Data enables you to issue COMMIT and ROLLBACK commands explicitly. It also
issues them implicitly in certain situations, as described in Designing Transactions That
Span Procedures on page 185, and in When an Application Ends With an Open Transaction
on page 187.

Maintain Data does not support the SQL DB2 SET AUTOCOMMIT command to control
automatic commits.

Because Maintain Data works on sets of rows, the Data Adapter for DB2 does not
automatically generate change verification logic.

Ensuring Transaction Integrity for DB2 Data Sources

198 Information Builders

Using Transaction Locking to Manage DB2 Row Locks

You can use the transaction locking strategy to manage DB2 row locks in Maintain Data
applications. While this strategy is described for use with DB2 data sources, you can also
apply it to transactions against other kinds of data sources, changing DBMS-specific details
when necessary. When using transaction locking, your application locks each row with an
isolation level of repeatable read for the duration of the transaction, from the time it retrieves
the row, until the time it commits or rolls back the transaction.

The following illustration shows the duration of connections, threads, and logical transactions
(also known as logical units of work) when you use this strategy.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 199

If your applications are small in scope, comprising only a single procedure, the duration of
connections, threads, and logical transactions would look like the following illustration:

Compared to change verification, transaction locking is simpler to code, but keeps rows locked
for a longer period of time. This may cause other users to experience time outs, in which case
DB2 will return a -911 or -904 SQL code. You can mitigate the effect of row locking by:

Keeping the size of the transaction small, making it less likely that another user will
encounter a row locked by your transaction.

Implementing the change verification strategy described in Using Change Verification to
Manage DB2 Row Locks on page 201.

Having user applications check for a locked condition when retrieving rows, and upon
encountering a lock, re-issuing the retrieval request a specified number of times in a loop.
If the user application exceeds the specified number of attempts, have it display a
message to the user indicating that the row is in use, and suggesting that the user try
again later.

Using standard database administration techniques, such as report scheduling, tablespace
management, and data warehousing.

Ensuring Transaction Integrity for DB2 Data Sources

200 Information Builders

Procedure: How to Implement Transaction Locking for DB2

To implement the transaction locking strategy for managing DB2 row locks in Maintain Data
applications, bind the Data Adapter for DB2 plan with an isolation level of repeatable read. The
isolation level is a Data Adapter for DB2 installation BIND PLAN parameter. In your Maintain
Data application:

1. Read the rows. Retrieve all required rows. Retrieval locks the rows with an isolation level
of repeatable read.

2. Write the transaction to the data source. Apply the updates of the transaction to the data
source.

3. Be sure to terminate called procedures correctly. If a Maintain Data procedure calls
another Maintain Data procedure within the scope of a transaction, the called procedure
must return control using the GOTO END KEEP command. For more information about
GOTO END KEEP, see Designing Transactions That Span Procedures on page 185.

Caution: If any called procedure within the scope of a transaction returns control without
GOTO END KEEP, Maintain Data issues an implied COMMIT command, releasing all row
locks and making the application vulnerable to updates by other users. Be sure to return
control using GOTO END KEEP. Otherwise, code each transaction within a single
procedure, so that the scope of each transaction does not extend beyond one procedure,
or use the change verification strategy described in Using Change Verification to Manage
DB2 Row Locks on page 201.

4. Close the transaction. When the transaction is complete, close it by issuing a COMMIT or
ROLLBACK command. The COMMIT or ROLLBACK command releases all row locks.

Using Change Verification to Manage DB2 Row Locks

You can use the change verification strategy to manage DB2 row locks in Maintain Data
applications. While this strategy is described for use with DB2 data sources, you can also
apply it to transactions against other kinds of data sources by changing DBMS-specific details
when necessary.

When using change verification, your application retrieves all needed rows into a stack, locking
them in the process, releases the locks after retrieval, and then performs all updates against
the stack (not against the data source). This enables you to work with the data in the stack as
long as necessary without preventing other users from accessing the data source. When you
are ready to close the transaction, retrieve the original rows from the data source again,
relocking them in the process. Then, compare their current values in the data source to their
original values when you first retrieved them, and write the transaction to the data source if the
values are the same, that is, if the rows have not been changed by other users in the interim.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 201

Change verification enables the maximum number of users to access the same data
concurrently, and makes it possible to write the maximum number of transactions in the
shortest time. It is able to do this because it is an optimistic locking protocol, that is, it is
optimized for the most common situation, in which at any moment, at most one user will
attempt to update a given row. Compared to transaction locking, this is more complex to code,
but locks rows for less time, increasing data availability.

The following illustration shows the duration of connections, threads, and logical transactions
when you use this strategy for DB2 data sources.

Procedure: How to Implement Change Verification for DB2

To implement the change verification strategy for managing DB2 row locks in Maintain Data
applications, bind the Data Adapter for DB2 plan with an isolation level of repeatable read. The
isolation level is a Data Adapter for DB2 installation BIND PLAN parameter. In your Maintain
Data application:

1. Read the rows. Retrieve all required rows into a stack (for example, Stack1). Retrieval
locks the rows with an isolation level of repeatable read.

Ensuring Transaction Integrity for DB2 Data Sources

202 Information Builders

2. Free the row locks. Issue a ROLLBACK command immediately following retrieval in order
to release all row locks.

3. Copy the stack. Make a copy of the stack (for example, Stack2). You will use this copy
later when checking for changes.

4. Write the transaction to the stack. Apply the updates of the transaction to the rows in
the original stack (Stack1).

5. Read the rows again. Retrieve the rows of the transaction from the data source into a new
stack (for example, Stack3). Retrieval relocks the rows with an isolation level of repeatable
read.

6. Verify changes. Compare the original data source values in the copy of the original stack
(Stack2) to the current data source values (Stack3) to verify that other users have not
changed these rows in the interim.

7. Write the transaction to the data source. If any of these rows have been changed in the
data source by another user, you can roll back the transaction or take some other action,
as your application logic requires. If none of the rows in the transaction have been
changed by other users in the interim, your application can apply the transaction updates
to the data source, and issue a COMMIT command to commit the transaction.

The COMMIT or ROLLBACK command releases all row locks.

A. Ensuring Transaction Integrity

Maintain Data Language Reference 203

Ensuring Transaction Integrity for DB2 Data Sources

204 Information Builders

AppendixB
Developing Classes and Objects

Most application development is modular. The developer creates complex systems
comprised of smaller parts. In procedural development, these modules are procedures,
and data is defined within each procedure. In object-oriented development, the modules
are models of real-world objects (such as a customer or a shipping order), and both data
and procedures are defined within each object. The object encapsulates the data and the
procedures.

For example, if you are developing an order fulfillment system for a mail-order clothing
business, the objects might include customers, orders, and stock items. The data of a
customer object might include the customer ID code, phone number, and order history.
The customer processes might include functions that add the customer to a new mailing
list, update the customer information, and place an order for the customer.

Object-oriented development is a more efficient way of developing applications because it
models the real-world objects with which your enterprise deals, and encourages you to
reuse application logic in a variety of ways. You can use App Studio Maintain to create
applications using object-oriented development, procedural development, or a hybrid of
these two methods, providing you with a flexible development path.

In this appendix:

What Are Classes and Objects?

Defining Classes

Reusing Classes: Class Libraries

Declaring Objects

What Are Classes and Objects?

Most applications need many objects of the same type. For example, if your business has 500
customers, you need one object to represent each customer. No one would want to design a
customer object 500 times. Clearly, you need a template that defines all customer objects, so
that you can design the template once, and use it often. For example, you would use the
template each time you create a new customer object to represent a new customer.

Maintain Data Language Reference 205

An object template is called its class. Each object is an instance of a class. In other words, the
class defines the type of object. In fact, when you create a class, the class becomes a new
data type. Just as you can use a built-in data type, such as integer or alphanumeric, to define
a simple variable, you can use a class data type to define an object.

Unlike a Master File, which is also a kind of template, a class defines both variables and
functions. Just as a built-in data type defines the operations that you can perform on data of
that type (for example, you can perform addition, subtraction, division, and multiplication on
integers), a class defines the functions that you can perform on objects of that class (for
example, you can invoke functions to update an address and to place an order for a customer
object).

Example: Comparing Classes and Built-in Data Types

Just as you can use the alphanumeric built-in data type to define a customer ID code as an A8
variable

DECLARE CustID/A8;

you can use the RetailCustomer class to define a customer as an object:

DECLARE CustSmit8942/RetailCustomer;

Class Properties: Member Variables and Member Functions

You define a class by describing its properties. Classes have two kinds of properties:

Data, in the form of the variables of a class. Because these variables exist only as
members of the class, they are called member variables. In some object-oriented
development environments these are also known as object attributes or instance variables.

Class member variables determine what the class is (as opposed to what it does). Each
object of that class can have different values for its member variables.

Processes, implemented as functions. Because these functions exist only as members of
the class, they are called member functions. In some object-oriented development
environments, these are also known as methods.

The member function of a class defines its behavior. They determine what you can do to
objects of that class, and in what ways you can manipulate the data.

What Are Classes and Objects?

206 Information Builders

Example: Member Variables for a Customer Class

An application for a mail-order clothing business has defined a customer class named
Customer. The member variables of the class might include the customer code, name, phone
number, and most recent order number of the customer:

DESCRIBE Customer =
(IDcode/A6,
 LastName/A15,
 FirstName/A10,
 Phone/I10,
 LastOrder/A15);
 .
 .
 .
ENDDESCRIBE

After declaring a new customer object for the customer, Frances Smith

DECLARE CustFrSmith/Customer;

you can assign a value to the IDcode member variable:

DECLARE CustFrSmith.IDcode = GetNewCustCode();

Each object can have different values for its member variables. For example, in this case, each
customer will have a different ID code.

Example: Member Functions for a Customer Class

An application for a mail-order clothing business has defined a customer class named
Customer. The class member functions might include a function that adds the customer to a
new mailing list, a function that updates the customer contact information, and a function that
places an order for the customer:

DESCRIBE Customer =
(IDcode/A6,
 Phone/I10,
 .
 .
 .
 LastOrder/A15);
 CASE AddToList TAKES Name/A25, Address/A50, IDcode/A6;
 .
 .
 .
 ENDCASE
 CASE UpdateContact ...

B. Developing Classes and Objects

Maintain Data Language Reference 207

 CASE PlaceOrder ...

ENDDESCRIBE

After declaring a new customer object for the customer Frances Smith

DECLARE CustFrSmith/Customer;

you could add Frances Smith to the mailing list, using the AddToList member function:

CustFrSmith.AddToList();

Each object has the same member functions, and therefore, the same behavior. In this case,
for example, each customer will be added to the mailing list using the function.

Inheritance: Superclasses and Subclasses

If you want to create a new class that is a special case of an existing class, you could derive it
from the existing class. For example, in a human resources application, a class called
Manager could be considered a special case of a more general class called Employee. All
managers are employees, and posses all employee attributes, plus some additional attributes
unique to managers. The Manager class is derived from the Employee class, so Manager is a
subclass of Employee, and Employee is the superclass of Manager.

A subclass inherits all of its superclass properties. For example, it inherits all of the member
variables and member functions of the superclass. When you define a subclass, you can
choose to override some of the inherited member functions, meaning that you can recode
them to suit the ways in which the subclass differs from the superclass. You can also add new
member functions and member variables that are unique to the subclass.

Defining Classes

Before you can declare an object (an instance of a class), your procedure must have a class
definition for that type of object. If the class:

Is already defined in a class library, simply import the library into your procedure. Class
libraries, which are implemented as import modules, are described in Reusing Classes:
Class Libraries on page 215.

Is already defined in another procedure, simply copy and paste the definition into a class
library. You can then import the library into any procedure that needs it.

Defining Classes

208 Information Builders

Is not yet defined anywhere, you can define it in a class library or procedure using the Class
Editor, or by coding the definition directly in the Procedure Editor, using the DESCRIBE
command. If you define it in a class library, you can use the class definition in multiple
procedures by simply importing the library into those procedures.

Procedure: How to Define a Class Using the Class Editor

This procedure describes how to define a new class. If you wish to define a new subclass, that
is, a class that inherits properties from another class, see How to Define a Subclass Using the
Class Editor on page 210.

1. In the Requests & Data Sources panel, right-click the import module or procedure and
select New class in the shortcut menu.

2. In the New Class dialog box, type a name for your class.

3. Click the Variables tab to specify the member variables of a class. The member variables
of a class express its properties.

4. To add a variable, click the New button .

The Member Variable dialog box opens.

The name of each member variable must be unique within the class to which it belongs. It
can be identical, however, to the names of member variables of other classes.

5. Repeat step 4 to create any additional variables.

6. Click the Functions tab to specify the member functions of a class. The member functions
of a class define the actions that can be performed on the objects of a class.

7. To add a function, click the New button .

The Member Function dialog box opens.

The name of each member function must be unique within the class to which it belongs. It
can be identical, however, to the names of member functions of other classes.

8. Repeat step 7 to create any additional functions.

9. Optionally, click the Description tab and add a description to your class.

10. Click OK to confirm the class definition.

B. Developing Classes and Objects

Maintain Data Language Reference 209

Procedure: How to Define a Subclass Using the Class Editor

To define a new class (a subclass) by inheriting properties (member functions and member
variables) from another class (a superclass):

1. In the Requests & Data Sources panel, right-click the import module or procedure and
select Class (Describe) in the submenu.

2. In the New Class dialog box, type a name for your class.

3. Select the class whose properties the new class will inherit from the Inherits behavior from
list. You can choose from all of the classes that are defined in this import module or
procedure, and in any modules that have been imported into it. The selected class will be
the superclass, and the new class will be the subclass.

4. Click the Variables tab to specify the member variables of a class. The member variables
of a class express its properties. A subclass inherits all the member variables of its
superclass, and you can add new ones.

5. To add a variable, click the New button .

The Member Variable dialog box opens.

Note: You cannot delete member variables inherited from the superclass.

6. Repeat step 5 to create any additional variables.

7. Click the Functions tab to specify the member functions of a class. The member functions
of a class define the actions that can be performed on the objects of a class.

Note that you cannot delete member functions inherited from the superclass. However,
you can override an inherited member function it to edit or remove its source code.

8. To add a function, click the New button .

The Member Function dialog box opens.

The name of each member function must be unique within the class to which it belongs. It
can be identical, however, to the names of member functions of other classes.

9. Repeat step 8 to create any additional functions.

10. Optionally, click the Description tab and add a description of the class.

11. Click OK to confirm the class definition.

Defining Classes

210 Information Builders

Syntax: How to Define a Class or Subclass Using the DESCRIBE Command

When you define a class using the Class Editor, it generates the definition in the procedure as
a DESCRIBE command. If you wish to work directly with source code, you can create new class
definitions and edit existing definitions directly in the Procedure Editor by using the following
DESCRIBE syntax. You must issue the DESCRIBE command outside of a function, for example,
at the beginning of the procedure prior to all functions.

DESCRIBE classname = ([superclass +] memvar/type [, memvar/type] ...)
[;]
[memfunction
[memfunction]...
ENDDESCRIBE]

where:

classname

Is the name of the class that you are defining. The name is subject to the standard naming
rules of the Maintain Data language.

superclass

Is the name of the superclass from which you wish to derive this class. Include only if this
definition is to define a subclass.

memvar

Names one of the member variables of the class. The name is subject to the Maintain
Data language standard naming rules.

type

Is a data type (a built-in format or a class).

memfunction

Defines one of the class member functions. Member functions are defined the same way
as other Maintain Data functions, using the CASE command.

;

Terminates the definition if the definition omits member functions. If it includes member
functions, the semicolon (;) is omitted and the ENDDESCRIBE command is required.

ENDDESCRIBE

Ends the class definition if it includes member functions. If it omits member functions, the
ENDDESCRIBE command must also be omitted, and the definition must be terminated with
a semicolon (;).

B. Developing Classes and Objects

Maintain Data Language Reference 211

Procedure: How to Edit a Class Definition

To add a new member function or member variable:

1. In the Requests & Data Sources panel, right-click the class and select New member, and
then select Function or Variable.

2. In the New Function or New Variable dialog box, create your new function or variable.

To edit one of the member functions or member variables of a class:

1. In the Requests & Data Sources panel, right-click one of the class member functions or
member variables.

2. In the shortcut menu, click Edit.

3. Make any necessary changes to the class definition in the Edit Variable or Member
Function dialog boxes. For general information about editing a class definition, see Defining
Classes on page 208.

4. Click OK to confirm your changes.

Procedure: How to Edit the Class Source Code

If you wish, you can edit the Maintain Data code directly in the Procedure Editor.

1. In the Requests & Data Sources panel, right-click the class.

2. In the shortcut menu, click Edit source.

3. Make any changes you wish to the code between DESCRIBE classname and
ENDDESCRIBE.

4. Close the Procedure Editor.

Procedure: How to Rename a Class, Member Variable, or Member Function

1. In the Requests & Data Sources panel, right-click the class, member variable, or member
function, and in the shortcut menu, click Rename.

2. Type the new name.

3. Press the Enter key to confirm the new name.

Procedure: How to Delete a Class, Member Variable, or Member Function

In the Requests & Data Sources panel, right-click the class, member variable, or member
function, and in the shortcut menu, click Delete.

Defining Classes

212 Information Builders

Reference: New Class and Edit Class Dialog Boxes

The New Class and Edit Class dialog boxes enable you to create and edit classes. An example
of the New Class dialog box is shown in the following image.

The New Class dialog box contains the following tabs:

General tab

The General tab has the following options:

Class name

Type the name of your class here.

Inherits behavior from

If this class is based on another class, select that class from the list. The list comprises
all of the classes that are defined in the open import module or procedure, and in any
modules that have been imported into it.

Functions tab

B. Developing Classes and Objects

Maintain Data Language Reference 213

The Functions tab includes the following options:

Member Functions

Lists the names of the member functions of a class.

Opens the Member Function dialog box, where you can define a new function.

Deletes a selected function from the list of functions, or if a function has been overridden,
deletes the override.

Moves a selected function up in the list of functions.

Moves a selected function down in the list of functions.

Variables tab

The Variables tab includes the following options:

Member Variables: (Name/Type)

Lists the class member variables, including those that it has inherited.

Opens the Member Variable dialog box, where you can define a new variable.

Deletes a selected variable from the list of variables. You cannot delete variables that are
inherited from another class definition.

Moves a selected variable up in the list of variables.

Moves a selected variable down in the list of variables.

Defining Classes

214 Information Builders

Description tab

The Descriptions tab has the following elements:

Edit box

You can document the class by typing a description of it in this edit box. Maintain Data will
turn your description into a comment in the class definition source code in the procedure
or module.

Reusing Classes: Class Libraries

You can define a class once, but use it in multiple Maintain Data procedures by storing its
definition in a class library. Libraries are a very useful way of reusing source code, enabling you
to develop applications more efficiently.

A class library is implemented as an import module (a kind of non-executable procedure) in
which you can store class definitions, as well as Maintain Data functions. After you have
created a module, you can import it into each Maintain Data procedure in which you want to
use those classes.

After you have created the import module, simply create new class definitions in the module,
or copy existing definitions into the module. You create and edit class definitions in a module
in the same way that you create and edit them in a procedure, as described in Defining Classes
on page 208.

You can nest modules to any depth. For example, if you have two import modules named
ClasLib1 and ClasLib2, you can import ClasLib1 into ClasLib2.

Note: A library cannot contain an explicit Top function, and cannot refer to data sources. For
example, class definitions in a library cannot contain data source commands (such as NEXT
and INCLUDE) and cannot refer to data source stacks.

Syntax: How to Import a Class Library Using the MODULE IMPORT Command

You can use the MODULE command to import libraries containing class definitions so that the
current procedure can use those classes. Libraries can also contain other source code, such
as function definitions. The syntax is

MODULE IMPORT (library_name [, library_name] ...);

B. Developing Classes and Objects

Maintain Data Language Reference 215

where:

library_name

Is the name of the Maintain Data procedure that you wish to import as a source code
library. Specify its file name without an extension. The file must reside in the path defined
by the EDASYNR environment variable.

The MODULE command must immediately follow the MAINTAIN command.

Declaring Objects

After a class definition exists, you can declare objects of that class. This is identical to
declaring simple variables of a built-in data type. You can declare objects using the Class
Editor, or by coding the declaration directly in the Procedure Editor.

Procedure: How to Declare an Object Using the Variable Editor

Prerequisite: When declaring an object (that is, a class instance), the procedure in which you
are declaring it must already include or import the class definition.

To declare an object using the Variable Editor:

1. Select the procedure in which you want the object to be declared.

2. Right-click the procedure, click New in the shortcut menu, and click Variable (Declare) in
the submenu.

or

Click the New variable button on the Application toolbar.

3. In the New Variable dialog box, type a name for your object in the Name field.

4. Open the Type drop-down combo box. If the class of which this object will be an instance:

Is listed in the Type combo box, select it, and skip to step 9.

Is not listed in the Type combo box, and you know its name, enter the name in the
Type combo box and skip to step 9.

Is not listed in the Type combo box, and you wish to select it from a list of all the class

procedures, click the ellipsis button to open the Type Wizard and continue with
step 5.

5. Select User-defined Class from the drop-down list.

6. From the drop-down list select Simple for a single object, or Stack of for a list of objects.

Declaring Objects

216 Information Builders

7. Select a class from the list.

This adds the class to the list of data types in the Type combo box in the New Variable
dialog box, making it available to you when you create additional objects in the future.

8. Click OK to return to the New Variable dialog box.

9. Optionally, click the Description tab and enter a description. This description will be
generated as a comment with the object declaration's source code.

10. Click OK to confirm the object declaration.

11. The Variable Editor created a global object declaration. If you wish to convert this to a local
object declaration, while in the Procedure Editor simply cut the declaration from the $
$Declarations section at the top of the procedure, and paste the declaration to the
desired function.

Note that local declarations must immediately follow the function CASE command,
preceding all the other commands in the function.

Syntax: How to Declare an Object Using the DECLARE Command

You can declare a local or global object in the Procedure Editor using the DECLARE command.
To make the declaration:

Local, code the DECLARE command in the function to which you want it to be local,
following the function CASE command, and preceding all the other commands in the
function.

Global, code the DECLARE command outside of any function. It is recommended that you
use the $$Declarations section at the top of the procedure to make the declaration easier
for you to find.

You can also create global objects using the COMPUTE command. For information about
the COMPUTE command, see COMPUTE on page 72.

To declare an object in the Procedure Editor using the DECLARE command, use this syntax

DECLARE
[(]
objectname/class;
.
.
.
[)]

B. Developing Classes and Objects

Maintain Data Language Reference 217

where:

objectname

Is the name of the object that you are creating. The name is subject to the standard
naming rules of the Maintain Data language.

class

Is the name of the class of which this object will be an instance.

()

Groups a sequence of declarations into a single DECLARE command. The parentheses are
required for groups of local declarations. Otherwise, they are optional.

Declaring Objects

218 Information Builders

AppendixC
MNTCON Commands

This topic is a summary of the MNTCON commands that are available in legacy Maintain.

In this appendix:

MNTCON CDN_FEXINPUT

MNTCON COMPILE

MNTCON EX

MNTCON EXIT_WARNING

MNTCON MATCH_CASE

MNTCON RADIO_BUTTON_EMIT_TEXT

MNTCON REMOTESTYLE

MNTCON RUN

MNTCON CDN_FEXINPUT

By default, you must use a decimal point (.) to indicate a decimal position when writing a value
in a Maintain procedure (for example, a COMPUTE statement), and a comma (,) to demarcate
thousands, regardless of the CDN setting.

To write the value in a procedure using the format matching the CDN setting for a value other
than OFF (for example, ON, QUOTE, QUOTEP, SPACE), use MNTCON CDN_FEXINPUT ON in the
EDASPROF file or user profile, and use double quotation marks (") to delimit the value. You can
use single quotation marks (') or double quotation marks (") when CDN=ON or SPACE. You
must use double quotations marks (") when CDN=QUOTE or QUOTEP.

Example 1:

The following are both correct for all CDN settings by default:

COMPUTE MYVAL/D12.2=1234.56;

COMPUTE MYVAL/D12.2="1,234.56";

Example 2:

Maintain Data Language Reference 219

The following are both correct for SET CDN = QUOTE when the EDASPROF or user profile
contains MNTCON CDN_FEXINPUT ON:

COMPUTE MYVAL/D12.2="1'234,56";

COMPUTE MYVAL/D12.2="1234,56";

Note: This command does not apply to values entered in a form at run time.

This command is outside the Maintain language, but is described in this content for your
convenience.

Syntax: How to Use the MNTCON CDN_FEXINPUT Command

When using a CDN value other than OFF, place the following statement in the server profile file
(edasprof.prf) or user profile:

MNTCON CDN_FEXINPUT {ON|OFF}

where:

ON

Allows you to write values in Maintain procedures in the manner used by the actual CDN
setting, for example:

Using a comma (,) to denote a decimal place when CDN=ON, SPACE, or QUOTE.

Using a single quotation mark (') to demarcate thousands when CDN=QUOTE or
QUOTEP.

Using a space to demarcate thousands when CDN=SPACE.

Follow these rules when writing values using Continental Decimal Notation with MNTCON
CDN_FEXINPUT ON:

You must use single quotation marks (') or double quotation marks (") to delimit values
for ON or SPACE.

You must use double quotation marks (") to delimit values for QUOTE. You must also
use double quotation marks (") to delimit values for QUOTEP if you need to write the
value with single quotation marks (') to separate thousands.

OFF

Requires you to write values in Maintain procedures using a period (.) to denote a decimal
place for all CDN settings. OFF is the default value.

MNTCON CDN_FEXINPUT

220 Information Builders

When demarcating thousands, a comma (,) must be used, and the value must be enclosed
in quotation marks.

MNTCON COMPILE

The MNTCON COMPILE command creates a compiled Maintain procedure which, under
Windows and UNIX, has an extension of .fcm., and under z/OS is allocated to ddname
FOCCOMP.

You can reduce the time needed to start a Maintain procedure that contains forms by
compiling the procedure. The more frequently the Maintain procedure will be run, the more
time you save by compiling it.

This command is outside the Maintain language, but is described in this content for your
convenience.

Syntax: How to Use the MNTCON COMPILE Command

The syntax of the MNTCON COMPILE command is

MNTCON COMPILE [dirname/]procname

where:

dirname

Is the directory name on the Reporting Server where the Maintain procedure is located.
This is optional.

procname

Is the name of a Maintain procedure. First, the MNTCON COMPILE command looks for a
Maintain procedure with a .mnt extension or a MAINTAIN file type or ddname. If it does not
find one, it looks for a Maintain procedure with a .fex extension or a FOCEXEC file type or
ddname.

Reference: Commands Related to MNTCON COMPILE

MNTCON RUN. Executes compiled Maintain procedures.

MNTCON EX. Executes uncompiled Maintain procedures.

MNTCON EX

You use the MNTCON EX command to run an uncompiled Maintain procedure.

C. MNTCON Commands

Maintain Data Language Reference 221

This command is outside the Maintain language, but is described in this content for your
convenience.

Syntax: How to Use the MNTCON EX Command

To run an uncompiled Maintain procedure (with either a .mnt or .fex extension, or a MAINTAIN
or FOCEXEC file type or ddname), use the following syntax

MNTCON EX [dirname/]procname [-v parm1 , ... parmn]

where:

dirname

Is the directory name on the Reporting Server where the Maintain procedure is located.
This is optional.

procname

Is the name of a Maintain procedure. First, the MNTCON EX command looks for a Maintain
procedure with a .mnt extension or a MAINTAIN file type or ddname. If it does not find one,
it looks for a Maintain procedure with a .fex extension or a FOCEXEC file type or ddname.

-v

Is the flag that indicates parameters will be passed to the Maintain procedure. This is
optional.

parm1 ... parmn

Can be either positional parameters or parm="value" keyword parameters. Parameter
types can be mixed within the same MNTCON EX command line. The maximum number of
parameters you can pass is 128. You should separate all parameters using commas (,).
You should use single quotation marks (') or double quotation marks (") to enclose values
containing spaces or commas (,). Use with Sys_mgr functions (Sys_Mgr.Get_NameParm,
Sys.Mgr.Get_InputParams_Count and Sys_Mgr.Get_PositionParm) to retrieve the values. If
any of these functions are unsuccessful, FOCERROR is set to -1.

For more information, see the Developing WebFOCUS Maintain Applications manual, and
SYS_MGR on page 163.

Reference: Commands Related to MNTCON EX

MNTCON COMPILE. Compiles Maintain procedures.

MNTCON RUN. Executes compiled Maintain procedures.

MNTCON EX

222 Information Builders

Invoking Maintain Procedures: Passing Parameters

You can issue MNTCON EX or MNTCON RUN with the flag –v to pass input parameters from the
command line when invoking Maintain applications, in a manner similar to passing parameters
to FOCEXECs. This method bypasses the requirement of importing the webbase2 file and
coding web client variable retrieval. You can use this syntax in a FOCEXEC (.fex) or from within
a backend server edastart –t session.

Positional and key-matching parameters are supported, and you can use both together in the
same Maintain EX or RUN command. Parameters are defined as A0. The maximum number of
parameters you can pass is 128. You may include Dialogue Manager commands in a FOCEXEC
when invoking MNTCON EX or RUN with the –v option.

Syntax: How to Use the MNTCON EX Command to Pass Parameters

MNTCON [EX|RUN] procname –v "parm1value" ... "parmnvalue"

where:

procname

Is the name of a Maintain procedure.

parm1value ... parmnvalue

Can be either positional parameter values in single quotation marks (') or double quotation
marks ("), or a parm="value" key-matching parameter. You can mix positional and key-
matching parameters.

The target Maintain procedure uses Maintain SYS_MGR function subcommands to retrieve the
values.

Sys_mgr.get_positionParm

Sys_mgr.GET_inputparams_count

Sys_mgr.get_nameParm

If any of these SYS_MGR functions is not successful, FOCERROR is set to -1.

For more information on SYS_MGR functions, see SYS_MGR on page 163.

Example: Passing and Retrieving Parameters

MNTCON EX START1 –v abc, '24 Houston Center' , ADDR='Cape Canaveral",
COUNTRY=USA

Target Maintain procedure START1 could include:

C. MNTCON Commands

Maintain Data Language Reference 223

Parm1/a0=sys_mgr.get_positionParm(1);

to get the first positional parameter. Here it returns value abc for Parm1.

Posvar/i2=sys_mgr.GET_inputparams_count();

to return the total number of positional parameters. Here it returns 2 for Posvar.

Address/a0=sys_mgr.get_nameParm('ADDR');

to return value for key-matching parameter ADDR. Here it returns Cape Canaveral for Address.

Note: Sys_mgr.get_nameParm is case-sensitive. Use the same case for the parameter when
retrieving the value as you use when passing it.

For more information on SYS_MGR functions, see SYS_MGR on page 163.

MNTCON EXIT_WARNING

By default, the exit message, This application has been disconnected, appears when a browser
session containing an active Maintain application is closed. To control the display of this exit
warning, use MNTCON EXIT_WARNING.

This command is outside the Maintain language, but is described in this content for your
convenience.

Syntax: How to Use the MNTCON EXIT_WARNING Command

Place the following statement in the server profile file (edasprof.prf) or user profile:

MNTCON EXIT_WARNING {ON|OFF}

where:

ON

Enables the display of the exit message, This application has been disconnected, when an
active Maintain browser is closed. ON is the default value.

OFF

Disables the exit warning that displays when an active Maintain browser is closed.

MNTCON MATCH_CASE

By default, segment names and field names in Master Files must be in uppercase. To enable
mixed-case names, use MNTCON MATCH_CASE ON.

MNTCON EXIT_WARNING

224 Information Builders

Syntax: How to Enable Mixed-Case Naming

The feature to support mixed-case and NLS characters in the Master File is enabled by the
following command in the EDASPROF, user, group, or service profile:

MNTCON MATCH_CASE {ON|OFF}

where:

OFF

Is the default. Segment names and field names in Master Files still must be uppercase,
and Maintain refers to them in mixed-case or lowercase without error.

ON

Means that mixed-case and NLS characters will be respected. Developers must be
consistent in their references to named components in terms of the case used.
Components are:

Case names

Class names

Function names

Object names

Stack names

Variable name

With the feature enabled (MNTCON MATCH_CASE ON in a profile):

Field names COUNTRY, Country, and CounTry all refer to different fields.

Developers must be consistent with casing when referring to classes, functions, objects,
stacks, and variables. For example, CASE MYCASE would need any associated PERFORM
statement to refer to the case name as MYCASE.

IWC. function names must be written exactly as follows:

IWC.putCgiData

IWC.getCgiData

MAINTAIN and END are still required to be in uppercase.

Certain keywords will be automatically translated to uppercase. For example, contains and
CONTAINS will always mean the same thing.

C. MNTCON Commands

Maintain Data Language Reference 225

Note: With the feature off, there should be no issues running previously developed
applications.

With the feature enabled, previously written applications would need to be reviewed, then
updated (to keep the case, class, and other names consistent), and finally redeployed.

MNTCON RADIO_BUTTON_EMIT_TEXT

When using a web link event for a radio button control, the selected item is passed as a text
value. To send FOCINDEX instead of a text value, use MNTCON RADIO_BUTTON_EMIT_TEXT.

This command is outside the Maintain language, but is described in this chapter for your
convenience.

Syntax: How to Send FOCINDEX From a Radio Button Web Link Event

Use the following statement in the server profile file (edasprof.prf) or in individual user profiles:

MNTCON RADIO_BUTTON_EMIT_TEXT {ON|OFF}

where:

ON

Indicates that the text value of the selected item of a radio button will be passed in a web
link event. ON is the default value.

OFF

Indicates that FOCINDEX will be used.

MNTCON REMOTESTYLE

By default, Maintain supports the use of a variable for the server name in CALL AT and EXEC
AT statements. It is possible to disable the variable server name feature by using MNTCON
REMOTESTYLE.

This command is outside the Maintain language, but is described in this content for your
convenience.

Syntax: How to Disable the Variable Server Name Feature

Use the following statement in the server profile file (edasprof.prf) or in individual user profiles:

MNTCON REMOTESTYLE {ON|OFF}

MNTCON RADIO_BUTTON_EMIT_TEXT

226 Information Builders

where:

ON

Allows variables to be used in the AT SERVER syntax for use with the CALL and EXEC
commands. ON is the default value.

OFF

Disables the variable server name feature.

MNTCON RUN

You use the MNTCON RUN command to run a Maintain procedure that has been compiled.

This command is outside the Maintain language, but is described in this content for your
convenience.

Syntax: How to Use the MNTCON RUN Command

To run a Maintain procedure that has been compiled (with either a .fcm extension or a
FOCCOMP file type or ddname), use the following syntax

MNTCON RUN [dirname/]procname [-v parm1 , ... parmn]

where:

dirname

Is the directory name on the Reporting Server where the Maintain procedure is located.
This is optional.

procname

Is the name of a Maintain procedure.

-v

Is the flag that indicates parameters will be passed to the Maintain procedure. This is
optional.

parm1 ... parmn

Can be either positional parameters or parm="value" keyword parameters. Parameter
types can be mixed within the same MNTCON RUN command line. The maximum number
of parameters you can pass is 128. You should separate all parameters using commas (,).
You should use single quotation marks (') or double quotation marks (") to enclose values
containing spaces or commas (,). Use with Sys_mgr functions (Sys_Mgr.Get_NameParm,
Sys.Mgr.Get_InputParams_Count and Sys_Mgr.Get_PositionParm) to retrieve the values. If
any of these functions are unsuccessful, FOCERROR is set to -1.

C. MNTCON Commands

Maintain Data Language Reference 227

For more information, see the Developing WebFOCUS Maintain Applications manual, and
SYS_MGR on page 163.

Reference: Commands Related to MNTCON RUN

MNTCON COMPILE. Executes compiled Maintain procedures.

MNTCON EX. Executes uncompiled Maintain procedures.

For information on passing parameters with MNTCON RUN, see Invoking Maintain Procedures:
Passing Parameters on page 223.

Syntax: How to Use the MNTCON RUN Command to Pass Parameters

MNTCON [EX|RUN] procname –v "parm1value" ... "parmnvalue"

where:

parm1value ... parmnvalue

Can be either positional parameter values in single quotation marks (') or double quotation
marks ("), or a parm="value" key-matching parameter. You can mix positional and key-
matching parameters.

The target Maintain procedure uses Maintain SYS_MGR function subcommands to retrieve the
values.

Sys_mgr.get_positionParm

Sys_mgr.GET_inputparams_count

Sys_mgr.get_nameParm

If any of these SYS_MGR functions is not successful, FOCERROR is set to -1.

For more information on SYS_MGR functions, see SYS_MGR on page 163.

Example: Passing and Retrieving Parameters

MNTCON RUN START1 –v NASA, '24 Houston Center', ADDR='Cape Canaveral',
COUNTRY=USA

Maintain procedure START1 could include:

Parm1/a0=sys_mgr.get_positionParm(1);

to get the first positional parameter. Here it returns value NASA for Parm1.

Parm1/a0=sys_mgr.get_positionParm(3);

MNTCON RUN

228 Information Builders

Here FOCERROR is set to -1, as there were only two positional parameters passed.

Posvar/i2=sys_mgr.GET_inputparams_count();

to return the total number of positional parameters. Here it returns 2 for Posvar.

Address/a0=sys_mgr.get_nameParm('ADDR');

to return value for key-matching parameter ADDR. Here it returns Cape Canaveral for Address.

Note: Sys_mgr.get_nameParm is case-sensitive. Use the same case for the parameter when
retrieving the value as you use when passing it.

For more information on SYS_MGR functions, see SYS_MGR on page 163.

C. MNTCON Commands

Maintain Data Language Reference 229

MNTCON RUN

230 Information Builders

Index

- subtraction operator [* a] 27

-* comment delimiter 22

* multiplication operator 27

** exponentiation operator 27

*$ comment delimiter 22

/ division operator 27

\\ character in character expressions 45, 46

\\n character in character expressions 45

+ operator 27

| and || characters in character expressions 45

$* comment delimiter 22

$$ comment delimiter 22

A

A0 data type 47, 48

A0 variables 64

passing between procedures 64, 101, 118

addition in date expressions 37, 38

addition operator 27

ALL keyword 72

in COMPUTE command 72

in COPY command 78

in DECLARE command 82

in DELETE command 85

in INCLUDE command 113

in NEXT command 125

in REPEAT command 145

in REVISE command 153

ALL keyword 72

in UPDATE command 175

alphanumeric expressions 44

backslash (\\) character 45, 46

concatenating strings 45

escape character 45

evaluating 45

alphanumeric format (MODIFY)

passing A0 variables to procedures 101, 118

alphanumeric format

variable length 47, 48

AND keyword 118

in MAINTAIN command 118

in NEXT command 125

AND logical operator 49, 50

applications

controlling environment 163

debugging 105

assigning values to variables (Maintain) 57

AT keyword 64, 101

in CALL command 64

in EXEC command 101

AUTOCOMMIT command 197, 198

B

backslash (\\) character in character expressions

46

BEGIN command (Maintain) 62

nested BEGIN blocks 63

Maintain Data Language Reference 231

Boolean expressions 49

broadcast commit 187

C

CALL command 63, 64, 120

MAINTAIN command and 120

canceling commands (Maintain) 22

CASE command 67

PERFORM command and 69

case sensitivity 16

cases (Maintain) 67

calling using COMPUTE 76

return values 70

Top function 71

cases in functions 206

CDN (Continental Decimal Notation) 32

setting in a Maintain procedure 166

change verification strategies 197

for DB2 data sources 197, 201, 202

for FOCUS data sources 191

character expressions 44

\\ character 45, 46

\\n character 45

| and || characters 45

backslash (\\) character 45, 46

concatenating strings 45

double quotation marks 45

escape character 45

evaluating 45

single quotation marks 45

character format 47, 48

variable length 47, 48

character strings 45, 46

Class Editor 208, 213

Description tab 208

Functions tab 208

classes 205, 206

defining 205, 208–211

deleting 208, 212

DESCRIBE command and 208, 211

editing 208, 212

inheritance 208

libraries 123, 215

member functions 206

member variables 206

renaming 208, 212

subclasses and superclasses 208, 210, 211

CLEAR keyword 160

in STACK CLEAR command 160

CLOSE keyword in WINFORM command 178

CLOSE_ALL keyword in WINFORM command 178

columns in stacks with virtual fields 76

command types 21

multi-line 21

commands 21

canceling 22

comment delimiters 22

dollar sign asterisk 22

double dollar sign 22

Index

232 Information Builders

comments 22

Maintain procedures 20, 22

COMMIT command 183

DB2 data sources 197, 198

defining a logical transaction 183

COMMIT parameter 190

communication configuration files 196, 197

for WebFOCUS Servers 196, 197

COMPILE command (Maintain) 221

COMPUTE command (Maintain) 72

creating user-defined fields 76

IF command and 112

concurrent processing 188, 191

conditional actions (Maintain) 59

conditional expressions 51

COMPUTE commands 112

configuration files for WebFOCUS Servers 196,

197

communication configuration files 196, 197

EDACSG 196, 197

odin.cfg 196, 197

CONTAINS logical operator 50

in NEXT WHERE phrase 128

Continental Decimal Notation (CDN) 32

COPY command 78

CURRENT keyword in COPY command 78

D

DATA keyword 72

in COMPUTE command 72

DATA keyword 72

in DECLARE command 82

data source stacks 17, 116

copying rows 77

libraries and 124

naming 17

navigating 132

position 152

updating 153, 174

virtual fields 76

data sources

command failure 184

FOCUS Database Server 191

logical transactions 181

position within logical transactions 185

reading with report procedures 192

sharing 188

data types 206

classes 205, 208, 209, 211

matching in function parameters 69

date and time expressions 32

date expressions 32

addition and subtraction in 37, 38

components 36

constants in 35

evaluating 34

extracting 35

formats 33, 35

manipulating in date format 35

operand format 36

Index

Maintain Data Language Reference 233

date-time data types 38, 40, 41

assigning 41

comparing 41

describing 38

functions 42

ISO standards 43

missing values and 41

date-time formats 38

date-time values 38

assigning 38

DATEDISPLAY parameter 166

DB2 data sources 197

change verification 197, 201, 202

data adapter differences 197, 198

transaction processing 197, 199, 201, 202

DBMS_ERRORCODE command 164

DECLARE command 82, 216, 217

DEFCENT parameter 166

DEFINE attribute

in Master File 76

DELETE command 85

deleting data 85

deploying applications 196

DESCRIBE command 208, 211

Description tab

in Class Editor 208

DFC keyword 72

in COMPUTE command 72

in DECLARE command 82

DFC parameter 166

directory paths 45, 46

DIV operator 27, 28

division operator 27

dollar sign asterisk comment delimiter 22

double dollar sign comment delimiter 22

DROP keyword 64, 101

in CALL command 64

in EXEC command 101

DROP TABLE command from Maintain 165

duplicate names 17

E

EDACSG ddname 196, 197

EDASPROF global server profile 194

FOCUS Database Server 194

Edit Class dialog box 208, 213

ELSE keyword 51, 109, 111

in conditional expressions 51

in IF command 109

EMGSRV parameter 166

END command 101

END keyword in GOTO command 185

END keyword

in GOTO command 107

ENDBEGIN keyword 62

ENDCASE 67, 107

command 67

keyword in GOTO command 107

ENDREPEAT 107, 145

command 145

Index

234 Information Builders

ENDREPEAT 107, 145

keyword in GOTO command 107

ENGINE command 164, 165

environment variables 196, 197

HOME 196, 197

EQ logical operator 50

in NEXT WHERE phrase 128

EQ_MASK logical operator in NEXT WHERE phrase

128

error messages 105, 164

displaying 105

retrieving from DBMSs 164

escape characters 45, 46

in character expressions 45

EX command 221

EXCEEDS logical operator 128

in NEXT WHERE phrase 128

EXEC command 101

EXIT keyword in GOTO command 107

EXIT_WARNING command (Maintain) 224

EXITREPEAT keyword in GOTO command 107

exponentiation operator 27

expressions 25

Boolean 49

character 44

conditional 51, 112

date and time 32

default values 52

limits in Maintain 25–27

logical 48

expressions 25

null values 52

numeric 27

relational 49

external procedures 196

deployment considerations 196

reporting 196

extracting substrings 45

F

FALSE value for logical expressions 48, 50

FDS (FOCUS Database Server) 190

change verification 191

deployment considerations 196

identifying 194

report procedures 195, 196

SET PATHCHECK 193

transaction processing 192

FETCH SQL command equivalent (Maintain) 124

fields (Maintain)

naming 17

null values 52, 180

FILE keyword

in MAINTAIN command 118

FILES keyword in MAINTAIN command 118

flow of control (Maintain) 63

CALL command 63

CASE command 67

GOTO command 106

IF command 109

Index

Maintain Data Language Reference 235

flow of control (Maintain) 63

looping 145

ON MATCH command 139

ON NEXT command 140

ON NOMATCH command 141

ON NONEXT command 142

PERFORM command (Maintain) 143

REPEAT command 145

FOCCOMP ddname/file type 221

FocCount variable 103

FocCurrent variable 103, 188

change verify protocol 191

with COMMIT command 71

FocError variable 104

FocErrorRow variable 104

FocFetch variable 104

FocIndex variable 104

FocMsg 105

FocMsg stack 105

FOCSET command 166

FOCUS data sources 190, 194

change verification 192

concurrent transactions 190

FOCUS Database Server 191

SET COMMIT 190, 191

SET PATHCHECK parameter 193

sharing access 191

transaction processing 190, 193

FOCUS Database Server (FDS) 190

change verification 192

FOCUS Database Server (FDS) 190

deployment considerations 196

identifying 194

report procedures 195

SET PATHCHECK 193

transaction processing 191

FOR keyword 78

in COPY command 78

in DELETE command 85

in INCLUDE command 113

in NEXT command 125, 128

in REVISE command 153

in UPDATE command 175

forms (Maintain)

displaying at run time 178

displaying default values 180

libraries and 124

FROM keyword 64

in CALL command 64

in COPY command 78

in DELETE command 85

in EXEC command 101

in INCLUDE command 113

in MAINTAIN command 118

in MATCH command 121

in REVISE command 153

in UPDATE command 175

functions 206

member 206

Index

236 Information Builders

G

GE logical operator 50

General tab

Class Editor 208

GET keyword in WINFORM command 178

GET_PREMATCH command 170

global variables 84

GOTO command (Maintain) 106, 107

data source commands and 109

ENDCASE command and 109

PERFORM command and 109, 145

GOTO END command 185, 186

GT logical operator 50

H

HIDE keyword in WINFORM command 178

HIGHEST keyword in STACK SORT command 161

HOME environment variable 196, 197

I

IF command (Maintain) 109

keyword in conditional expressions 51

IMPORT keyword in MODULE command 123, 215

import modules

using as class libraries 215

importing modules 123

restrictions 124

IN logical operator in NEXT WHERE phrase 128

INCLUDE command 112, 113

adding data 112

INCLUDE command 112, 113

data source position 115

null values 116

unique segments 113

INFER command 116, 117

creating stacks 116

inheritance 208

INTO keyword 64

in CALL command 64

in COPY command 78

in EXEC command 101

in INFER command 117

in MAINTAIN command 118

in MATCH command 121

in NEXT command 125

IS logical operator in NEXT WHERE phrase 128

IS_NOT logical operator in NEXT WHERE phrase

128

issuing DROP TABLE command 165

K

KEEP keyword 107, 185

in CALL command 64

in EXEC command 101

in GOTO command 107

L

LANGUAGE parameter 166

Language Wizard 55

LE logical operator 50

Index

Maintain Data Language Reference 237

libraries (Maintain)

importing 123

restrictions 124

line feeds in character expressions 45

local variables 84

log files (Maintain) 157

SAY command 157

segment and stack values 158

TYPE command 171

logical expressions 48

Boolean expressions 49

evaluating 50

operators 50

relational expressions 49

logical operators 50

logical transactions 181, 188

broadcast commit 187

concurrent transactions 188, 189

concurrent transactions in FOCUS Database

Server 191

data source position 185

DBMS types 187

defining 183

deployment considerations 196

ending an application 187

failure 184

FocCurrent 188

multiple data source types 187

multiple servers 187

logical transactions 181, 188

open transactions when an application ends

187

processing 181, 182

rolling back 184

spanning procedures 185

success 187

looping in Maintain language 57

loops 147, 148

branching out of 151

ending 151

simple 147

LT logical operator 50

M

MAINTAIN command 118, 119

calling a procedure from another procedure

120

specifying data sources 120

Maintain Data libraries 215

Maintain Data procedures 185, 194

MODIFY 197

sharing data sources with App Studio

Maintain Data 197

transaction integrity 185

Maintain functions 55

calling using COMPUTE 76

calling using PERFORM 143, 144

defining 67

passing parameters 69

Index

238 Information Builders

Maintain functions 55

return values 70

Top 71

Maintain language 15, 55

case sensitivity 16

class libraries 61

commands 22, 55–57

comments 20, 22

conditional actions 59

displaying forms 57

function libraries 61

loops 57

manipulating stacks 57

messages and logs 61

multi-line commands 21

naming rules 16, 17, 19

reading data 58

transferring control 56

variables 57

writing transactions 60

Maintain procedures 20, 22

blank lines 20

calling 101

comments 22

compiling 221

running 56

MATCH command 121–123

NEXT command and 131

REPOSITION command and 152

MATCH keyword in ON MATCH command 139

member functions 206

inheritance 208

member variables 206, 207

inheritance 208

MESSAGE parameter 166

MISSING attribute 52, 180

date-time data type and 41

MISSING constant 52, 53

missing data and INCLUDE command 116

MISSING keyword 72

in COMPUTE command (Maintain) 72

in DECLARE command (Maintain) 82

MNTCON COMPILE command 221

MNTCON EX command 221

MNTCON EXIT_WARNING command 224

MNTCON RADIO_BUTTON_EMIT_TEXT command

226

MNTCON REMOTESTYLE command 226

MNTCON RUN command 227

MOD operator 28, 29

MODIFY applications 197

modular processing 63

MODULE command 215

MODULE IMPORT command 123

modules 124

importing 123

multiplication operator 27

N

names 17

Index

Maintain Data Language Reference 239

naming conventions 19

reserved words 19

native-mode arithmetic 30

NE logical operator 50

in NEXT WHERE phrase 128

NE_MASK logical operator in NEXT WHERE phrase

128

NEEDS keyword 72, 82

in COMPUTE command 72

in DECLARE command 82

nested BEGIN blocks 62, 63

nesting IF commands 111

New Class dialog box 208, 213

NEXT command (Maintain) 124–126

with MATCH command 131

copying data 127

data source navigation 132–134, 136

loading multi-path transaction data 127

reading data 132

REPOSITION command 152

retrieving rows 129

unique segments 139

with multiple rows 128

with path instances 134

NEXT keyword in ON NEXT command 140

NODATA parameter 180

null representation 52

setting in a Maintain procedure 166

NOMATCH keyword in ON NOMATCH command

141

NONEXT keyword in ON NONEXT command 142

NOT logical operator 49, 50

NOT_IN logical operator in NEXT WHERE phrase

128

null values 52, 72, 116, 180

COMPUTE command 72

expressions 52

forms 180

INCLUDE command 116

testing 53

numeric expressions 27

Continental Decimal Notation (CDN) 32

DIV 27, 28

evaluating 30

identical operand formats 30

MOD 28

operand formats 30, 31

operators 27

truncating decimal values 31

O

objects 205, 216

creating 57

declaring 82, 216, 217

Variable Editor 216

odin.cfg file 196, 197

OFF keyword 72, 82

in COMPUTE command 72

in DECLARE command 82

Index

240 Information Builders

OMITS logical operator 50

in NEXT WHERE phrase 128

ON keyword 72, 82, 118, 171

in COMPUTE command 72

in DECLARE command 82

in MAINTAIN command 118

in TYPE command 171

ON MATCH command 139

ON NEXT command 140

ON NOMATCH command 141

ON NONEXT command 142

ON TABLE SET command 159

operand format for dates 36

OR logical operator 49, 50

P

parameters 69

PASS setting 166, 167

PATHCHECK parameter 193

PERFORM command (Maintain) 69, 143

data source commands and 144

GOTO command and 109, 145

nesting 144

performance transaction processing 185

PRE_MATCH setting 170

presentation logic

WINFORM command 178

procedures (Maintain) 22

blank lines 20

calling 101

procedures (Maintain) 22

comments 22

compiling 221

R

RADIO_BUTTON_EMIT_TEXT command (Maintain)

226

records

selecting 121, 124

REFRESH keyword in WINFORM command 178

relational expressions 49

REMOTESTYLE command (Maintain) 226

REPEAT command (Maintain) 145, 148, 151

branching out of loops 151

ending loops 151

establishing counters 149

nested loops 149, 150

simple loops 147

UNTIL 148

WHILE 148

reports

reading transaction data 192

REPOSITION command (Maintain) 152

RESET keyword

in GOTO command 107

in WINFORM command 178

return values for functions 70

RETURNS keyword in CASE command 67

REVISE command 153, 155

Index

Maintain Data Language Reference 241

ROLLBACK command 156, 183, 184

DB2 data sources 197, 198

rounding numeric values 31

RUN command 227

S

SAY command 157, 158

choosing between SAY and TYPE commands

158

SEG prefix with SAY command 158

segments 139

DELETE command 87

INCLUDE command 113

NEXT command 139

REVISE command 153

SELECT SQL command equivalent (Maintain) 124

SET command 158, 159

SET keyword in WINFORM command 178

SET parameters 159, 190

COMMIT in FOCUS data sources 190, 191

NODATA 52, 180

PATHCHECK 193

PREMATCH 170, 171

setting in Maintain procedure with

SYS_MGR.FOCSET 166

with ON TABLE 159

SET PATHCHECK parameter 193

SET_PREMATCH setting 170, 171

SHOW keyword in WINFORM command 178

SHOW_ACTIVE keyword in WINFORM command

178

SHOW_AND_EXIT keyword in WINFORM command

178

SHOW_INACTIVE keyword in WINFORM command

178

SOME keyword 72, 82

in COMPUTE command 72

in DECLARE command 82

SORT keyword in STACK SORT command 161

STACK CLEAR command 160, 161

stack commands

creating 116

STACK CLEAR 160

STACK SORT 161

STACK keyword in COPY command 78

STACK prefix with SAY command 158

STACK SORT command 161, 162

stack variables 57

FocCount 103

FocIndex 104

stacks

copying stack rows 77

creating stacks with INFER 116

clearing 160

creating 116

editing 57, 77

naming 17

non-data source columns 118

rows 161

Index

242 Information Builders

stacks

STACK SORT command 161

virtual fields 76

strong concatenation 45

substrings

extracting 46

subtraction in date expressions 37, 38

subtraction operator 27

SYS_MGR global object 163

SYS_MGR.DBMS_ERRORCODE command 164

SYS_MGR.ENGINE command 164, 165

SYS_MGR.FOCSET command 166

SYS_MGR.GET_PREMATCH command 170

SYS_MGR.PRE_MATCH command 170

SYS_MGR.SET_PREMATCH command 170

system variables (Maintain) 57, 58, 60, 104

FocCurrent 103

FocError 104

FocErrorRow 104

FocFetch 104

T

TAKES keyword in CASE command 67

temporary fields and columns (Maintain)

in data sources 76

text expressions 44

text format 101

passing variables to procedures 101

variable length 47, 48

THEN keyword 51, 109

in conditional expressions 51

in IF command 109

time expressions 32

TO keyword in SAY command 157

Top function 71, 215

libraries and 124

TRACEOFF setting 166

TRACEON setting 166

TRACEUSER setting 166

transaction data sources 127

transaction integrity 181–183, 188, 197

across procedures 185

change verification 192

concurrent transactions 188

deployment considerations 196

FocCurrent 188

multiple servers 187

transaction locking strategies 197, 199, 201

transaction processing 181, 188

broadcast commit 187

change verification 192

collecting values 178

COMMIT command 71

concurrent transactions 191

DELETE command 85

INCLUDE command 112

multiple data source types 187

multiple DBMSs rollback 157

performance 185

Index

Maintain Data Language Reference 243

transaction processing 181, 188

reading multiple-path data sources 127

REVISE command 153

ROLLBACK command 156, 157

UPDATE command 174

USE command 194

transaction variables (Maintain) 58, 60

FocCurrent 103

FocError 104

FocErrorRow 104

FocFetch 104

UPDATE command 177

troubleshooting 105

displaying WebFOCUS Server messages 105

TRUE value for logical expressions 48, 50

TX data type 47, 48

TYPE (Maintain) 172, 173

TYPE command 171

choosing between SAY and TYPE commands

158

embedding spacing information 172, 173

including variables in a message 172

justifying variables 173

multi-line message strings 173

truncating 173

writing information to a file 174

U

UNHIDE keyword in WINFORM command 178

unique segments (Maintain) 139

DELETE command 87

INCLUDE command 113

NEXT command 139

UPDATE 178

UPDATE command 178

UNTIL keyword in REPEAT command 145

UPDATE command (Maintain) 174–176

data source position 178

stacks and 177

transaction variables 177

unique segments 178

updating data sources 153

REVISE command 153

UPDATE command 174

USE command with FOCUS Database Server 194

USER setting 166

V

variable-length character format 64, 101

passing A0 variables to procedures 118

passing variables between procedures 64,

101

variable-length strings 47, 48

variables 72, 206, 216

creating 57

assigning values with COMPUTE 72

declaring 72, 82

defining objects 216, 217

local vs. global 84

Index

244 Information Builders

variables 72, 206, 216

system 57, 58, 60

virtual fields in data sources 76

W

WARNING setting 166

weak concatenation 45

WebFOCUS Servers

changing environment settings 158, 166

communication configuration files 196, 197

configuration directory 196, 197

displaying messages 105

EDACSG 196, 197

edaserve 196, 197

FOCUS Database Server profiles 194

WebFOCUS Servers

logical transactions spanning servers 187

odin.cfg 196, 197

WHERE keyword 78, 128

in COPY command 78

in NEXT command 125, 128

WHILE keyword in REPEAT command 145

WINFORM command 178

wizards 55

Y

YRT keyword 72

in COMPUTE command 72

in DECLARE command 82

YRTHRESH setting 166

Index

Maintain Data Language Reference 245

Index

246 Information Builders

Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

A
pplication Studio

Version 8 Release 1.0

Maintain Data Language Reference
Release 8.2 Version 01

DN4501618.1016

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Information You Should Have
	User Feedback
	Information Builders Consulting and Training

	1. Language Rules Reference
	Case Sensitivity
	Specifying Names
	Reserved Words
	What Can You Include in a Procedure?
	Multi-Line Commands
	Terminating Command Syntax
	Adding Comments

	2. Expressions Reference
	Types of Expressions
	Reference: Usage Notes for Expressions
	Expressions and Variable Formats

	Writing Numeric Expressions
	Reference: Numeric Operators
	Syntax: How to Use DIV: Integer Division
	Example: Using DIV to Perform Integer Division

	Syntax: How to Use MOD: Calculating the Remainder
	Example: Using MOD to Calculate a Remainder

	Order of Evaluation
	Evaluating Numeric Expressions
	Identical Operand Formats
	Example: Identical Operand Formats

	Different Operand Formats
	Continental Decimal Notation

	Writing Date Expressions
	Formats for Date Values
	Evaluating Date Expressions
	Selecting the Format of the Result Variable
	Manipulating Dates in Date Format
	Using a Date Constant in an Expression
	Extracting a Date Component
	Combining Variables With Different Components in an Expression
	Different Operand Date Formats
	Using Addition and Subtraction in a Date Expression
	Example: Using Addition and Subtraction in a Date Expression

	Writing Date-Time Expressions
	Syntax: How to Write Date-Time Expressions
	Example: Using a Date-Time Value in a COMPUTE Command

	Manipulating Date-Time Values Directly
	Comparing and Assigning Date-Time Values
	Example: Testing for Missing Date-Time Values

	Date-Time Subroutines
	Reference: Notes Regarding ISO Standard Date-Time Representations

	Writing Character Expressions
	Concatenating Character Strings
	Evaluating Character Expressions
	Example: Using Quotation Marks in a Character Expression
	Example: Using a Backslash Character (\) in a Character Expression
	Example: Specifying a Path in a Character Expression
	Example: Extracting Substrings and Using Strong and Weak Concatenation

	Variable-Length Character Variables
	Example: Padding and Trailing Spaces in Character Variables

	Writing Logical Expressions
	Relational Expressions
	Boolean Expressions
	Syntax: How to Use Boolean Expressions

	Evaluating Logical Expressions
	Reference: Logical Operators

	Writing Conditional Expressions
	Syntax: How to Use Conditional Expressions

	Handling Null Values in Expressions
	Assigning Null Values: The MISSING Constant
	Syntax: How to Assign Null Values: The MISSING Constant
	Example: Assigning Null Values

	Conversion in Mixed-Format Null Expressions
	Testing Null Values
	Syntax: How to Test Null Values
	Example: Testing Null Values

	3. Command Reference
	Language Summary
	Defining a Procedure
	Defining a Maintain Data Function (a Case)
	Defining Blocks of Code
	Transferring Control
	Executing Procedures
	Using Loops
	Using Forms
	Defining Classes
	Creating Variables
	Assigning Values
	Manipulating Stacks
	Selecting and Reading Records
	Conditional Actions
	Writing Transactions
	Setting Reporting Server Parameters
	Using Libraries of Classes and Functions
	Messages and Logs

	BEGIN
	Syntax: How to Use the BEGIN Command
	Example: BEGIN With ON MATCH
	Example: BEGIN With ON NEXT
	Example: BEGIN With IF
	Example: Nested BEGIN Blocks

	CALL
	Syntax: How to Use the CALL Command
	Example: Calling Procedures to Validate Data
	Example: Calling Procedures to Populate Stacks

	CASE
	Syntax: How to Use the CASE Command
	Reference: Usage Notes for CASE
	Reference: Commands Related to CASE
	Calling a Function: Flow of Control
	Passing Parameters to a Function
	Using the Return Value of a Function
	Using the Top Function

	COMMIT
	Syntax: How to Use the COMMIT Command
	Reference: Usage Notes for COMMIT

	COMPUTE
	Syntax: How to Use the COMPUTE Command
	Example: Moving the COMPUTE Keyword
	Example: Multi-Statement COMPUTE Commands
	Example: Combining Several Statements Into One Line

	Reference: Usage Notes for COMPUTE
	Reference: Commands Related to COMPUTE
	Using COMPUTE to Call Functions
	Using COMPUTE to Dynamically Change the Property of an Object

	COPY
	Syntax: How to Use the COPY Command
	Example: Copying All Rows of a Stack
	Example: Copying a Specified Number of Stack Rows
	Example: Copying the First Row of a Stack
	Example: Copying a Row Into the Current Area
	Example: Copying Rows Based on Selection Criteria
	Example: Appending One Stack to Another

	Reference: Usage Notes for COPY
	Reference: Commands Related to COPY

	DECLARE
	Syntax: How to Use the DECLARE Command
	Reference: Commands Related to DECLARE
	Local and Global Declarations

	DELETE
	Syntax: How to Use the DELETE Command
	Example: Specifying Which Segments to Delete
	Example: Deleting Records Identified in a Stack
	Example: Deleting a Record Identified in a Form

	Reference: Usage Notes for DELETE
	Reference: Commands Related to DELETE

	DESCRIBE
	Syntax: How to Use the DESCRIBE Command
	Example: Data Type Synonyms
	Example: Defining a Class and Creating an Instance

	Class Member Functions
	Reference: Startup Case Considerations
	Reference: Executing Member Functions
	Example: Defining a Class
	Example: Defining a Class With a Startup Case
	Example: Defining and Using a Local Class Instance
	Example: Defining and Using a Global Class Instance

	Defining and Using Superclasses and Subclasses
	Example: Defining a Subclass
	Example: Using a Class as a Component of Another Class
	Reference: Commands Related to DESCRIBE

	END
	Syntax: How to Use the END Command
	Reference: Commands Related to END

	EXEC
	Syntax: How to Use the EXEC Command

	FocCount
	FocCurrent
	FocError
	FocErrorRow
	FocFetch
	FocIndex
	FocMsg
	Example: Cycling Through All the Messages in FocMsg
	Example: Retrieving Messages Posted by an External Procedure

	GOTO
	Syntax: How to Use the GOTO Command
	Reference: Usage Notes for GOTO
	Reference: Commands Related to GOTO
	Using GOTO With Data Source Commands
	GOTO and ENDCASE
	GOTO and PERFORM

	IF
	Syntax: How to Use the IF Command
	Example: Simple Conditional Branching
	Example: Using BEGIN to Execute a Block of Conditional Code
	Example: Nesting IF Commands

	Coding Conditional COMPUTE Commands

	INCLUDE
	Syntax: How to Use the INCLUDE Command
	Example: Adding Data From Multiple Stack Rows
	Example: Preventing Duplicate Records
	Example: Adding Multiple Segments
	Example: Adding Data From the Current Area

	Reference: Usage Notes for INCLUDE
	Reference: Commands Related to INCLUDE
	Data Source Position
	Null Values

	INFER
	Syntax: How to Use the INFER Command
	Example: Inferring Two Stacks

	Reference: Commands Related to INFER
	Defining Non-Data Source Columns

	MAINTAIN
	Syntax: How to Use the MAINTAIN Command
	Reference: Usage Notes for MAINTAIN
	Reference: Commands Related to MAINTAIN
	Specifying Data Sources With the MAINTAIN Command
	Calling a Procedure From Another Procedure
	Example: Passing Variables Between Procedures

	MATCH
	Syntax: How to Use the MATCH Command
	Example: Matching Keys in the Employee Data Source

	Reference: Commands Related to MATCH
	How the MATCH Command Works

	MODULE
	Syntax: How to Use the MODULE Command
	Reference: Commands Related to MODULE
	What You Can and Cannot Include in a Library

	NEXT
	Syntax: How to Use the NEXT Command
	Reference: Usage Notes for NEXT
	Reference: Commands Related to NEXT
	Copying Data Between Data Sources
	Example: Copying Data to the Movies Data Source

	Loading Multi-Path Transaction Data
	Retrieving Multiple Rows: The FOR Phrase
	Using Selection Logic to Retrieve Rows
	Reference: Comparison Operators

	Using NEXT After a MATCH
	Using NEXT for Data Source Navigation: Overview
	Data Source Navigation: Using NEXT With One Segment
	Data Source Navigation: Using NEXT With Multiple Segments
	Data Source Navigation: Using NEXT Following NEXT or MATCH
	Unique Segments

	ON MATCH
	Syntax: How to Use the ON MATCH Command
	Example: Using On MATCH

	ON NEXT
	Syntax: How to Use the ON NEXT Command
	Example: Using ON NEXT

	ON NOMATCH
	Syntax: How to Use the ON NOMATCH Command
	Example: Using ON NOMATCH

	ON NONEXT
	Syntax: How to Use the ON NONEXT Command
	Example: Using ON NONEXT

	PERFORM
	Syntax: How to Use the PERFORM Command
	Reference: Commands Related to PERFORM
	Using PERFORM to Call Maintain Data Functions
	Using PERFORM With Data Source Commands
	Nesting PERFORM Commands
	Avoiding GOTO With PERFORM

	REPEAT
	Syntax: How to Use the REPEAT Command
	Example: Simple Loops
	Example: Specifying Loop Iterations
	Example: Repeating a Loop a Variable Number of Times
	Example: REPEAT WHILE and UNTIL
	Example: Establishing Counters
	Example: Nested REPEAT Loops

	Reference: Usage Notes for REPEAT
	Reference: Commands Related to REPEAT
	Branching Within a Loop
	Example: Terminating the Loop From the Inside

	REPOSITION
	Syntax: How to Use the REPOSITION Command
	Example: Using REPOSITION

	Reference: Commands Related to REPOSITION

	REVISE
	Syntax: How to Use the REVISE Command
	Example: Using REVISE

	Reference: Usage Notes for REVISE
	Reference: Commands Related to REVISE

	ROLLBACK
	Syntax: How to Use the ROLLBACK Command
	Example: Using ROLLBACK

	Reference: Usage Notes for ROLLBACK
	DBMS Combinations

	SAY
	Syntax: How to Use the SAY Command
	Reference: Commands Related to SAY
	Writing Segment and Stack Values
	Choosing Between the SAY and TYPE Commands

	SET
	Syntax: How to Use SET Parameters
	Syntax: How to Use SET Parameters in a Request

	showLayer
	Syntax: How to Use the showLayer Command
	Example: Showing or Hiding a Layer

	STACK CLEAR
	Syntax: How to Use the STACK CLEAR Command
	Example: Using STACK CLEAR

	STACK SORT
	Syntax: How to Use the STACK SORT Command
	Example: Using STACK SORT

	Sorting Data With the Using CASE_INSENSITIVE Parameter
	Syntax: How to Sort Data in a Stack With the Using CASE_INSENSITIVE Parameter

	SYS_MGR
	SYS_MGR.DBMS_ERRORCODE
	Syntax: How to Use SYS_MGR.DBMS_ERRORCODE
	Example: Retrieving an Error Code From a DBMS

	SYS_MGR.ENGINE
	Syntax: How to Use the SYS_MGR.ENGINE Command
	Example: Issuing the DROP TABLE Command
	Example: Setting Connection Attributes for an MS SQL Server
	Example: Inserting a Row Into a Table (MS SQL)

	SYS_MGR.FOCSET
	Syntax: How to Use the SYS_MGR.FOCSET Command
	Example: Setting DEFCENT From a Maintain Procedure
	Example: Setting PASS From a Maintain Procedure
	Example: Setting maintain_warning From a Maintain Procedure

	SYS_MGR.GET_INPUTPARAMS_COUNT
	Syntax: How to Use the SYS_MGR.INPUTPARAMS_COUNT Command
	Example: Retrieving the Number of Positional Parameters Passed to a Maintain Procedure

	SYS_MGR.GET_NAMEPARM
	Syntax: How to Use the SYS_MGR.GET_NAMEPARM Command
	Example: Retrieving the Value for a Keyword Parameter Passed to a Maintain Procedure

	SYS_MGR.GET_POSITIONPARM
	Syntax: How to Use the SYS_MGR.GET_POSITIONPARM Command
	Example: Retrieving the Value of a Positional Parameter Passed to a Maintain Procedure

	SYS_MGR.PRE_MATCH
	Syntax: How to Set PRE_MATCH
	Example: Setting PRE_MATCH Off

	TYPE
	Syntax: How to Use the TYPE Command
	Reference: Commands Related to TYPE
	Including Variables in a Message
	Embedding Horizontal Spacing Information
	Embedding Vertical Spacing Information
	Coding Multi-Line Message Strings
	Justifying Variables and Truncating Spaces
	Writing Information to a File

	UPDATE
	Syntax: How to Use the UPDATE Command
	Example: Using UPDATE

	Reference: Usage Notes for UPDATE
	Reference: Commands Related to UPDATE
	Update and Transaction Variables
	Example: Using Stacks

	Data Source Position
	Unique Segments

	Winform
	Syntax: How to Use the Winform Command
	Reference: Commands Related to Winform
	Displaying Default Values in a Form

	WINFORM SET

	A. Ensuring Transaction Integrity
	Transaction Integrity Overview
	Example: Describing a Transfer of Funds as a Logical Transaction
	Procedure: How to Process a Logical Transaction

	Why Is Transaction Integrity Important?
	Example: Why Transaction Integrity Is Essential to a Bank

	Defining a Transaction
	Example: Defining a Simple Transfer of Funds Transaction
	When Does a Data Source Command Cause a Transaction to Fail?
	Canceling a Transaction
	Transactions and Data Source Position
	How Large Should a Transaction Be?
	Designing Transactions That Span Procedures
	Example: Moving a Transaction Boundary Using GOTO END KEEP

	Designing Transactions That Span Data Source Types
	Designing Transactions in Multi-Server Applications
	When an Application Ends With an Open Transaction

	Evaluating Whether a Transaction Was Successful
	Example: Evaluating the Success of a Transaction

	Concurrent Transaction Processing
	Example: Why Concurrent Access to a Data Source Must Be Managed Carefully

	Ensuring Transaction Integrity for FOCUS Data Sources
	Setting COMMIT
	Syntax: How to Set COMMIT

	Sharing Access to FOCUS Data Sources
	How the FOCUS Database Server and Change Verification Work
	Selecting Which Segments Will Be Verified for Changes
	Syntax: How to Set PATHCHECK

	Identifying the FOCUS Database Server
	Syntax: How to Identify a FOCUS Database Server With USE

	Using Report Procedures and a FOCUS Database Server
	Accessing Report Procedures When Using a FOCUS Database Server
	Procedure: How to Access Maintain Data and App Studio Report Procedures on the Same Server
	Reference: Communications Configuration File Location and Name

	Sharing Data Sources With Legacy MODIFY Applications

	Ensuring Transaction Integrity for DB2 Data Sources
	Reference: How Maintain Data DB2 Logic Differs From Other Information Builders Products
	Using Transaction Locking to Manage DB2 Row Locks
	Procedure: How to Implement Transaction Locking for DB2

	Using Change Verification to Manage DB2 Row Locks
	Procedure: How to Implement Change Verification for DB2

	B. Developing Classes and Objects
	What Are Classes and Objects?
	Example: Comparing Classes and Built-in Data Types
	Class Properties: Member Variables and Member Functions
	Example: Member Variables for a Customer Class
	Example: Member Functions for a Customer Class

	Inheritance: Superclasses and Subclasses

	Defining Classes
	Procedure: How to Define a Class Using the Class Editor
	Procedure: How to Define a Subclass Using the Class Editor
	Syntax: How to Define a Class or Subclass Using the DESCRIBE Command
	Procedure: How to Edit a Class Definition
	Procedure: How to Edit the Class Source Code
	Procedure: How to Rename a Class, Member Variable, or Member Function
	Procedure: How to Delete a Class, Member Variable, or Member Function
	Reference: New Class and Edit Class Dialog Boxes

	Reusing Classes: Class Libraries
	Syntax: How to Import a Class Library Using the MODULE IMPORT Command

	Declaring Objects
	Procedure: How to Declare an Object Using the Variable Editor
	Syntax: How to Declare an Object Using the DECLARE Command

	C. MNTCON Commands
	MNTCON CDN_FEXINPUT
	Syntax: How to Use the MNTCON CDN_FEXINPUT Command

	MNTCON COMPILE
	Syntax: How to Use the MNTCON COMPILE Command
	Reference: Commands Related to MNTCON COMPILE

	MNTCON EX
	Syntax: How to Use the MNTCON EX Command
	Reference: Commands Related to MNTCON EX
	Invoking Maintain Procedures: Passing Parameters
	Syntax: How to Use the MNTCON EX Command to Pass Parameters
	Example: Passing and Retrieving Parameters

	MNTCON EXIT_WARNING
	Syntax: How to Use the MNTCON EXIT_WARNING Command

	MNTCON MATCH_CASE
	Syntax: How to Enable Mixed-Case Naming

	MNTCON RADIO_BUTTON_EMIT_TEXT
	Syntax: How to Send FOCINDEX From a Radio Button Web Link Event

	MNTCON REMOTESTYLE
	Syntax: How to Disable the Variable Server Name Feature

	MNTCON RUN
	Syntax: How to Use the MNTCON RUN Command
	Reference: Commands Related to MNTCON RUN
	Syntax: How to Use the MNTCON RUN Command to Pass Parameters
	Example: Passing and Retrieving Parameters

	Index
	Feedback

