
Business Intelligence Portal
Version 8.0.02

Hyperstage for PostgreSQL Reference Guide
WebFOCUS Reporting Server Release 8.2 DataMigrator Server
Release 7 Version 7.07

December 15, 2017

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2016, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

Preface . 7

Documentation Conventions .8

Related Publications . 9

Customer Support . 9

Information You Should Have .9

User Feedback . 10

Information Builders Consulting and Training . 11

1. About WebFOCUS Hyperstage . 13

Hyperstage Overview . 13

Hyperstage and PostgreSQL .13

2. Installing and Configuring the Hyperstage Database .15

Technical Requirements . 15

Installing Hyperstage .16

Configuring the Hyperstage (PG) Adapter . 19

Configuring Hyperstage .22

Configuration Tips and Examples. .23

3. Using the Hyperstage Database Beyond WebFOCUS . 25

Starting and Stopping the Hyperstage Server Under Windows . 25

Working With the Hyperstage Server .27

Checking the Hyperstage Version . 27

Quick Copy For Hyperstage Using Extended Bulk Load Utility .29

About Log Files .30

About Errors . 31

About SQL Command Syntax . 31

About SQL ISO Standards .32

4. Managing Hyperstage Tables .33

About the Hyperstage Database Files . 33

About Supported Data Types . 34

Creating and Dropping Tables . 35

Modifying Table Structures .36

About Column Options . 37

Hyperstage for PostgreSQL Reference Guide 3

LOOKUP Columns. 37

Optimizing Columns for INSERTs. 38

Unsupported Column Options. .39

Unsupported Indices Options. 39

Converting Oracle DDL to Hyperstage .39

Converting SQL Server to Hyperstage .40

Converting PostgreSQL to Hyperstage . 40

Viewing Compression Ratio Statistics . 41

Comparison of Calculated Compression Ratio to Physical Size. 42

5. Data Manipulation Statements . 43

Design of DML in Hyperstage .43

INSERT . 43

Inserting a Query Result in a PostgreSQL Table. 44

UPDATE . 45

DELETE . 45

6. Character Set Support . 47

Supported Character Sets . 47

Collations and Comparisons . 48

Padding . 49

7. Importing and Exporting Data in Hyperstage . 51

About Importing and Exporting Data . 51

Distributed Load Processor (DLP). 51

INSERT. 52

COPY FROM. .52

Hyperstage COPY FROM Syntax .52

Usage Examples. 52

Data Format (Mandatory). .54

Hyperstage Loader Reject File . 54

Importing Files With Invalid Values . 56

Hyperstage COPY TO Syntax . 57

Usage Examples. 57

Single-character Delimiter .59

Contents

4 Information Builders

About Transactions . 59

About Transaction Behavior. 59

Failure Handling. 60

About Export Differences in Hyperstage .60

Escape Characters. 60

Exporting NULL Values. .60

Hyperstage Binary Format .60

Exporting and Importing Query Results .64

8. Running Queries in Hyperstage .67

About the Knowledge Grid . 67

About Knowledge Node. 67

Running Queries .68

Viewing Queries Redirected to the PostgreSQL Engine. .68

Preventing Queries From Redirecting to the PostgreSQL Engine. .69

Terminating a Query. 69

Creating VIEWs in Hyperstage . 69

Create VIEW Syntax. 69

SELECT Syntax Supported in Hyperstage .70

SELECT Syntax. 70

JOIN Syntax. 70

Union Syntax. 70

Subqueries. 70

Query Performance . 71

9. Hyperstage Backup and Recovery . 73

Backup Procedure . 73

Restore Procedure .73

A. Functions and Operators .75

Hyperstage Optimizer Supported Functions and Operators .75

Comparison Functions and Operators. 75

Control Flow Functions. .75

String Functions. 75

Numeric Functions. 76

Contents

Hyperstage for PostgreSQL Reference Guide 5

Date and Time Functions. .77

Text Search and Other Functions. 78

Group By Aggregate Functions. 78

B. Hyperstage Data Tools .81

Hyperstage Consistency Manager .81

Hyperstage Consistency Manager Tests. .81

About Rebuilding or Repairing Knowledge Nodes. 84

About Cleanup Procedures. 85

Hyperstage MySQL to PostgreSQL Migrator (“External Migrator”) . 85

MySQL to PostgreSQL Data Type Mappings . 86

Limitations and Notes .87

Working With the ibtop Tool . 87

Command Options. 87

Running ibtop. 89

Collecting Database Process CPU/Memory Utilization From the Operating System. 90

Collecting Hyperstage Statistics. .91

Summary of Information Collected by ibtop. 91

Format of JSON Output. 96

Create Hyperstage Table Syntax for CSV Output. .100

Using the External Migrator . 102

Contents

6 Information Builders

Preface

This document describes how to set up and use WebFOCUS Hyperstage directly, beyond the
scope of a typical WebFOCUS installation.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 About WebFOCUS Hyperstage Introduces WebFOCUS Hyperstage, a column-
oriented, high performance analytic engine designed
for analytic applications.

2 Installing and Configuring the
Hyperstage Database

Describes the Hyperstage technical requirements,
and explains the installation and configuration
steps.

3 Using the Hyperstage
Database Beyond WebFOCUS

Describes how to work with Hyperstage, check its
version, and use Hyperstage to improve ETL
performance.

4 Managing Hyperstage Tables Describes the Hyperstage tables.

5 Data Manipulation
Statements

Describes the statements supported by Hyperstage.

6 Character Set Support Describes how character sets are supported by the
Hyperstage analytic engine.

7 Importing and Exporting Data
in Hyperstage

Describes how to import and export data using the
Hyperstage analytic engine.

8 Running Queries in
Hyperstage

Describes how to run queries in Hyperstage.

9 Hyperstage Backup and
Recovery

Describes how to backup and restore the
Hyperstage databases.

A Functions and Operators Describes the functions and operators supported by
Hyperstage.

B Hyperstage Data Tools Describes the data tools used by Hyperstage.

Hyperstage for PostgreSQL Reference Guide 7

Documentation Conventions

The following table describes the documentation conventions that are used in this manual.

Convention Description

THIS TYPEFACE

or

this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value
that you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference,
or an important term. It may also indicate a button, menu
item, or dialog box option that you can click or select.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices. Type one of them, not the
braces.

[] Indicates a group of optional parameters. None are
required, but you may select one of them. Type only the
parameter in the brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one
of them, not the symbol.

... Indicates that you can enter a parameter multiple times.
Type only the parameter, not the ellipsis (...).

.

.

.

Indicates that there are (or could be) intervening or
additional commands.

Documentation Conventions

8 Information Builders

Related Publications

Visit our Technical Content Library at http://documentation.informationbuilders.com. You can
also contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
www.informationbuilders.com also provides usage techniques, diagnostic tips, and answers to
frequently asked questions.

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities. Please be ready to provide your
six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have

To help our consultants answer your questions effectively, be prepared to provide the following
information when you call:

Your six-digit site code (xxxx.xx).

Your WebFOCUS configuration:

The front-end software you are using, including vendor and release.

The communications protocol (for example, TCP/IP or HLLAPI), including vendor and
release.

Preface

Hyperstage for PostgreSQL Reference Guide 9

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com

The software release.

Your server version and release. You can find this information using the Version option
in the Web Console.

The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

The Master File and Access File.

The exact nature of the problem:

Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

Provide the error message and return code, if applicable.

Is this related to any other problem?

Has the procedure or query ever worked in its present form? Has it been changed recently?
How often does the problem occur?

What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

Is this problem reproducible? If so, how?

Have you tried to reproduce your problem in the simplest form possible? For example, if you
are having problems joining two data sources, have you tried executing a query containing
just the code to access the data source?

Do you have a trace file?

How is the problem affecting your business? Is it halting development or production? Do
you just have questions about functionality or documentation?

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. You can contact us through our website
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

User Feedback

10 Information Builders

http://documentation.informationbuilders.com/connections.asp

Information Builders Consulting and Training

Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

Preface

Hyperstage for PostgreSQL Reference Guide 11

http://education.informationbuilders.com

Information Builders Consulting and Training

12 Information Builders

Chapter1
About WebFOCUS Hyperstage

Thank you for choosing to install WebFOCUS Hyperstage. Hyperstage is a column-
oriented, high performance analytic engine designed for analytic applications and data
marts that need fast query response across large data volumes. Hyperstage was
designed specifically for large volume data analytics applications with up to 50 Terabytes
of data.

In this chapter:

Hyperstage Overview

Hyperstage and PostgreSQL

Hyperstage Overview

Hyperstage uses a unique and patent-pending approach to compressing, storing, and
processing data that allows it to be installed and run on commodity hardware with little or no
DBA intervention. Hyperstage requires little tuning to support ad hoc or complex business
analytic queries.

Hyperstage is a database engine utilizing the PostgreSQL database environment. As such,
Hyperstage is fully compatible with all PostgreSQL-compliant Business Intelligence tools and
utilizes the PostgreSQL administrative interface to reduce the learning curve for system
administrators.

Hyperstage provides a versatile, highly-compressed database system optimized for analytic-
type queries. The ratio of possible compression and the speed of data import and retrieval are
optimized at the expense of some transactional features of the engine performance, like the
frequent data updating.

Hyperstage executes complex or ad hoc queries across vast amounts of data with a low cost
of ownership.

Hyperstage and PostgreSQL

Hyperstage combines the Hyperstage storage engine with PostgreSQL server implementation.
Hyperstage consists of several layers. The upper layers are provided by the PostgreSQL server
implementation, and the lower layers are provided by Hyperstage.

Hyperstage for PostgreSQL Reference Guide 13

Hyperstage includes both its own optimizer and executor along with the storage engine. The
PostgreSQL query engine can be used with Hyperstage. However, since the PostgreSQL
storage engine interface is row oriented, it cannot take full advantage of the column orientation
or the Knowledge Grid and hence query execution through this path is reduced. Queries will be
directed to the Hyperstage optimizer whenever possible.

Hyperstage ships with the full PostgreSQL binaries required. PostgreSQL is used to store
catalog information (as with other storage engines). You can use the PostgreSQL instance for
other purposes, but joining PostgreSQL and Hyperstage tables may result in reduced
performance as the PostgreSQL query engine will be used.

PostgreSQL provides:

Mature connectors, tools and resources.

Interconnectivity and certification with BI tools.

Management services and utilities.

Hyperstage provides:

Load function that compresses data.

Column-oriented storage engine.

Knowledge Grid metadata layer that contains information about the compressed data.

Optimizer/executor that uses the Knowledge Grid.

Hyperstage and PostgreSQL

14 Information Builders

Chapter2 Installing and Configuring the
Hyperstage Database

The following section describes the installation and configuration steps for Hyperstage.

In this chapter:

Technical Requirements

Installing Hyperstage

Configuring the Hyperstage (PG) Adapter

Configuring Hyperstage

Technical Requirements

Before installing Hyperstage, review the following technical requirements.

Hyperstage Technical Requirements

Platforms Windows Server 2008 and 2012

Red Hat Enterprise Linux 6.x and 7.x

CentOS 6.x and 7.x

Debian 6

Novell SUSE Linux Enterprise 11

Processor Architecture Intel 64-bit

AMD 64-bit

For Personal Evaluation and Application Development

CPU Speed 1.8GHz minimum, 2.0GHz or faster dual core or quad
core recommended

Memory 4GB minimum, 8GB recommended

For Multi-User Evaluation or Production Deployment

Hyperstage for PostgreSQL Reference Guide 15

Hyperstage Technical Requirements

CPU Speed 2.0GHz minimum, 8 cores minimum

Memory 16GB minimum, 32GB recommended

Installing Hyperstage

Hyperstage is packaged as part of the Hyperstage version of the Reporting Server installation.
This version installs the WebFOCUS Reporting Server, Hyperstage, and automatically
configures the WebFOCUS Reporting Server for use with Hyperstage.

Note: The type of server you install determines the default names for the program folder and
product directory.

If you install the WebFOCUS Reporting Server Release 8.2, then the default names will
indicate “82”. For example:

c:\ibi\srv82

If you install DataMigrator Server Release 7 Version 7.07, then the default names will
indicate “77”. For example:

c:\ibi\srv77

Procedure: How to Install Hyperstage

Important: Only one instance of Hyperstage can run on a single machine.

1. Download the installation package for Hyperstage for the desired platform.

2. Follow the Reporting Server installation instructions in the Server Installation manual.

3. By default, Hyperstage data directories (ib_data and pg_data) will be installed under the ibi
\HyperstagePG directory.

Installing Hyperstage

16 Information Builders

In order to customize the location of the Hyperstage data directories, select the Customize
default directory locations check box in the Select the Program Folder and Standard
Location Prompt dialog box, as shown in the following image.

2. Installing and Configuring the Hyperstage Database

Hyperstage for PostgreSQL Reference Guide 17

4. Enter the desired Hyperstage directory location, as shown in the following image.

Installing Hyperstage

18 Information Builders

5. By default, the HTTP Listener Port on the Configure Basic Server Information dialog box is
8121, as shown in the following image.

The port for Hyperstage will automatically configure to three port numbers higher than the
HTTP Listener Port (for example, 8124).

Configuring the Hyperstage (PG) Adapter

When installing the Hyperstage version of the WebFOCUS Reporting Server, the Hyperstage
(PG) adapter will automatically be configured. If the WebFOCUS Reporting Server and
Hyperstage version of the Reporting Server exist on different boxes, then the Hyperstage (PG)
adapter needs to be manually configured on the WebFOCUS Reporting Server pointing to the
Hyperstage port.

2. Installing and Configuring the Hyperstage Database

Hyperstage for PostgreSQL Reference Guide 19

Procedure: How to Configure the Hyperstage (PG) Adapter

1. Launch the Web Console and click the Adapters tab.

2. Expand Available and then expand the SQL folder.

3. Right-click Hyperstage (PG) and click Configure, as shown in the following image.

The Add Hyperstage (PG) Configuration window opens.

Note: It is a good practice to copy the entire hs directory structure below the home
directory of the Hyperstage version of the Reporting Server to a location where the
WebFOCUS Reporting Server exists.

It is very common that the WebFOCUS Reporting Server and the Hyperstage version of the
Reporting Server would exist on different machines. For example, you can copy \ibi\home
\hs from Machine #1 to \ibi\HyperstagePG on Machine #2.

This will create the entire hs directory structure from the Hyperstage version of the
Reporting Server under the \ibi\HyperstagePG directory where the WebFOCUS Reporting
Server exists.

It is a good practice to keep the version of the Hyperstage Reporting Server and the
WebFOCUS Reporting Server in sync. An upgrade of the Hyperstage Reporting Server might
contain adapter changes that the WebFOCUS Reporting Server would require. If the
WebFOCUS Reporting Server is upgraded for reasons not related to Hyperstage, the
Hyperstage Reporting Server should also be upgraded to keep the adapter in sync with the
Hyperstage version.

Configuring the Hyperstage (PG) Adapter

20 Information Builders

4. Complete the following fields:

In the Connection Name box, type a name for the connection.

In the URL box, type the URL to the Hyperstage port and database, for example,
jdbc:postgresql://hsserver:28124/webfocus.

In the Driver Name box, type org.postgresql.Driver.

In the IBI_CLASSPATH box, add the location of the JDBC Jar file.

Note: The PostgreSQL jar files exist in the home\hs\java directory of the Hyperstage
version of the Reporting Server, for example, \ibi\srv77\home06HSstandalone\hs
\java. These could be copied to a location on the machine where the WebFOCUS
Reporting Server resides, for example, C:\ibi\SQLJDBC\postgresql-9.2-1003.jdbc3.jar
and C:\ibi\SQLJDBC\postgresql-9.2-1003.jdbc4.jar.

In the Home Directory box, enter the location of the home directory for Hyperstage
(PG).

Note: The location is the home\hs directory of the Hyperstage version of the Reporting
Server, for example, D:\ibi\srv77\home06HSstandalone\hs.

In the Tools Directory box, type the location of the tools directory for Hyperstage (PG).

Note: The location is the home\hs\bin directory of the Hyperstage version of the
Reporting Server, for example, D:\ibi\srv77\home06HSstandalone\hs\bin.

Type the User and Password for the PostgreSQL database. By default, the credentials
are srvadmin/srvadmin.

2. Installing and Configuring the Hyperstage Database

Hyperstage for PostgreSQL Reference Guide 21

The following image shows the window with all of the fields completed.

5. Click Configure.

Configuring Hyperstage

The Hyperstage configuration file is called infobright.cnf and is located in the ib_data
subdirectory within the Hyperstage Data installation directory for example, C:\ibi\HyperstagePG
\ib_data.The configuration file is a text file containing the Hyperstage configuration
parameters.

Each parameter is shown on a separate line.

If a parameter is not present in the configuration file or if the configuration file does not exist,
the default values are used. Blank lines and comments (lines starting with #) are ignored.

Configuring Hyperstage

22 Information Builders

Be sure to customize the following parameters to optimize performance. These tuning
parameters are case sensitive and must be typed as shown in the following table.

Note: The values are commented out (preceded by #) in the infobright.cnf file, which causes
them to default to the application minimum allowed values of 600 and 320 for
ServerMainHeapSize and LoaderMainHeapSize, respectively.

Hyperstage Configuration Parameters

Parameter Name Description

LicenseFile Specifies the path or name of the newly required
License file.

LogLevel Controls how much information is written to logs. This
is similar to the obsolete ControlMessages parameter.

LogRotateSize Specifies how large the log file can be before it is
rotated and archived.

LogRotateFiles Specifies how many log archive files are kept.

KNFolder Specifies the folder where Knowledge Grid is stored.

CacheFolder Specifies the folder where temporary objects are
stored.

ServerMainHeapSize Specifies the size (in MB) of the main memory heap.

ThrottleLimit Controls how many SELECT queries can run
concurrently.

Configuration Tips and Examples

Important: You must properly configure your memory settings to ensure optimal performance.

The following table shows sample, recommended memory configurations for different systems.

System Memory Server Main Heap Size Loader Main Heap Size

64GB 48000 800

2. Installing and Configuring the Hyperstage Database

Hyperstage for PostgreSQL Reference Guide 23

System Memory Server Main Heap Size Loader Main Heap Size

48GB 32000 800

32GB 24000 800

16GB 10000 800

8GB 4000 800

4GB 1300 400

2GB 600 320

In most cases, the loader does not benefit from larger memory settings. However, increasing
the LoaderMainHeapSize can help when:

A table to be loaded has very long text values.

or

The table has many columns (for example, 1000 columns).

You can use more memory at import if you are planning to execute several concurrent load
tasks to different data tables. However, disk access may become a bottleneck.

ServerMainHeapSize should be as large as possible, but safely smaller than the amount of
physical memory on the machine. If performance decreases because of memory swapping by
the operating system, try to set lower heap sizes. We also recommend decreasing the heap
size if many users are running queries in parallel.

Note: Hyperstage may use additional memory for heavy loads or queries. Also, other
applications on your server will use memory for their processes. It is important that the total of
ServerMainHeapSize is less than the total available physical memory. If the system needs to
swap memory, performance will be severely impacted.

Configuring Hyperstage

24 Information Builders

Chapter3 Using the Hyperstage Database Beyond
WebFOCUS

The following section describes how to work with the Hyperstage server.

In this chapter:

Starting and Stopping the Hyperstage Server Under Windows

Working With the Hyperstage Server

Checking the Hyperstage Version

Quick Copy For Hyperstage Using Extended Bulk Load Utility

About Log Files

About Errors

About SQL Command Syntax

About SQL ISO Standards

Starting and Stopping the Hyperstage Server Under Windows

The Hyperstage Server starts and stops automatically when starting and stopping the
Hyperstage version of the Reporting Server.

Hyperstage for PostgreSQL Reference Guide 25

To manually stop the Hyperstage Server, from the Workspace tab, expand the Select Special
Services and Listeners section of the Reporting Server Web Console, right-click the HYPER
service and click Stop, as shown in the following image.

Starting and Stopping the Hyperstage Server Under Windows

26 Information Builders

To manually start the Hyperstage server, from the Workspace tab, expand the Select Special
Services and Listeners section of the Reporting Server Web Console, right-click the HYPER
service and select Start, as shown in the following image.

Working With the Hyperstage Server

You can use the tools provided with PostgreSQL, such as the psql client program, with the
Hyperstage server. For more information, see the PostgreSQL 9.2 Documentation.

Note: The PostgreSQL 9.2 Documentation is referenced throughout this manual. You can
access the content from the following link: http://www.postgresql.org/docs/9.2/static/
index.html

You can also use GUI tools, such as the pgAdmin Workbench, to query Hyperstage databases
in a more graphical manner.

Checking the Hyperstage Version

You can use the following SQL to check the version of the Hyperstage system.

Windows:

3. Using the Hyperstage Database Beyond WebFOCUS

Hyperstage for PostgreSQL Reference Guide 27

http://www.postgresql.org/docs/9.2/static/index.html
http://www.postgresql.org/docs/9.2/static/index.html

select version();

Checking the Hyperstage Version

28 Information Builders

Linux:

show variables like 'IBEEngineRevision';

Quick Copy For Hyperstage Using Extended Bulk Load Utility

Note: Hyperstage only supports DataMigrator, Quick Copy, and Custom Copy as ETL tools.

The Quick Copy tool allows for the copying of all data from a Source table into Hyperstage. The
Bulk Load option should be selected in order for data to be loaded quickly. If the Bulk Load
option is cleared, the data will take much longer to load.

The Custom Copy tool allows for the copying of selected columns, presorting data within
selected columns, and filtering of columns from a Source table into Hyperstage.

The DataMigrator tool is a comprehensive ETL tool. ETL flows can be created to copy data from
various sources, transform the data, and load the data into targets.

To access the Quick Copy tool, right-click the name of the synonym corresponding to the table
or data you wish to copy into Hyperstage, and select Quick Copy.

3. Using the Hyperstage Database Beyond WebFOCUS

Hyperstage for PostgreSQL Reference Guide 29

The following configuration setting options are available:

Load Option

New/Replace. Recreate the target table before loading the data.

Append to Existing. Data is loaded to an existing table.

Adapter

The list of adapters currently configured on the Reporting Server. The Hyperstage adapter
must be configured with at least one connection in order to appear in the drop-down menu.

Connection

The Hyperstage connection used for the load operation.

Synonym Application

The target application on the Reporting Server where the target synonym will be stored.

Synonym

The name of the target synonym defining the Target Table Name.

Table Name

The name of the Hyperstage table where the data will be loaded.

Bulk Load

When selected, data will be loaded using the Hyperstage Bulk Load functionality. Bulk
Load is the recommended approach for loading data into Hyperstage.

When cleared, data will be loaded using Insert/Update. Insert/Update is not recommended
and will perform extremely slow.

About Log Files

Hyperstage uses the PostgreSQL server logs and also creates several new logs. For more
information about PostgreSQL logs, see the PostgreSQL 9.2 Documentation.

Hyperstage Log Files

Error log Errors starting, stopping, and running the Hyperstage
server. To generate this log, add the following lines to
my.cnf:

log-error=<filename>
log-output=FILE

About Log Files

30 Information Builders

Hyperstage Log Files

General query log Connection and statement information received from
clients.

Hyperstage log Server start and stop information. Also contains missing
configuration settings.

It is possible to turn on the display of diagnostic information. By default, this information is
redirected to the Hyperstage console, unless an error log is specified (see table above). To
turn on diagnostic messages you have to modify your infobright.cnf configuration file (see
Configuring Hyperstage on page 22) and set parameter ControlMessages to 1 (log actions), 2
(to add a time stamp to each message), or 3 (to add memory and CPU resource information).

Note: In general, more detail in the log may have an impact on performance, so it is
recommended that users find and use the setting that strikes the best balance in terms of
performance versus log details.

About Errors

Hyperstage reports the same errors as the standard PostgreSQL server. For more information,
see PostgreSQL Error Codes in the PostgreSQL 9.2 Documentation. There are a few additional
errors specific to Hyperstage import and export commands.

About SQL Command Syntax

The syntax for Hyperstage SQL commands is exactly the same as the syntax for PostgreSQL
commands. For more information, see the PostgreSQL 9.2 Documentation.

There are special considerations when using the following commands with Hyperstage. All
other SQL commands can be used with Hyperstage as they are with the standard PostgreSQL.

Using PostgreSQL Commands With Hyperstage

CREATE TABLE, DROP TABLE Creating and Dropping Tables on page 35.

SHOW TABLE STATUS, SHOW FULL
COLUMNS

Viewing Compression Ratio Statistics on page 41.

INSERT, UPDATE, DELETE Data Manipulation Statements on page 43.

3. Using the Hyperstage Database Beyond WebFOCUS

Hyperstage for PostgreSQL Reference Guide 31

Using PostgreSQL Commands With Hyperstage

LOAD DATA INFILE Importing and Exporting Data in Hyperstage on page
51.

SELECT Running Queries in Hyperstage on page 67.

VIEW Creating VIEWs in Hyperstage on page 69.

About SQL ISO Standards

As mentioned in the previous section, Hyperstage uses the same syntax as the standard
PostgreSQL commands. For information about the compliance of the PostgreSQL language with
ISO SQL standards, see the PostgreSQL 9.2 Documentation.

Hyperstage is approaching full ISO SQL compliance. However, certain sections of the ISO SQL
standard are open to interpretation and each DBMS, including Hyperstage, may implement
these sections slightly differently. Consequently, Hyperstage query results may differ from
those of other databases. For example, the SQL standard does not define a default collation
for string comparisons, which affects the ordering of query results.

About SQL ISO Standards

32 Information Builders

Chapter4
Managing Hyperstage Tables

The following section describes how to work with the Hyperstage tables and lists the
data types supported.

In this chapter:

About the Hyperstage Database Files

About Supported Data Types

Creating and Dropping Tables

Modifying Table Structures

About Column Options

Converting Oracle DDL to Hyperstage

Converting SQL Server to Hyperstage

Converting PostgreSQL to Hyperstage

Viewing Compression Ratio Statistics

About the Hyperstage Database Files

Hyperstage tables are located in the ib_data subdirectory in your Hyperstage installation
directory. Within the ib_data subdirectory, Hyperstage databases are stored in separate
subdirectories.

Important: Do not manually copy a data table from one database to another by copying the
database files. Internal table numbering errors and Knowledge Grid inconsistencies may occur.
To copy a table, use import and export commands (see Importing and Exporting Data in
Hyperstage on page 51) or backup the entire database directory (see Hyperstage Backup and
Recovery on page 73).

Hyperstage for PostgreSQL Reference Guide 33

The following path and image shows the content of the ib_data directory, containing the
Hyperstage databases webfocus and utf8test, as well as the BH_RSI_Repository directory,
which holds the Knowledge Notes:

D:\dbms\Hyperstage\ib_data>dir
08/15/2014 05:11 PM <DIR> BH_RSI_Repository
08/18/2014 12:56 PM <DIR> utf8test
06/10/2014 03:16 PM <DIR> webfocus

About Supported Data Types

The following data types are supported in Hyperstage. Note that numeric data types ranges are
1 less than the PostgreSQL minimums and maximums.

Numeric Types

BOOLEAN Values are either 0 or 1.

SMALLINT -32767 32767

INT (INTEGER) -2147483647 2147483647

BIGINT -9223372036854775807 -9223372036854775807

REAL -3.402823466E+38 3.402823466E+38

DOUBLE PRECISION -1.7976931348623157E
+308

1.7976931348623157E
+308

Numeric(M, D)

where:

0 < M <= 18 and 0 <= D
<= M

-(1E+M - 1) / (1E+D) (1E+M - 1) / (1E+D)

Date and Time Types

DATE 100-01-01 9999-12-31 YYYY-mm-dd

Time (without
timezone)

00:00:00 24:00:00 HH:MM:SS

About Supported Data Types

34 Information Builders

Date and Time Types

TIMESTAMP
(without
timezone)

100-01-01
00:00:00

9999-12-31 23:59:59 YYYY-mm-dd HH:MM:SS

TIME0053TAM
P (with
timezone)

1970-01-01
00:00:00 in UTC

2038-01-01 00:59:59
in UTC

Interval -178000000
years

178000000 years

String Type

BYTEA (binary string) 0 < N <= 65536

CHAR(N) Fixed-length. Maximum length depends on
character set (encoding). 0 < N * B <=
65536 where B is the maximum number of
bytes for a single character.

VARCHAR(N) Maximum length depends on character set
(encoding). 0 < N * B <= 65536, where B is
the maximum number of bytes for a single
character. For example, for UTF-8 it is 4
bytes, so the maximum number of
characters that can be stored in a
(VAR)CHAR column is 65536 / 4 = 16384

Creating and Dropping Tables

Use the standard PostgreSQL commands to create and drop tables in Hyperstage, the same
as you would with a PostgreSQL table. For detailed syntax information, see the PostgreSQL 9.2
Documentation.

4. Managing Hyperstage Tables

Hyperstage for PostgreSQL Reference Guide 35

Important: Do not manually copy a data table from one database to another by copying the
database files. Internal table numbering errors and Knowledge Grid inconsistencies may occur.
To copy a table from one database to another, export from the source database and then
import into the target database (see Importing and Exporting Data in Hyperstage on page 51)
or back up the entire database directory (see Hyperstage Backup and Recovery on page 73).
You can rename the entire database by renaming the folder. However, you should not copy a
database folder from one active instance to another, or within the same active instance.

To create a table, enter the following command:

psql> create table <table_name> (<column(s)>) with (ENGINE=INFOBRIGHT);

Note:

'with (ENGINE=INFOBRIGHT)' syntax is necessary when creating tables manually, to specify
that the table will be stored as part of the Hyperstage-specific Infobright engine. Without
this syntax, the table will be created and stored as a regular PostgreSQL table.

When creating a table, as a matter of practice, you should always use the ENGINE= option
to ensure that the correct database engine is used. Hyperstage is shipped with DEFAULT
ENGINE=INFOBRIGHT, but this can be changed. The name of the engine can be specified
explicitly at the end of the create table statement.

To drop a table, enter the following command:

psql> drop table table_name;

For information on supported and unsupported options when creating columns, see About
Column Options on page 37.

Modifying Table Structures

Hyperstage supports common ALTER TABLE commands to add columns to existing tables and
modify table structures, the same as you would with a PostgreSQL table. For detailed syntax
information, see the PostgreSQL 9.2 Documentation.

To add a column to an existing table, enter the following command:

psql> ALTER TABLE table_name ADD [COLUMN] col_name col_definition;

To add multiple columns at once, enter the following command:

psql> ALTER TABLE table_name ADD [COLUMN] col1_name col1_definition,
ADD [COLUMN] col2_name col2_definition;

To remove the most recently added column from an existing table, enter the following
command:

Modifying Table Structures

36 Information Builders

psql> ALTER TABLE table_name DROP [COLUMN] col_name;

Note: Hyperstage only supports DROP of the last added column for the purposes of undo
capability. Any column DROP will be supported in a future release.

To rename an existing table, enter the following command:

psql> ALTER TABLE tbl_name RENAME [TO] new_tbl_name;

About Column Options

Hyperstage supports NULL and NOT NULL specifications for columns.

NULL allows NULL values for the column.

NOT NULL replaces the imported NULL values with default values such as 0 (zero) for
numeric columns and an empty string ('') for string columns.

LOOKUP Columns

Hyperstage provides an additional modifier for string data type columns, called a LOOKUP
column. The LOOKUP column uses an integer substitution for values. You can declare a
LOOKUP column on a CHAR or VARCHAR column to increase its compression and performance
in queries. However, to use a LOOKUP column, the CHAR or VARCHAR column should meet the
following criteria:

There is no fixed upper limit for unique values in the column (cardinality), but the cardinality
of the column should be low. The total size of a dictionary, being the total length of all
distinct values, will be loaded into RAM (for example, 1 million distinct values that are each
100-characters wide will permanently occupy 100 MB of RAM).

The column must contain a large number of duplicate values: the ratio of total number of
records to distinct values should be greater than 10.

Typically, a LOOKUP column is useful for fields like state, gender, category, and similar fields
where the number of instances is very high, but the number of unique values is very low. To
determine the ratio of records to distinct values, determine the number of distinct values using
SELECT COUNT (DISTINCT <COLUMN>) FROM… Then, compare this to the number of records
using a SELECT COUNT(<COLUMN>) FROM…

Note: Using a LOOKUP on a column where there are more than 10,000 distinct values will
result in greatly reduced load speeds.

To declare a column as a LOOKUP column, use the following example syntax when creating a
table:

4. Managing Hyperstage Tables

Hyperstage for PostgreSQL Reference Guide 37

CREATE TABLE (a VARCHAR(200), b VARCHAR(200) LOOKUP=TRUE, c INTEGER) with
(engine=infobright);

In this example, a LOOKUP attribute is associated with columns a and b, but column c is a
standard integer column.

Note:

You can only declare a column as a LOOKUP modifier at the time the table is created.
Modifying the column using ALTER TABLE to add or remove the LOOKUP modifier is not
supported.

In certain releases of Hyperstage, LOOKUP columns were called DIMENSION columns.
Columns previously defined as DIMENSION columns will now be associated with LOOKUP
columns.

For backwards compatibility, LOOKUP columns can now be defined by either using the new
syntax lookup=true, or the previous syntax dimension=true.

Issuing a \d <table name> command will display whether the lookup modifier has been
used for any column in the table.

Optimizing Columns for INSERTs

Hyperstage provides an additional modifier for columns to help optimize for INSERT operations,
called a for_insert column. The for_insert modifier ensures that the most recent data pack is
left uncompressed allowing for faster INSERTs in the case of a large number of single INSERTs
with AUTOCOMMIT enabled, or small frequent LOADs (< 10000 rows each) with AUTOCOMMIT
enabled.

If you are expecting a large number of individual INSERTs or small frequent LOADs with
AUTOCOMMIT enabled, you should consider setting the for_insert modifier on character
columns and large numeric columns (for example, 64-bit random identifiers or partNo). Small
numeric columns (for example, color number or region ID) can be decompressed and
recompressed with ease, and are unlikely to gain performance benefit from the for_insert
modifier. For columns marked as lookup, the for_insert modifier may give very little benefit
only. For smaller machines, you may wish to leave the for_insert modifier off in order to
maximize compression for disk space.

Note: Currently, you can only set the for_insert modifier at the time of table creation. Modifying
the column using ALTER TABLE to add or remove the for_insert modifier will be supported in a
future release.

To declare a column as a for_insert column, add the comment 'for_insert' on the column. Enter
the following command:

About Column Options

38 Information Builders

psql> create table …
(…
<<column name>> <<column type>> … comment 'for_insert' …
…)
engine=infobright;

Issuing a SHOW CREATE TABLE command will display if the 'for_insert' modifier has been used
for each column.

Unsupported Column Options

The following column options are ignored by Hyperstage:

Default values.

References to other tables.

Unsupported Indices Options

Hyperstage uses Knowledge Grid technology instead of standard indices and does not support
explicit indices. The following elements of CREATE TABLE syntax related to indices are not
allowed:

Keys

Indices

Unique columns

Auto-increment columns

Converting Oracle DDL to Hyperstage

If you have an existing Oracle schema definition, you should perform the following steps to
make it work on Hyperstage:

Convert MEDIUMTEXT to VARCHAR (N), where N is only as large as necessary.

Convert LONGTEXT to VARCHAR (N), where N is only as large as necessary.

Convert DOUBLE(A,B) to DECIMAL(A,B).

INTEGER types may be converted to BIGINT.

Convert VARCHAR2/CHAR2 to VARCHAR/CHAR.

4. Managing Hyperstage Tables

Hyperstage for PostgreSQL Reference Guide 39

Note: These steps are for converting DDL manually without having to use WebFOCUS
Quickcopy or iWay software to migrate data.

Converting SQL Server to Hyperstage

If you have an existing SQL Server schema definition, you should perform the following steps to
make it work on Hyperstage:

Convert MEDIUMTEXT to VARCHAR (N), where N is only as large as necessary.

Convert LONGTEXT to VARCHAR (N), where N is only as large as necessary.

Convert DOUBLE(A,B) to DECIMAL(A,B).

Convert MONEY to DECIMAL(18,4).

Convert SMALLMONEY to DECIMAL(6,4).

INTEGER types may be converted to BIGINT.

NCHAR/NVARCHAR should be converted to CHAR/VARCHAR.

Convert NUMBER to INTEGER.

Convert NUMBER(A,B) to DECIMAL(A,B).

Note: These steps are for converting DDL manually without having to use WebFOCUS
Quickcopy or iWay software to migrate data.

Converting PostgreSQL to Hyperstage

If you have an existing PostgreSQL schema definition, you should perform the following steps
to ensure compliance with Hyperstage:

Convert MEDIUMTEXT to VARCHAR (N), where N is only as large as necessary.

Convert LONGTEXT to VARCHAR (N), where N is only as large as necessary.

Convert DOUBLE(A,B) to DECIMAL(A,B).

Note: These steps are for converting DDL manually without having to use WebFOCUS
Quickcopy or iWay software to migrate data.

Converting SQL Server to Hyperstage

40 Information Builders

Viewing Compression Ratio Statistics

Hyperstage provides specific statistics on table and column compression. The compression
ratio is calculated in relation to the natural size of uncompressed data in the table or column.
The ratio equal to n means that the compressed data, including statistics and technical
description of a column, is n times smaller than its theoretical natural size.

The following natural sizes (in bytes) are defined for various data types. Note the following:

For all data types, if the column is not declared as NOT NULL, add 1-bit per value for NULL
indicators.

These data sizes take into account the typical format of data display (for example, yyyy-mm-
dd for DATE or decimal point for DEC). The size also counts the bytes that store the actual
text length (VARCHAR).

The natural size of the data type is approximately equal to the binary import/export format.

Data Types and Natural Sizes

CHAR(n), BINARY(n) n*(number of rows)

BIGINT, INT, MEDIUMINT,
SMALLINT, TINYINT, BOOL

(8 or 4 or 3 or 2 or 1 or 1)*(number of rows)

YEAR 4*(number of rows)

DATE 10*(number of rows)

TIME 8*(number of rows)

TIMESTAMP/DATETIME 19*(number of rows)

DEC(x,y) (x+1)*(number of rows)

FLOAT 4*(number of rows)

REAL,DOUBLE 8*(number of rows)

VARCHAR(n), VARBINARY(n) Total number of bytes used. For example, the total length
of all strings, excluding terminating characters +
2*(number of rows).

4. Managing Hyperstage Tables

Hyperstage for PostgreSQL Reference Guide 41

Comparison of Calculated Compression Ratio to Physical Size

The compression ratio calculated above will differ from the compression ratio calculated from
physical sizes of files on disk. The compression ratio based on physical size will be slightly
smaller, due to extra files that are generated containing statistics on the imported data, such
as Knowledge Nodes. Knowledge Nodes are used to optimize query execution and are
discussed further in About the Knowledge Grid on page 67.

Viewing Compression Ratio Statistics

42 Information Builders

Chapter5
Data Manipulation Statements

The following section describes the data manipulation statements that are supported by
Hyperstage.

In this chapter:

Design of DML in Hyperstage

INSERT

UPDATE

DELETE

Design of DML in Hyperstage

Hyperstage has been designed specifically for data warehousing applications, which are
primarily load and read applications. Although Hyperstage supports INSERT, UPDATE, and
DELETE, these constructs are designed for specific use cases.

The PostgreSQL Loader replicates a large bulk INSERT function and is typically used for loading
small volumes of data where the format can vary, and where the higher level of error handling
resilience is beneficial.

UPDATE is utilized for updating slowly changing dimensions. The DELETE function is ideal for
the removal or archiving of older data from tables, and for the correction of invalid loads (the
oops factor).

Hyperstage is not designed for OLTP type applications and its transaction model is limited.
Using Hyperstage for an OLTP solution will result in poor performance, and incremental effort
will be required to enforce referential integrity.

INSERT

Hyperstage supports the INSERT statement. For more information, see the PostgreSQL 9.2
Documentation.

INSERT [LOW_PRIORITY|DELAYED|HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name [(col_name,...)]
 {VALUES|VALUE} ({expr|DEFAULT},...),(...),...

Hyperstage for PostgreSQL Reference Guide 43

Important: To use INSERT in bulk or batch load, you must set AUTOCOMMIT=0 and explicitly
use COMMIT to complete the transaction. If AUTOCOMMIT=1, then each insert will result in the
decompression and recompression of data packs, causing very slow performance. Explicit
commits ensure that compression is only done once.

Inserting a Query Result in a PostgreSQL Table

You can use the INSERT command to insert the result of a Hyperstage query into a
PostgreSQL table. Enter the following command:

Autocommit=0;
insert into <psql_table> (<columns>) select <columns> from
<hyperstage_table> …;
commit;

The following example shows the use of the INSERT command as described above:

psql> drop table if exists temp;
Query OK, 0 rows affected (0.00 sec)
psql> create table temp (sums int);
Query OK, 0 rows affected (0.00 sec)
psql> insert into temp (sums) select sum(i1) from tint;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0
psql> select * from temp;
+-----------+
| sums |
+-----------+
| 87 |
+-----------+
1 row in set (0.00 sec)

The CREATE TABLE statement can be used in combination with a select statement to generate
a series of INSERTs from one table into another. The format is as follows:

CREATE TABLE <table_name> with (ENGINE=INFOBRIGHT) AS (SELECT …);

This will result in the creation and population of a new table based on the SELECT criteria.
There are a few things to look out for:

Although the ENGINE=<engine_name> is optional, if not specified it will default to the
default ENGINE for the database.

Important: It is strongly recommended that you always include the
ENGINE=<engine_name> in the CREATE TABLE statement.

If the SELECT contains functions (for example, CONCAT), the output field attributes will be
based on the defined output of the function. In the case of concat, the field attribute will be
aggregate of the field sizes defined in the concat.

INSERT

44 Information Builders

The target column names, where functions are used, will be the function name unless an
alias is provided:

Concat(a, b) will result in a target column name of Concat(a, b).

Concat(a, b) as c will result in a target column name of c.

UPDATE

Hyperstage supports the UPDATE statement. For more information, see the PostgreSQL 9.2
Documentation.

UPDATE tbl_name SET col_name1={expr1|DEFAULT} [, col_name2={expr2|
DEFAULT}] ...
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

AUTOCOMMIT should also be turned off during large UPDATE operations and the transaction
explicitly committed as described in the INSERT statement section.

UPDATE can be used to maintain slowly changing dimensions, but if there are massive
changes to the dimension, you might consider recreating the dimension with an ETL tool and
simply dropping and reloading the dimension in the warehouse as this will improve
performance.

DELETE

Hyperstage supports the DELETE statement. For more information, see the PostgreSQL 9.2
Documentation.

DELETE FROM tbl_name [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

AUTOCOMMIT is also important for good DELETE performance. DELETE is designed to remove
the older data from a table and free up disk space. It should be used sparingly to randomly
delete data over a large fact table as this may cause a performance impact over time.

Occasionally, data is incorrectly loaded to a fact table. DELETE can be used effectively in this
case to remove the fresh incorrect data and replace it with the corrected data.

5. Data Manipulation Statements

Hyperstage for PostgreSQL Reference Guide 45

DELETE

46 Information Builders

Chapter6
Character Set Support

The following section describes the character sets supported by Hyperstage.

In this chapter:

Supported Character Sets

Collations and Comparisons

Padding

Supported Character Sets

Hyperstage storage supports all ANSI and UTF-8 character sets. This means that Hyperstage
can store and retrieve data encoded in 8-bit and multi-byte character sets.

Important: Queries that evaluate against UTF-8 character data columns will execute with less
performance than an equivalent query against ASCII character data, due to ASCII support of
Character Maps in the Knowledge Grid (see Running Queries in Hyperstage on page 67).
UTF-8 specific Knowledge Grid extensions will be available in an upcoming release.

Hyperstage for PostgreSQL Reference Guide 47

Collations and Comparisons

Hyperstage supports all custom UTF-8 collations supported by PostgreSQL:

utf8_bin

utf8_czech_ci

utf8_danish_ci

utf8_esperanto_ci

utf8_estonian_ci

utf8_general_ci (default)

utf8_hungarian_ci

utf8_icelandic_ci

utf8_latvian_ci

utf8_lithuanian_ci

utf8_persian_ci

utf8_polish_ci

utf8_roman_ci

utf8_romanian_ci

utf8_slovak_ci

utf8_slovenian_ci

utf8_spanish2_ci

utf8_spanish_ci

utf8_swedish_ci

utf8_turkish_ci

utf8_unicode_ci*

*utf8_unicode_ci properly handles both French and German collation, so specific collation
types for these languages are not necessary.

For more information, see the PostgreSQL 9.2 Documentation.

The SQL standard does not define a default collation. Therefore, many DBMS engines have
different default collations and produce different results. As a result, there are several
differences between Hyperstage and other DBMS engines.

For Hyperstage, character data types are case-sensitive. For example, the condition
'toronto'='Toronto' is not true in Hyperstage. Similarly, the condition, LIKE 'Abc%' is not
true for 'abcde'.

The Hyperstage sorting order is A…Z a…z (for example 'Zeta' < 'alfa'), which is the same
sorting order as used by Oracle. The Hyperstage sorting order is different than the default
PostgreSQL sorting order, which mixes lowercase and uppercase. The SQL Server order,
which is aAbB…zZ; and the DB2 order, which is AaBb…Zz.

Collations and Comparisons

48 Information Builders

The Hyperstage sorting order affects ORDER BY results, GROUP BY results (which is the
order of groups and their definitions (for example, 'aaa' and 'AAA' define different groups)
and DISTINCT results. WHERE conditions may also be affected if you are expecting a
different sorting order than the one used by Hyperstage.

To simulate Hyperstage collation in the PostgreSQL engine, set latin1_bin collation while
creating a table (for more information, see the PostgreSQL 9.2 Documentation). Enter the
following command:

psql> create table … collate ascii_bin;

Padding

Hyperstage treats padding differently than other DBMS engines. Hyperstage assumes literal
comparisons of text fields, including all whitespace characters. Therefore, a string containing
two spaces is different than a string containing one space or an empty (0 length) string, which
is also different than the NULL value.

The Hyperstage padding definition is compatible with the SQL standard. However, most DBMS
systems have defined less restricted, customizable rules regarding text comparison. For
example, 'abc ' = 'abc' may be true in some databases, but is not true in Hyperstage.

Note: In CHAR columns, trailing spaces are trimmed on LOAD, INSERT, and UPDATE, whereas
in VARCHAR columns values are loaded with all spaces.

6. Character Set Support

Hyperstage for PostgreSQL Reference Guide 49

Padding

50 Information Builders

Chapter7 Importing and Exporting Data in
Hyperstage

The following section describes how to import data in Hyperstage.

In this chapter:

About Importing and Exporting Data

Hyperstage COPY FROM Syntax

Hyperstage Loader Reject File

Importing Files With Invalid Values

Hyperstage COPY TO Syntax

Single-character Delimiter

About Transactions

About Export Differences in Hyperstage

Hyperstage Binary Format

Exporting and Importing Query Results

About Importing and Exporting Data

Hyperstage provides three ways to import data:

INSERT statement

Distributed Load Processor (DLP)

COPY FROM statement

INSERT is described in Data Manipulation Statements on page 43 and is the slowest load
approach. The DLP is the fastest load method but supports less load syntax.

Distributed Load Processor (DLP)

Fastest loader

Less error handling diagnostics (only the source file row number pertaining to the error is
returned)

Hyperstage for PostgreSQL Reference Guide 51

Strict input file formats (supports delimited text and binary formats)

Variable Data Pack size

Load-time clustering

INSERT

Supported by virtually all ETL tools

Can be very slow depending upon the approach and commit rate

If you are using an ETL tool, using the DLP or COPY TO method with the binary format is most
efficient, although this approach may require more data preparation. For large fact tables,
using the DLP or COPY TO method with either binary or text input is recommended.

COPY FROM

Supports capability similar to the DLP (does not support cluster on load or varying packrow
size in this release)

Primarily used for local instance only

File-based loading

Can work within transactions

Hyperstage COPY FROM Syntax

COPY FROM allows for very fast loading of file data in a single step. This is equivalent to LOAD
DATA INFILE, for those familiar with MySQL. The COPY FROM syntax works in a manner similar
to standard PostgreSQL (COPY FROM). However, there are differences in the options
supported. The examples and table below outline these differences.

Usage Examples

copy tab1 from '/tmp/data' with (format txt_variable, lines_terminated_by
e'\n', delimiter ';')
copy tab1 from '/tmp/data' with (format infobright)
copy tab1 from '/tmp/data' with (format ib_binary)

COPY table_name
 FROM { 'filename' | STDIN }
 [[WITH] (option [, ...])]

Hyperstage COPY FROM Syntax

52 Information Builders

where:

option

Can be one of the following:

format: {'txt_variable' | 'infobright' | 'ib_binary'}

fields-terminated-by

fields-enclosed-by

escaped-by

data-chartset 'encoding_name'

lines_terminated_by

reject-file-path

abort-on-count

abort-on-threshold

input type {'client' | 'server'}

timeout

PARAMETERS

format txt_variable

infobright

ib_binary

txt_variable

delimiter fields-terminated-by only a single one-
byte character

\t

quote fields-enclosed-by only a single one-
byte character

(empty)

escape escaped-by only a single one-
byte character

(empty)

7. Importing and Exporting Data in Hyperstage

Hyperstage for PostgreSQL Reference Guide 53

PARAMETERS

encoding data-chartset only supported
encodings by
Hyperstage

(database
encoding) *4-byte
UTF-8 characters
(CHAR, VARCHAR
types) are replaced
with question
marks (?)

lines_terminated_by lines-terminated-by (empty)

reject_file_path reject-file-path (not specified)

abort_on_count abort-on-count (disabled)

abort_on_threshold abort-on-threshold in range (0,1) (disabled)

pipe_mode input-type client

server

(not used)

timeout timeout 600s

Data Format (Mandatory)

You must set the data format parameter. Possible values are:

@txt_variable, which is readable text

ib_binary, which is a native binary representation, as found in Hyperstage Binary Format on
page 60

infobright, which is created by the DLP

Hyperstage Loader Reject File

By default, the COPY FROM command aborts on the first record that cannot be correctly
parsed. However, in some cases, you may want the load process to continue and then later
review rows that cannot be loaded. You can use the Reject File functionality to accomplish this.

Hyperstage Loader Reject File

54 Information Builders

Reject File is disabled, by default. To enable it, specify reject_file_path. This is the path to a
file that will contain the rejected rows after load. You can set the number of records that can
be rejected prior to the load being aborted and rolled back. To accomplish this, set the
abort_on_count or abort_on_threshold parameter. If only reject_file_path is set, the processor
will fail (terminate) on the first error and the row that was incorrect will be output to the reject
file.

Usage example:

copy from '<path to file with data>' with (format txt_variable, …,
reject_file_path '<path to reject file>', abort_on_count 3)

The above command would fail and the load would be terminated if there were more than three
incorrect rows in the input file. All rejected rows will be added to <path to reject file>.

HYPERSTAGE LOADER REJECT FILE OPTIONS

reject_file_path Path to the file where rejected rows are stored. Rejected rows are placed into the reject
file in the order they are rejected. The original format is preserved to allow the operator to
correct and rerun the load for only the rejected rows.

Note: If reject_file_path is set, abort_on_count or abort_on_threshold must be set, as
well.

abort_on_count Abort and rollback the load if the number of rejected rows exceeds this value. If this value
is not set, the load will be rolled back to the first bad record if the load fails. A value of -1
means never abort. A value of 0 means abort on first rejected row. There is no upper limit
on this value.

Note: abort_on_count and abort_on_threshold are mutually exclusive.

abort_on_threshol
d

Abort and rollback the load if the relative number of rejected rows to total processed rows
exceeds this value (threshold test starts after one packrow row has been processed).
Value must be in the range (0,1). This is an open interval.

For example: set @ abort_on_threshold=0.01 / 0.5 / 0.99 means that 1% / 50% / 99%
of all processed lines corrupted will terminate the Hyperstage Loader and save the
problematic rows in the reject file.

Note: abort_on_count and abort_on_threshold are mutually exclusive.

7. Importing and Exporting Data in Hyperstage

Hyperstage for PostgreSQL Reference Guide 55

Importing Files With Invalid Values

Hyperstage may abort a load when invalid values are found. Certain invalid values, however,
can be loaded in Hyperstage. The following rules are used with invalid data:

If a numeric value is invalid, the value is replaced by 0.

If a TIME, DATE, or TIMESTAMP is invalid, the value is replaced with a minimum value for
the given data type.

If a NULL value is imported into a column defined as NOT NULL (except for TIMESTAMP
columns), it is replaced by 0 (for numerical, date, and time columns) or by an empty string
(for string columns).

OPTIONS FOR DIFFERENT FORMATS

oids As in
PostgreSQL

Not supported Not supported Not supported

null As in
PostgreSQL

Not supported Not supported Not supported

header As in
PostgreSQL

Not supported Not supported Not supported

force_quote As in
PostgreSQL

Not supported Not supported Not supported

force_not_null As in
PostgreSQL

Not supported Not supported Not supported

delimiter As in
PostgreSQL

Supported Not supported Not supported

quote As in
PostgreSQL

Supported Not supported Not supported

escape As in
PostgreSQL

Supported Not supported Not supported

encoding As in
PostgreSQL

Supported Not supported Not supported

Importing Files With Invalid Values

56 Information Builders

OPTIONS FOR DIFFERENT FORMATS

lines_terminated_by Not
supported

Supported Not supported Not supported

reject_file_path Not
supported

Supported Not supported Not supported

abort_on_count Not
supported

Supported Not supported Not supported

abort_on_threshold Not
supported

Supported Not supported Not supported

pipe_mode Not
supported

Supported Supported Supported

timeout Not
supported

Supported Supported Supported

Hyperstage COPY TO Syntax

COPY TO can be used for export Hyperstage table data to a file. It allows for fast exporting of
data from a select statement. This is equivalent to SELECT INTO OUTFILE in MySQL.

The COPY TO syntax works in a manner similar to PostgreSQL (COPY TO), but supports a
different set of options. The examples and table below outline these differences.

Usage Examples

copy (select ...) to '/tmp/data' with (format csv, delimiter ';')
copy (select ...) to '/tmp/data' with (format txt_variable,
lines_terminated_by e'\n', delimiter ';')
copy (select ...) to '/tmp/data' with (format ib_binary)

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | PROGRAM 'command' | STDOUT }
 [[WITH] (option [, ...])]

7. Importing and Exporting Data in Hyperstage

Hyperstage for PostgreSQL Reference Guide 57

where:

option

Can be one of the following:

format: {'txt_variable' | 'infobright' | 'ib_binary'}

fields-terminated-by

fields-enclosed-by

escaped-by

data-chartset 'encoding_name'

lines_terminated_by

reject-file-path

abort-on-count

abort-on-threshold

input type {'client' | 'server'}

timeout

For Hyperstage (ENGINE=INFOBRIGHT) tables, the following formats are supported:

Hyperstage formats: txt_variable, ib_binary

PostgreSQL formats: text, csv, binary

OPTIONS FOR DIFFERENT FORMATS

oids As in PostgreSQL Not supported Not supported

null As in PostgreSQL Supported Not supported

header As in PostgreSQL Not supported Not supported

force_quote As in PostgreSQL Not supported Not supported

force_not_null As in PostgreSQL Not supported Not supported

delimiter As in PostgreSQL Supported Not supported

Hyperstage COPY TO Syntax

58 Information Builders

OPTIONS FOR DIFFERENT FORMATS

quote As in PostgreSQL Supported Not supported

escape As in PostgreSQL Supported Not supported

encoding As in PostgreSQL Supported Not supported

lines_terminated_by Not supported Supported Not supported

reject_file_path Not supported Not supported Not supported

abort_on_count Not supported Not supported Not supported

abort_on_threshold Not supported Not supported Not supported

pipe_mode Not supported Supported Supported

timeout Not supported Not supported Not supported

Single-character Delimiter

Hyperstage for PostgreSQL support single-character delimiters only.

About Transactions

About Transaction Behavior

While a write operation is being performed on a table, the following occurs:

Queries to the table are executed against the state of the database before the write
operation began. Once the current LOAD or INSERT/UPDATE/DELETE is complete and the
operation is committed, then subsequent queries execute against the new state of the
database.

Until the current write operation is committed, all subsequent write commands to the table
are queued. They will wait for the write lock to be released before proceeding in the order
they were received.

While a read query is being executed on a table, the following occurs:

All subsequent queries run concurrently with the current query.

A subsequent LOAD or INSERT/UPDATE/DELETE will run concurrently with the current
queries. Further write operations with queue (as described above).

7. Importing and Exporting Data in Hyperstage

Hyperstage for PostgreSQL Reference Guide 59

In general, Hyperstage uses table-level locking where only one write operation (INSERT,
UPDATE, DELETE, or LOAD) can execute at one time.

Failure Handling

If the Hyperstage server (ibengine) is terminated during an export operation to a disk file, the
following occurs:

A non-empty file is saved on disk. However, the last row in the saved file is inconsistent.

The database files are not harmed by the failed export operation. To export data, repeat the
export operation.

If Hyperstage tries to import data from a file created during a failed export session, the
following occurs:

No data is inserted because the input file consists of corrupted table rows. No new records
are added to the database files, so no harm is done.

About Export Differences in Hyperstage

There are several important differences between exporting data from Hyperstage and exporting
data from other DBMS engines.

Escape Characters

The Hyperstage and PostgreSQL Loaders support escape character definition and usage.

Exporting NULL Values

Hyperstage recognizes the following representations of NULL values when loading data from a
text file:

NULL, \N, <field delimiter><field delimiter>

However, by default, Hyperstage only exports NULL values in the following representation:

\N

This can be modified using the null modifier in the COPY TO command.

Hyperstage Binary Format

With Hyperstage binary format load, individual rows are not separated by any special
characters. There are also no value delimiters or qualifiers.

About Export Differences in Hyperstage

60 Information Builders

The structure of binary data files is as follows:

Data is stored contiguously: <row_size><nulls><data_col_1>...<data_col_n> and then the next
data rows, without any line separator.

<row_size> 2-byte short integer indicating total number of bytes in this row
(including all header bytes),

<nulls> Binary map of null values, every byte reflecting to eight consecutive
columns. Bit 0 means a normal value, bit 1 means null value. The
length of <nulls> section is floor((number_of_columns+7)/8). For
example, minimal number of bytes to cover the number of columns
(one bit per column).

<data_col_1> Data itself, depending on column type.

Floating point values are stored here as 8-byte values.

Most numerical values (for example, integers, dates) are stored
as 4-byte integers.

Fixed size texts (for example, CHAR(n)) are stored on the fixed
number of n bytes.

Other text types (for example, VARCHAR(n)) have their length
stored on the first two bytes, followed by the text.

For example, we have two floating point columns. In this case, the binary file will look like the
following:

11, 0, 0, a1, a2, a3, a4, a5, a6, a7, a8, b1, b2, b3, b4, b5, b6, b7, b8

where:

(11, 0)

Is the 2-byte (HEX) representation of the record length after the first 0. The second 0 is
null map (no nulls in this case).

(a1a2a3a4a5a6a7a8)

Is an 8-byte representation of the first double.

(b1b2b3b4b5b6b7b8)

Is an 8-byte representation of the second double. If the file contained 1000 rows, it will
have a length of 19000 bytes.

7. Importing and Exporting Data in Hyperstage

Hyperstage for PostgreSQL Reference Guide 61

The following schema illustrates the format of one row in the BINARY format.

Hyperstage Binary Format

62 Information Builders

Every row starts with L (2-byte integer) that specifies number of following bytes of data. Null
indicators are an array of bits (one bit per each column). 1 on m-th bit means that the m-th
value in the row is NULL.

The number of columns in a record determines the numbers of bytes in NULL indicators. For
example, for a record that contains from one to eight column indicator bits are stored on one
byte. If a record contains from nine to 16 columns, two bytes are used, and so on.

NULL indicators array is followed by N values, where N is a number of columns in a row.

Formats and Lengths in Bytes for Particular Data Types

SMALLINT 2

INTEGER 4

BIGINT 8

REAL IEEE 4-byte Float 4

DOUBLE PRECISION IEEE 8-byte Double 8

NUMERIC (N,M) (Actual value) * 10^M

TIME [sign] [h] hh:mm:ss 8-10

7. Importing and Exporting Data in Hyperstage

Hyperstage for PostgreSQL Reference Guide 63

Formats and Lengths in Bytes for Particular Data Types

DATE 4-byte integer

yyyymmdd

where:

yyyy

Is the year (1900).

4

TIMESTAMP yyyy-mm-dd hh:mm:ss 19

CHAR (N) N characters N

VARCHAR (N) 2-byte integer of value
L followed by L
characters

2+L

BYTEA (N) 2-byte integer of value
L followed by L bytes

2+L

Note that CHAR is constant sized, whereas VARCHAR occupies only the size needed for the
actual value. Integer and floating-point data are stored as a natural binary representation of
these values (little endian).

Exporting and Importing Query Results

After exporting the results of a query to an output file, you may not be able to import the file
back into the same definition of the accessed table. This is because the query may contain
aggregates that will produce values beyond the boundaries of the original data types. In order
to load the output file, you may need to create a new table with the appropriate data types for
the values to be imported.

The following table shows the required data type conversions when using the binary format.

Data Type Conversions (Binary Format)

SUM Smallint
Int
Bigint

BigInt

Exporting and Importing Query Results

64 Information Builders

Data Type Conversions (Binary Format)

SUM Float
Double

Double

SUM Numeric(N,M) Decimal(18, M)

AVG Smallint
Int
BigInt
Double
Numeric(N,M)

Double

COUNT Smallint
Int
BigInt
Double
Numeric(N,M)

BigInt

7. Importing and Exporting Data in Hyperstage

Hyperstage for PostgreSQL Reference Guide 65

Exporting and Importing Query Results

66 Information Builders

Chapter8
Running Queries in Hyperstage

The following section describes how to run queries and create VIEWs in Hyperstage.

In this chapter:

About the Knowledge Grid

Running Queries

Creating VIEWs in Hyperstage

SELECT Syntax Supported in Hyperstage

Query Performance

About the Knowledge Grid

The Knowledge Grid is a set of Hyperstage metadata used by the Hyperstage storage engine
(named Infobright) to optimize query execution. The Knowledge Grid consists of Knowledge
Nodes, which are optimization data for particular tables and columns. Knowledge Nodes are
stored on disk in a special directory, specified in the infobright.cnf configuration file.
Knowledge Nodes can be lost without losing data integrity.

About Knowledge Node

There are four kinds of Knowledge Nodes:

Histogram. Used by Hyperstage to enhance the speed of most queries consisting of
numerical conditions (including date/time, decimal, and so on).

Histograms are created automatically during data load.

Character Map. Used by Hyperstage to enhance the speed of most queries consisting of
text conditions.

Character Maps are created automatically during data load.

Pack/Pack. Used to enhance joining of tables. Created or updated automatically while
executing user queries.

Data Pack Nodes (DPN). Statistical metadata that describes the content of the Data Pack.
Used to both assist in data access and in rough operations.

Hyperstage for PostgreSQL Reference Guide 67

DPNs are created automatically during data load.

Running Queries

To run queries on Hyperstage tables, use standard PostgreSQL syntax like in the simple
request below:

psql> select [field name] from [table name];

The Hyperstage Optimizer is the primary engine used to resolve queries. While significant
additions have been made to the library of supported SQL, there are cases where the query will
still be executed by the PostgreSQL query engine, instead of the Hyperstage engine. In this
event, query response time tends to suffer due to the fact that the PostgreSQL engine is row-
oriented and therefore cannot make use of the Knowledge Grid information. In some cases, it
can be too slow to be usable. For best performance, ensure your queries (and VIEWs) contain
only syntax supported by the Hyperstage Optimizer.

Viewing Queries Redirected to the PostgreSQL Engine

When a query is redirected from the Hyperstage Optimizer to the PostgreSQL query engine, a
warning is reported. For example:

400 rows in set, 1 warning (0.00 sec)

This will occur when functions not optimized in Hyperstage are used. If you get poor query
performance, you should execute the command below to identify if a query has been directed
to the PostgreSQL query engine.

After running a query, enter the following command to view any warnings:

psql> show warnings;

The following message indicates that the query was directed to PostgreSQL for processing:

1105 | Query syntax not implemented in Infobright, executed by PostgreSQL
engine.

Important: When queries are executed on Hyperstage tables by the standard PostgreSQL
engine, performance can be significantly slower than when queries are executed by
Hyperstage.

Running Queries

68 Information Builders

Preventing Queries From Redirecting to the PostgreSQL Engine

You can prevent queries from being redirected to the PostgreSQL query engine by editing the
infobright.cnf file within the data directory:

AllowMySQLQueryPath=0

If the PostgreSQL query path is disabled, then the following message will be returned if the
query would have been directed to PostgreSQL for processing:

The query includes syntax that is not supported by the Hyperstage
Optimizer. Hyperstage suggests either restructure the query with supported
syntax, or enable the PostgreSQL Query Path in the infobright.cnf file to
execute the query with reduced performance.

Terminating a Query

If you want to terminate a query executed from a client session before the query is complete,
do the following:

1. Use the show [full] process list command to determine the process ID of the query.

2. Use the kill <id> command to terminate the query.

or

If you are using a command-line PostgreSQL client, you can also press Ctrl+C to terminate the
query.

Creating VIEWs in Hyperstage

Hyperstage supports the creation of VIEWs. Note that the VIEW must contain Hyperstage
optimized syntax, or the VIEW will be run in the PostgreSQL query engine.

Create VIEW Syntax

The syntax to create a VIEW is as follows:

CREATE
 [OR REPLACE]
 VIEW view_name [(column_list)]
 AS select_statement

A VIEW must contain unique column names. If you select two columns with the same name
from separate tables, at least one must be aliased or the column list option must be used.

If the select statement of VIEW contains functionality that is not supported in the Hyperstage
optimizer, then the VIEW will perform sub-optimally since it will always flip over to the
PostgreSQL query engine.

8. Running Queries in Hyperstage

Hyperstage for PostgreSQL Reference Guide 69

SELECT Syntax Supported in Hyperstage

The following SELECT syntax is supported in Hyperstage.

SELECT Syntax

For more information, see the PostgreSQL 9.2 Documentation.

SELECT [ALL|DISTINCT|DISTINCTROW]
SELECT_expr, …
[FROM table_references[WHERE where_condition]
[GROUP BY {col_name|expr|position}]
[HAVING where_condition]
[ORDER BY {col_name|expr|position} [ASC|DESC], …]
[LIMIT {[offset,] row_count|row_count OFFSET offset}]
[INTO OUTFILE 'file_name' export_options- AS alias_name- ORDER BY NULL]

JOIN Syntax

For more information, see the PostgreSQL 9.2 Documentation.

Hyperstage supports the following JOIN syntax for the table_references part of SELECT
statements (as described in SELECT Syntax on page 70).

table_references: table_reference [, table_references]
table_reference: table_factor | join_table

table_factor:
tbl_name [[AS] alias]

join_table:
table_reference [INNER|CROSS] JOIN table_factor [join_condition]
| table_reference STRAIGHT_JOIN table_factor
| table_reference STRAIGHT_JOIN table_factor ON condition
| table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition

join_condition:
ON conditional_expr | USING (column_list)

Union Syntax

For more information, see the PostgreSQL 9.2 Documentation.

SELECT ….
UNION [ALL|DISTINCT] SELECT …
[UNION [ALL|DISTINCT] SELECT …]

Subqueries

For more information, see the PostgreSQL 9.2 Documentation.

SELECT Syntax Supported in Hyperstage

70 Information Builders

SELECT * FROM t1 WHERE column1 = (SELECT max(column1) FROM t2);

The following functions are also supported:

Subquery as scalar operand

Subquery with ANY, IN, SOME, and ALL

EXISTS and NOT EXISTS

Correlated subqueries

Subqueries in the FROM clause

VIEWs in the FROM clause

Query Performance

Due to the Hyperstage column-oriented data organization and other Hyperstage-specific
features, query optimization in Hyperstage is slightly different than in traditional DBMS
approaches.

Hyperstage works well with data tables containing many columns, where only necessary
columns are accessed by query (as opposed to SELECT *). The traditional approach
suggests keeping records as small as possible (for example, using schema normalization
and table decomposition). However, in Hyperstage, only necessary columns are used in
calculations. Therefore, queries with many limiting conditions on many columns of the
same table are especially well optimized in Hyperstage.

In traditional DBMS systems, better performance can be achieved by creating indices. In
Hyperstage, Knowledge Nodes are used instead of indices (Knowledge Nodes are created
automatically). To further enhance performance, you can try to influence the data loading
procedure by keeping similar data (for example, for similar time frames) close together. The
order in which data is loaded may influence both compression ratio and query speed.

Avoid using OR in queries and, if possible, use IN instead. In some cases, ORs can be
translated to UNION ALL or IN. For example:

...WHERE a=1 OR a=2...

could be replaced by

...WHERE a IN (1,2)...

Try to replace correlated subqueries with joins and independent subqueries.

8. Running Queries in Hyperstage

Hyperstage for PostgreSQL Reference Guide 71

Executing queries in steps may also help with missing function support. For instance,
execute the bulk of the query in Hyperstage and export the data to a PostgreSQL table.
Then, execute the function query on the result set.

Temp tables may be used to manage intermediate steps without needing to do database
cleanup.

To optimize your query performance, avoid the following, which will result in the query being
handled by the PostgreSQL query engine:

Using functions or type cast operators.

Creating queries containing mixed Hyperstage and PostgreSQL tables.

Performing comparisons or arithmetical operations on two different data types (such as
numbers and text).

Creating JOINs with the JOIN condition defined as NOT BETWEEN.

Query Performance

72 Information Builders

Chapter9
Hyperstage Backup and Recovery

The following section provides instructions on how to backup and restore the Hyperstage
databases.

In this chapter:

Backup Procedure

Restore Procedure

Backup Procedure

Use the following procedures to back up Hyperstage.

To back up the Hyperstage databases, copy the ib_data and pg_data directories.

You can take advantage of incremental backups, since only some of the database files are
updated when new data is imported. Be sure to do a full backup occasionally.

Important: Some files in the KNFolder are updated when queries (using JOIN) are run, so be
sure to back up the KNFolder on a regular basis.

Restore Procedure

To restore the Hyperstage databases from a backup copy, do the following:

1. Replace the ib_data and pg_data directories with the backup copy.

2. Replace the KNFolder with the backup copy (if the KNFolder is not inside the data
directory).

Important: Do not manually modify database files or move them from one database to
another. This may lead to data corruption and unpredictable results.

Hyperstage for PostgreSQL Reference Guide 73

Restore Procedure

74 Information Builders

AppendixA
Functions and Operators

The following section lists the functions and operators supported by Hyperstage.

In this appendix:

Hyperstage Optimizer Supported Functions and Operators

Hyperstage Optimizer Supported Functions and Operators

Comparison Functions and Operators

COALESCE YES

Control Flow Functions

CASE YES

COALESCE TBD

NULLIF YES

String Functions

BIT_LENGTH YES

CONCAT YES

LEFT YES

LENGTH YES

LOCATE YES

LOWER YES

Hyperstage for PostgreSQL Reference Guide 75

LPAD YES

LTRIM YES

OCTET_LENGTH YES

POSITION YES

RIGHT YES

RPAD YES

RTRIM YES

SUBSTR YES

TRIM YES

TRUNC TBD

UPPER YES

Numeric Functions

Modulo (%) YES

ABS YES

ACOS YES

ASIN YES

ATAN2, ATAN YES

ATAN YES

CEIL YES

COS YES

COT YES

Hyperstage Optimizer Supported Functions and Operators

76 Information Builders

DEGREES YES

EXP YES

FLOOR YES

LN YES

LOG YES

MOD YES

PI YES

POWER YES

RADIANS YES

RANDOM TBD

SIGN YES

SIN YES

SQRT YES

TAN YES

Date and Time Functions

CURRENT_DATE YES

CURRENT_TIME YES

DATE YES

DAY YES

DAYOFYEAR YES

FROM_UNIXTIME YES

HOUR YES

A. Functions and Operators

Hyperstage for PostgreSQL Reference Guide 77

MINUTE YES

MONTH YES

NOW YES

QUARTER YES

SECOND YES

TIME YES

YEAR No

Text Search and Other Functions

CAST YES

MD5 TBD

Group By Aggregate Functions

AVG YES

BIT_OR No

BIT_AND No

COUNT(DISTINCT) TBD

COUNT YES

MIN YES

MAX YES

STD, STDDEV YES

STDDEV_POP YES

STDDEV_SAMP YES

Hyperstage Optimizer Supported Functions and Operators

78 Information Builders

SUM YES

VAR_POP YES

VAR_SAMP YES

VARIANCE YES

A. Functions and Operators

Hyperstage for PostgreSQL Reference Guide 79

Hyperstage Optimizer Supported Functions and Operators

80 Information Builders

AppendixB
Hyperstage Data Tools

The following section describes the data tools used by Hyperstage.

In this appendix:

Hyperstage Consistency Manager

Hyperstage MySQL to PostgreSQL Migrator (“External Migrator”)

MySQL to PostgreSQL Data Type Mappings

Limitations and Notes

Working With the ibtop Tool

Using the External Migrator

Hyperstage Consistency Manager

Hyperstage provides a tool to validate Hyperstage-specific metadata structures. The
Hyperstage Consistency Manager is an external stand-alone application that can be run
against a Hyperstage instance to verify and repair most Hyperstage data structures, including
the Knowledge Grid and Data Packs.

If you are seeing unexpected behavior with Hyperstage, such as server crashes, it can help to
run the Hyperstage Consistency Manager for information for support and to perform repairs.

Note: Currently, the Hyperstage database must be offline in order to run the Hyperstage
Consistency Manager.

Hyperstage Consistency Manager Tests

The Hyperstage Consistency Manager runs tests, as described in the following table.

Test Description

Delete mask
consistency check

Checks that the delete mask headers contain the proper sum for the
delete mask body. If any inconsistency is found between the header
and body, the Hyperstage Consistency Manager returns the list of
blocks of delete mask where inconsistencies were found.

Hyperstage for PostgreSQL Reference Guide 81

Test Description

Number of objects
in columns equality

Compares the stored number of objects in each column file related
to the table. If any inconsistency is found in the number of objects,
the Hyperstage Consistency Manager returns the first two columns
with different object numbers.

Comparison of
maximal value in
DIMENSION
dictionary versus
DPN

Executes only for DIMENSION columns. Compares the maximal key
value stored in the DIMENSION column dictionary and in DPNs. If the
values differ, the Hyperstage Consistency Manager writes them to
the log.

Comparison of
number of objects
in first-column DPN
versus delete mask

Compares the metadata stored in the headers of the delete mask
and DPN file related to the number of objects. If any inconsistencies
are found, the Hyperstage Consistency Manager returns both
numbers. The Hyperstage Consistency Manager compares only the
first column because there is an independent test comparing this
value between columns. If the test does not find the proper delete
mask file or the proper DPN file, the Hyperstage Consistency
Manager reports corruption.

Knowledge Grid
consistency for
column

Checks if the histograms report the proper value of the fixed
parameter. A basic test of the Knowledge Node, ensuring the file
has a proper format and the type of Knowledge Node corresponds to
the column.

Knowledge Grid
format for column

Each Knowledge Node is stored in a separate file. This test validates
that the header data of each file is in the proper format.

Test for overlapping
Data Packs in data
files

Checks if there are Data Packs in files that overlap each other. If
this situation occurs, the Hyperstage Consistency Manager returns a
list of pairs of Data Packs numbers that are overlapping.

Tests of table
metadata
consistency

Verifies if the table metadata is valid. Includes verification of files
used to store items, such as table name, number of columns and
their names, types, and constrains like NOT NULL. These are the
files created on CREATE TABLE and modified only on ALTER TABLE.

Hyperstage Consistency Manager

82 Information Builders

Test Description

Test of DPNs for
non-binary collation

Verifies Data Packs specifically for non-binary collation types (for
example: Latin1_swedish.ci). If errors exist, they can be repaired
using the Hyperstage Consistency Manager - -repair option.

Syntax: How to Run the Hyperstage Consistency Manager

To view the run options, run Hyperstage Consistency Manager with the - -help flag:

Icm-pure --help

To run Hyperstage Consistency Manager, use the following command:

Icm-pure --datadir=/data_directory_path [parameters]

For example:

c:\ibi\srv77\home06Hyperstage\hs\bin>icm-pure.exe
 --datadir=C:\HyperstagePG\ib_data --log-file=C:\temp\icm-pure.log

Note: Hyperstage Consistency Manager should be run by the 'postgres' user. It should not be
executed by 'root' or any rebuilt knowledge nodes will be owned by root (and cannot be edited),
which will result in issues when loading any subsequent data into the 'corrected' tables.

The following table describes the Hyperstage Consistency Manager parameters.

Parameter Description

- -help Displays help message and exit.

-V [- -
version]

Displays version information and exit.

- -basedir Absolute path to Hyperstage installation directory.

arg

- -datadir arg Absolute path to directory. Mandatory.

- -database
arg

Name of database chosen for data integrity testing. Optional. If specified,
no other databases will be tested.

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 83

Parameter Description

- -table arg Name of table chosen for data integrity testing. Optional. If specified, no
other tables will be tested.

- -log-file arg Prints output to log file. Optional. If not specified, the logs will be printed to
the console.

-F [- -full-
check]

Runs full set of tests (may be time-intensive). Running Hyperstage
Consistency Manager without the full-check option will result in a quicker
test. However, the "Knowledge Grid consistency for column" test will not be
run.

- -repair Repairs found problems.

- -rebuild-kns Rebuilds the Knowledge Grid. For more information, see About Rebuilding or
Repairing Knowledge Nodes on page 84.

- -stop-on-
error

Stops tests on first error and report.

- -cleanup In case of an error in the Hyperstage Consistency Manager repair
procedure, this option enables Hyperstage Consistency Manager to
manually revert the datadir to its previous state. Running Hyperstage
Consistency Manager with the - -cleanup option removes the old DPN files
(containing incorrect DPNs) from the datadir and also makes the changes
performed by Hyperstage Consistency Manager impossible to undo. If the - -
cleanup option is not used, the old DPN files remain in the datadir.

About Rebuilding or Repairing Knowledge Nodes

Executing a rebuild of the Knowledge Nodes (using the - -rebuild-kns option) will run the
following tests:

Test of table metadata consistency

Test of Knowledge Grid format for column

Test of Knowledge Grid consistency for column

The - -rebuild-kns option will fix any issues found for the first two tests ("Test of table metadata
consistency" and "Test of Knowledge Grid format for column").

Hyperstage Consistency Manager

84 Information Builders

You can also use the - -repair option along with the - -full-check option to achieve the same
results as - -rebuild-kns. Using either of these methods will rebuild any Knowledge Nodes that
have been deleted.

About Cleanup Procedures

The Hyperstage Consistency Manager creates backup files when repairing problems related to
"Test of DPNs for non-binary collation" (backup files are not created for any other tests). These
backup files can be used to revert back to the original data if the Hyperstage Consistency
Manager encounters an error during the repair procedure. To revert to the original data, copy or
rename the TAXXXXXDPN.icm_bck files to the TAXXXXXDPN.ctb files (found in the ib_data
directory).

Hyperstage MySQL to PostgreSQL Migrator (“External Migrator”)

The Hyperstage External Migrator allows for migration of Hyperstage MySQL data to Hyperstage
for PostgreSQL. The current version of the utility works under the following basic assumptions
and conditions.

Assumptions and Conditions

Migrates data from version 4 (latest Hyperstage MySQL) to data version 5 (latest
PostgreSQL version).

Destination data directories must be created for PostgreSQL.

Migration of text types is supported under the following conditions (all conditions must be
satisfied):

If UTF-8 is a charset in all text columns and no other charset is used.

If binary collations used.

If max text length from a column does not exceed 16K.

Both PostgreSQL and the MySQL instances must be offline.

Columns of time types must not contain 0 (zeros).

Specific data types will require more space.

After the conversion to PostgreSQL, VARCHAR(n) types will require more than 64KB for a
single value. Hyperstage for MySQL using UTF-8 may have to up 3 bytes whereas
Hyperstage for PostgreSQL uses up to 4 bytes. The maximum value for n is 16K
characters.

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 85

MySQL to PostgreSQL Data Type Mappings

The following table lists the data type mappings for MySQL to PostgreSQL.

MYSQL TO POSTGRESQL DATA TYPE MAPPINGS

BOOL SMALLINT

TINYINT SMALLINT

MEDIUMINT INT

INT INT

BIGINT BIGINT

FLOAT REAL

DOUBLE DOUBLE PRECISION

DECIMAL(M,N) DECIMAL(M,N)

YEAR (To be decided)

TIME INTERVAL HOUR TO SECOND

DATE DATE

DATETIME TIMESTAMP WITHOUT TIME ZONE)

TIMESTAMP TIMESTAMP WITH TIME ZONE)

CHAR(N) CHAR(N)

VARCHAR(N) VARCHAR(N)

TINYTEXT VARCHAR(255)

TEXT VARCHAR(N)

BINARY(N) BYTEA(N)

VARBINARY(N) BYTEA(N)

MySQL to PostgreSQL Data Type Mappings

86 Information Builders

Limitations and Notes

Table migration is done by copying the data. In-place migration is not supported.

Tables with decomposition rules are currently not supported.

The External Migrator will change all ‘0000-00-00’ DATE values to ‘100-01-01’.

The External Migrator will change all ‘0000-00-00 00:00:00’ DATETIME and TIMESTAMP
values to ‘100-01-01 00:00:00’ and ‘1970-01-01 00:00:00’.

The External Migrator will apply a common character set to all columns being migrated. This
is necessary because Hyperstage for PostgreSQL requires that all columns within a given
database have the same character set.

The External Migrator will recalculate Data Pack Nodes and Knowledge Nodes.

Tables previously using LOOKUP columns will be migrated to DIMENSION columns.

There is no support for Default values within PostgreSQL. Therefore, this modifier will not
be migrated.

Working With the ibtop Tool

The ibtop tool provides monitoring of Hyperstage database operations and system resource
usage. Use ibtop to monitor CPU usage, physical memory usage, disk I/O, cache directory
size, query concurrency, and additional insightful metrics.

Note: Starting with release 5.0.1, ibtop utilizes a native C-API. Therefore, previously required
modules, such as perl, are no longer needed to run ibtop.

ibtop is available for all supported OS platforms.

Command Options

A description of all command options available when running ibtop can be found by running the
ibtop --help command. For example:

ibtop --help

ibtop collects the statistics information of the running Hyperstage instance, which include the
following:

/proc/[pid]/stat for CPU/Memory usage under Linux or Windows equivalent.

show status, such as 'IB%' (MySQL) or show Hyperstage statistics (postgres).

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 87

show engine Hyperstage status (MySQL) or show ibengine status (postgres).

(IMM only) additional multi-machine specific metrics.

You will not see the output on the screen. All collection goes to file specified by --output-file/-o
or --output-dir with a name convention.

Command options include the following:

-h [--help]

Shows the command usage message.

-H [--host] arg

The host on which the IB instance is running. The default is 127.0.0.1.

-P [--port] arg

The port number of the IB instance. The default is 5029.

-L [--login] arg

The sign-in username. Make sure it has the permission to show specific IB status and
statistics. If left empty, ibtop will use postgres for the Hyperstage-PG instance, and root for
the Hyperstage-MySQL instance.

-p [--password] arg

The sign-in password.

-D [--database] arg

The database to connect. If left empty, Hyperstage-PG will use template1, and Hyperstage-
MySQL will use information_schema.

-S [--server-type] arg

The IB instance type. Valid options are:

mysql

postgres

The default value is postgres.

-o [--outputfile] arg

The output file name.

-i [--interval] arg

The interval, in seconds, between each collection. It can be as frequent as one (1) second.
The default value is 60 seconds.

-f [--flush-on-intervals] arg

ibtop will keep collection x intervals, and flush into the output file. The default is 60
intervals for each flush.

Working With the ibtop Tool

88 Information Builders

-R [--output-directory] arg

The directory to hold the output files (JSON or CSV format). The default is /tmp (C:\tmp for
Windows OS). If output-file is specified, output-file takes precedence. Otherwise, ibtop will
use the following name convention:

/tmp/hostname.YYYYMMDD.HHMMSS.SERVERTYPE_HOST_PORT.hyperstage.[gpe | csv].

The .gpe file extension is in JSON format, if --enable-json-output is specified.

-q [--skip-header]

Skips header column names when the report is in CSV format. (This does not apply to
JSON format.)

-b [--abort-on-error]

Aborts collection on error (for example, a lost connection to the underlying IB instance). If
left empty, ibtop keeps trying indefinitely to reconnect, and all values in collection will be
0.

-G [--enable-json-output]

Enables JSON format output, while turning off CSV output. For details on JSON output
format, see Format of JSON Output on page 96.

-g [--debug]

Debug mode. Shows more verbose messages to help the ibtop developer.

-c [--config-file] arg

The configuration file path.

-v [--version]

Shows the current ibtop version.

Running ibtop

The ibtop tool can be run either remotely or locally on the same server that the Hyperstage
database engine is running. To run ibtop and collect database instance metrics, enter a
command, such as the following:

$ ibtop -H 192.168.20.105 -P 5030 -L root -S postgres -i 1 -f 10 -o /tmp/
colo105.ibtop.csv

Based on the above command, after 10 seconds (1-second (interval) * 10 (flush-on-interval)),
information will be written to the file /tmp/colo105.ibtop.csv.

Note: Once output is collected, it can be opened directly in any spreadsheet software (CSV),
json reader (JSON), or loaded into a database like Hyperstage for analysis. By default, for CSV,
the first line contains the column header. You can omit the column header by specifying --skip-
header=yes in the command line.

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 89

Reference: Using a Configuration File to Protect a Database Password

As an alternative to entering ibtop options at the command line, it is also possible to specify
them using a configuration file. This may be especially useful in order to protect passwords
from command line sniffing.

For example, in order to run ibtop using a configuration file (called ibtop.cnf), enter the
following command:

$ ibtop --config-file=ibtop.cnf

A sample configuration file is shown below. To use it, it is necessary to uncomment, by
removing the leading # character from each line, and specifying the appropriate parameter
value.

###==== begin of ibtop.cnf =====
#host=127.0.0.1
#port=5029
#login=
#password=
#database=
#server-type=postgres
#output-file=
#interval=60
#flush-on-intervals=60
#output-directory=/tmp
#skip-header=no
#abort-on-error=no
#enable-json-output=no
###==== end of ibtop.cnf =====

Collecting Database Process CPU/Memory Utilization From the Operating System

ibtop is able to optionally collect database process CPU/Memory utilization information from
the operating system. To enable this functionally, the following must be true:

ibtop must be run locally.

For Linux operating systems, ibtop must be run using the same OS user at the database
instance (for example, postgres) or as a super user (for example, root).

For Windows operating systems, ibtop must be run as a super user (for example,
administrator).

Note: Under Linux, the information collection is achieved by executing the cat /proc/[IB
instance pid]/stat command. Under Windows, the information collection is achieved by issuing
the GetProcessTimes() and GetProcAddress() function calls.

Working With the ibtop Tool

90 Information Builders

Collecting Hyperstage Statistics

Inside the Hyperstage engine, a global data cache is accessible by all threads. The global data
cache consists of three heaps:

Main Heap

Large Temporary Heap

System Heap

All IB data structures are inherited from a base class called TrackableObject, with the acronym
TO. All data structures will allocate on one of three heaps. The type of TrackableObject could
be one the following listed examples:

TO_PACK: The actual compressed/decompressed data pack. By default, each pack
contains 65536 elements for a column.

TO_SPLICE: Metadata information including min/max/null/sum of each pack. Because a
single DPN structure is small, the engine will store them in splices.

TO_RSINDEX: Mirror of files from BH_RSI_Repository. It can be CMAP (Character Map) for a
string column or HIST (Histogram) for a numeric column.

TO_FTREE: Mirror for lookup dictionary file (for example, $datadir/table.bht/TA#####.dic)

TO_SORTER: Temporary structure used by a query when sorting is needed.

TO_CACHEDBUFFER+TO_INDEXTABLE: Temporary structure used by a query.

TO_FILTER: Delete mask.

TO_TEMPORARY: Miscellaneous temporary structure used by a query, (for example,
aggregation work buffer, join buffer, and so on).

others: everything else.

ibtop collects the above heap and TO metrics for both size (in bytes) and block count.

Summary of Information Collected by ibtop

The following tables describe all the information that is collected by ibtop.

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 91

ibtop Information - General

Variable Name Note

TimeStamp ibtop always uses UTC timestamp (for
example, 2016-04-28 13:21:46 +0000)

UniqueId Identifier if you collect multiple ibtop. It
takes command line server_type +
remote_ip + port

ibtop Information - DB Instance CPU/Memory usage from the OS

Variable Name Note

PID /proc/[pid]/stat column #1 pid

NumThreads /proc/[pid]/stat column #20 num_threads

UserCPU /proc/[pid]/stat column #14+#16 utime
(include child process). The collected value
is per-second usage.

SystemCPU /proc/[pid]/stat column #15+#17 stime
(include child process). The collected value
is per-second usage.

VmSize /proc/[pid]/stat column #23 vmsize

VmRSS /proc/[pid]/stat column #24 rss

ibtop Information - from the show Hyperstage statistics command

Variable Name Note

IB_gdc_false_wakeup Metric to measure efficiency of internal
global data cache.

Working With the ibtop Tool

92 Information Builders

Variable Name Note

IB_gdc_hits Number of retrievals, which are obtained
from memory directly, without going through
the disk reading and decompression
process.

IB_gdc_load_errors Metric to measure efficiency of internal
global data cache.

IB_gdc_misses Number of retrievals, which are not from the
data cache, but go through the disk reading
and decompression process.

IB_gdc_pack_loads Number of DataPack loaded and cached.

IB_gdc_prefetched Metric to measure efficiency of internal
global data cache.

IB_gdc_read_wait_in_progress Metric to measure efficiency of internal
global data cache.

IB_gdc_readwait Metric to measure efficiency of internal
global data cache.

IB_gdc_redecompress obsoleted

IB_gdc_released Objects release from global data cache.

IB_mm_alloc_blocs Blocks allocated, per second.

IB_mm_alloc_objs Number of objects doing allocating, per
second.

IB_mm_alloc_pack_size Bytes allocated by Datapack objects, per
second.

IB_mm_alloc_packs Blocks allocated by Datapack objects, per
second.

IB_mm_alloc_size Allocated memory bytes, per second.

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 93

Variable Name Note

IB_mm_alloc_temp Number of temporary blocks allocated, per
second.

IB_mm_alloc_temp_size Temporary allocation bytes, per second.

IB_mm_free_blocks Number of blocks deallocated, per second.

IB_mm_free_pack_size Bytes-per-second of blocks deallocated by
Datapack objects.

IB_mm_free_packs Blocks-per-second deallocated by Datapack
objects.

IB_mm_free_size Bytes-per-second deallocated.

IB_mm_free_temp Number of temporary blocks deallocated,
per second.

IB_mm_free_temp_size Bytes of temporary deallocation, per
second.

IB_mm_freeable Total allocated memory that is currently in
the releasable state.

IB_mm_release1 Dependent on specific object release
algorithm.

IB_mm_release2 Dependent on specific object release
algorithm.

IB_mm_release3 Dependent on specific object release
algorithm.

IB_mm_release4 Dependent on specific object release
algorithm.

IB_mm_reloaded Number of times a datapack was loaded
after eviction, but before falling off the
history list.

Working With the ibtop Tool

94 Information Builders

Variable Name Note

IB_mm_scale Integer factor representing the magnitude of
maximum buffer sizes that can be allocated
in a query.

IB_mm_unfreeable Total allocated memory that is currently in
the un-releasable state.

IB_readbytes Read from disk, in bytes-per-second.

IB_readcount Read operation count, in count-per-second.

IB_writebytes Write to disk, in bytes-per-second.

IB_writecount Writer operation count, in count-per-second.

ibtop Information - from show ibengine status command

Variable Name Note

System Heap Total(size) Size (in bytes) for heaps, trackable objects.

Main Heap Total(size) Size (in bytes) for heaps, trackable objects.

Large Temporary Heap(size) Size (in bytes) for heaps, trackable objects.

TO_PACK objects(size) Size (in bytes) for heaps, trackable objects.

TO_SORTER objects(size) Size (in bytes) for heaps, trackable objects.

TO_CACHEDBUFFER+TO_INDEXTABLE
objects(size)

Size (in bytes) for heaps, trackable objects.

TO_FILTER objects(size) Size (in bytes) for heaps, trackable objects.

TO_RSINDEX objects(size) Size (in bytes) for heaps, trackable objects.

TO_SPLICE objects(size) Size (in bytes) for heaps, trackable objects.

TO_TEMPORARY objects(size) Size (in bytes) for heaps, trackable objects.

TO_FTREE objects(size) Size (in bytes) for heaps, trackable objects.

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 95

Variable Name Note

other objects(size) Size (in bytes) for heaps, trackable objects.

System Heap Total(block) Block count for heaps, trackable objects.

Main Heap Total(block) Block count for heaps, trackable objects.

Large Temporary Heap(block) Block count for heaps, trackable objects.

TO_PACK objects(block) Block count for heaps, trackable objects.

TO_SORTER objects(block) Block count for heaps, trackable objects.

TO_CACHEDBUFFER+TO_INDEXTABLE
objects(block)

Block count for heaps, trackable objects.

TO_FILTER objects(block) Block count for heaps, trackable objects.

TO_RSINDEX objects(block) Block count for heaps, trackable objects.

TO_SPLICE objects(block) Block count for heaps, trackable objects.

TO_TEMPORARY objects(block) Block count for heaps, trackable objects.

TO_FTREE objects(block) Block count for heaps, trackable objects.

other objects(block) Block count for heaps, trackable objects.

cache_folder_size This metric is the summary size (in bytes)
from all files under CacheFolder, which is
defined in infobright.cnf. IB instance uses it
to store temporary intermediate results if
there is not enough memory.

Format of JSON Output

When ibtop option enable-json-output=yes, the output file is in JSON format. Each JSON output
file has two level-1 sections: meta and data.

The meta section contains 1 variable named internval. This value is equal to the input
variable --interval.

Working With the ibtop Tool

96 Information Builders

The data section contains a series of key-value collections. The first key is the timestamp.
The value of this key is a nested structure of statistics. The content of this structure is
similar to the following:

ibtop ->
 instance_unique_id ->
 trend
 tag
 config

To generate instance_unique_id, ibtop concatenates server_type, IP, and port. This
combination provides a unique identifier in the event of monitoring or comparing two distinct
ibtop outputs.

In the nested structure for a given instance_unique_id, ibtop collects the following:

trend: The collected metrics. This is the same set of data as CSV output.

tag: The fixed element. This value will always be IBTOP@HYPERSTAGE.

config: The Hyperstage instance configuration parameters. For example,
ServerMainHeapSize.

An example of JSON output is shown below:

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 97

{
 "meta": {
 "interval": 1
 },
 "data": {
 "2016-05-02 17:27:56 +0000": {
 "ibtop": {
 "postgres_127_0_0_1_5029": {
 "trend": {
 "gdc_false_wakeup": 0,
 "gdc_hits": 0,
 "gdc_load_errors": 0,
 "gdc_misses": 0,
 "gdc_pack_loads": 0,
 "gdc_prefetched": 0,
 "gdc_read_wait_in_progress": 0,
 "gdc_readwait": 0,
 "gdc_redecompress": 0,
 "gdc_released": 0,
 "mm_alloc_blocs": 0,
 "mm_alloc_objs": 0,
 "mm_alloc_pack_size": 0,
 "mm_alloc_packs": 0,
 "mm_alloc_size": 0,
 "mm_alloc_temp": 0,
 "mm_alloc_temp_size": 0,
 "mm_free_blocks": 0,
 "mm_free_pack_size": 0,
 "mm_free_packs": 0,
 "mm_free_size": 0,
 "mm_free_temp": 0,
 "mm_free_temp_size": 0,

Working With the ibtop Tool

98 Information Builders

 "mm_freeable": 0,
 "mm_release1": 0,
 "mm_release2": 0,
 "mm_release3": 0,
 "mm_release4": 0,
 "mm_reloaded": 0,
 "mm_scale": 5,
 "mm_unfreeable": 4,
 "readbytes": 0,
 "readcount": 0,
 "writebytes": 0,
 "writecount": 0,
 "largetemporaryheap_block": 0,
 "largetemporaryheap_size": 0,
 "mainheap_block": 12,
 "mainheap_size": 4,
 "numthreads": 0,
 "pid": 0,
 "systemheap_block": 0,
 "systemheap_size": 0,
 "systemcpu": 0,
 "cachedbuffer_indextable_block": 0,
 "cachedbuffer_indextable_size": 0,

 "filter_block": 6,
 "filter_size": 0,
 "ftree_block": 0,
 "ftree_size": 0,
 "pack_block": 4,
 "pack_size": 0,
 "rsindex_block": 0,
 "rsindex_size": 0,
 "sorter_block": 0,
 "sorter_size": 0,
 "splice_block": 1,
 "splice_size": 0,
 "temporary_block": 0,
 "temporary_size": 0,
 "usercpu": 0,
 "vmrss": 0,
 "vmsize": 0,
 "cache_folder_size": 0,
 "other_block": 1,
 "other_size": 4
 },
 "tag": {
 "add": [
 "IBTOP@HYPERSTAGE"
]
 },

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 99

 "config": {
 "CfgName": "postgres_127_0_0_1_5029",
 "CfgCollectionInterval": "1",
 "CacheFolder": "cache",
 "ConnectTimeout": "5",
 "FET": "0",
 "FETInterval": "0",
 "HandshakeTimeout": "15",
 "IBEngineRevision":
 "Hyperstage_4.8.3_r35390_36166",
 "KNFolder": "BH_RSI_Repository",
 "KNLevel": "1",
 "LicenseFile": "hyperstage.lic",
 "LoaderSaveThreads": "16",
 "LogLevel": "W",
 "LogRotateFiles": "9",
 "LogRotateSize": "250",
 "MemoryHardLimit": "0",
 "MemoryLargeTempPercentage": "20",
 "MemoryScaleReduction": "0",
 "ParallelAggrThreads": "1024",
 "ParallelJoinThreads": "1024",
 "ParallelScanDPsAtOnce": "1",
 "ParallelScanDPsPerThread": "10",
 "ParallelScanThreads": "1024",
 "ParallelSortThreads": "1024",

 "PeerCommitTimeout": "120",
 "PrefetchQueueLength": "18",
 "PrefetchThreads": "6",
 "ServerMainHeapSize": "8834",
 "ServerMainHeapThreshold": "5",
 "SpliceSize": "128",
 "SyncBuffers": "0",
 "ThrottleLimit": "0",
 "ThrottleScheduler": "0",
 "ses_LogLevel": ""
 }
 }
 }
 },
 "2016-05-02 17:27:57 +0000": {...},
 "2016-05-02 17:27:58 +0000": {...},
 "2016-05-02 17:27:59 +0000": {...}
 }
}

Create Hyperstage Table Syntax for CSV Output

When the ibtop output file is in CSV format, which is the default, one option for further analysis
is to load the data into a Hyperstage table. You can do this by accommodating the create table
syntax. An example of this is shown below:

Working With the ibtop Tool

100 Information Builders

create table ibtop_collection_hyperstage (
"timestamp" varchar(32),
uniqueid varchar(64),
pid int,
numthreads int,
usercpu int,
systemcpu int,
vmsize int,
vmrss int,
ib_gdc_false_wakeup int,
ib_gdc_hits int,
ib_gdc_load_errors int,
ib_gdc_misses int,
ib_gdc_pack_loads int,
ib_gdc_prefetched int,
ib_gdc_read_wait_in_progress int,
ib_gdc_readwait int,
ib_gdc_redecompress int,
ib_gdc_released int,
ib_mm_alloc_blocs int,
ib_mm_alloc_objs int,
ib_mm_alloc_pack_size int,
ib_mm_alloc_packs int,
ib_mm_alloc_size int,
ib_mm_alloc_temp int,
ib_mm_alloc_temp_size int,
ib_mm_free_blocks int,
ib_mm_free_pack_size int,
ib_mm_free_packs int,
ib_mm_free_size int,
ib_mm_free_temp int,
ib_mm_free_temp_size int,

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 101

ib_mm_freeable int,
ib_mm_release1 int,
ib_mm_release2 int,
ib_mm_release3 int,
ib_mm_release4 int,
ib_mm_reloaded int,
ib_mm_scale int,
ib_mm_unfreeable int,
ib_readbytes int,
ib_readcount int,
ib_writebytes int,
ib_writecount int,
system_heap_total_size int,
main_heap_total_size int,
large_temporary_heap_size int,
to_pack_objects_size int,
to_sorter_objects_size int,
to_cachedbuffer_to_indextable_objects_size int,
to_filter_objects_size int,
to_rsindex_objects_size int,
to_splice_objects_size int,
to_temporary_objects_size int,
to_ftree_objects_size int,
other_objects_size int,
system_heap_total_block int,
main_heap_total_block int,

large_temporary_heap_block int,
to_pack_objects_block int,
to_sorter_objects_block int,
to_cachedbuffer_to_indextable_objects_block int,
to_filter_objects_block int,
to_rsindex_objects_block int,
to_splice_objects_block int,
to_temporary_objects_block int,
to_ftree_objects_block int,
other_objects_block int,
cache_folder_size int) with (engine=hyperstage);

Using the External Migrator

To use the External Migrator, run the following command:

./ibextmigrator options

The available External Migrator options are listed in the following table.

Option Description

-h [- -help] Prints help messages.

Using the External Migrator

102 Information Builders

Option Description

-f [- -force] Continues migration, even if an error occurs.

-v [- -verbose] Shows more details.

-b [- -pg-bin] arg PostgreSQL installation path.

-u [- -pg-user] arg PostgreSQL user used to create the migration database.

-s [- -src-datadir] arg Source MySQL datadir.

-i [- -dst-ibdatadir] arg Destination Hyperstage Server datadir (ib_data).

-p [- -dst-pgdatadir]
arg

Destination PostgreSQL datadir (pg_data).

-d [- -dst-db] arg Destination PostgreSQL database name.

-t [- -tables] arg List of tables to migrate in the form "db1.t1 db2.t3 db2.*" where
* implies migration of every table in the database. If not
specified, the External Migrator will attempt to migrate the entire
datadir.

-c [- -dst-schema] arg
(=public)

Name of destination schema to which tables specified with the -t
option should be migrated. Defaults to public.

- -connection-db arg
(=template1)

Database that External Migrator will use to connect to
PostgreSQL.

- -force-charset-
conversion
[=arg(=utf8)]

Specifying this option will turn off the option to check if all data
selected for migration has a common character set, and will
trigger the conversion to the specified character set, if
necessary. The default character set is UTF8. You can also use
this option to trigger conversion of all data to specified charset.

Note: Using this setting will significantly increase the time that it
takes to complete the migration.

- -version Print program version number and exit.

The following code is an example of the migration command for all the tables within a MySQL
database named salesdatabase, to a PostgreSQL database named salesdatabase.

B. Hyperstage Data Tools

Hyperstage for PostgreSQL Reference Guide 103

c:\ibi\srv77\home06Hyperstage\hs\bin>ibextmigrator.exe
-b "C:\ibi\srv77\home06Hyperstage\hs\bin" -u srvadmin
-s "C:\HyperstageMySQL\Data"
-p "C:\HyperstagePG\pg_data"
-i "C:\HyperstagePG\ib_data"
-d salesdatabase
-t "salesdatabase.*"

The following code is an example of the migration command for all of the tables within a
MySQL database named salesdatabase, to a PostgreSQL database named salesdatabase. In
this example, the option to check if all data selected for migration has a common character set
is also included, and will force the character set conversion to UTF8.

c:\ibi\srv77\home06Hyperstage\hs\bin>ibextmigrator.exe
-b "C:\ibi\srv77\home06Hyperstage\hs\bin" -u srvadmin
-s "C:\HyperstageMySQL\Data"
-p "C:\HyperstagePG\pg_data"
-i "C:\HyperstagePG\ib_data"
-d salesdatabase
-t "salesdatabase.*"
--force-charset-conversion=utf8

Using the External Migrator

104 Information Builders

Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Business Intelligence Portal
Version 8.0.02

Hyperstage for PostgreSQL Reference Guide
WebFOCUS Reporting Server Release 8.2 DataMigrator Server Release 7 Version 7.07

DN4501642.1016

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Information You Should Have
	User Feedback
	Information Builders Consulting and Training

	1. About WebFOCUS Hyperstage
	Hyperstage Overview
	Hyperstage and PostgreSQL

	2. Installing and Configuring the Hyperstage Database
	Technical Requirements
	Installing Hyperstage
	Procedure: How to Install Hyperstage

	Configuring the Hyperstage (PG) Adapter
	Procedure: How to Configure the Hyperstage (PG) Adapter

	Configuring Hyperstage
	Configuration Tips and Examples

	3. Using the Hyperstage Database Beyond WebFOCUS
	Starting and Stopping the Hyperstage Server Under Windows
	Working With the Hyperstage Server
	Checking the Hyperstage Version
	Quick Copy For Hyperstage Using Extended Bulk Load Utility
	About Log Files
	About Errors
	About SQL Command Syntax
	About SQL ISO Standards

	4. Managing Hyperstage Tables
	About the Hyperstage Database Files
	About Supported Data Types
	Creating and Dropping Tables
	Modifying Table Structures
	About Column Options
	LOOKUP Columns
	Optimizing Columns for INSERTs
	Unsupported Column Options
	Unsupported Indices Options

	Converting Oracle DDL to Hyperstage
	Converting SQL Server to Hyperstage
	Converting PostgreSQL to Hyperstage
	Viewing Compression Ratio Statistics
	Comparison of Calculated Compression Ratio to Physical Size

	5. Data Manipulation Statements
	Design of DML in Hyperstage
	INSERT
	Inserting a Query Result in a PostgreSQL Table

	UPDATE
	DELETE

	6. Character Set Support
	Supported Character Sets
	Collations and Comparisons
	Padding

	7. Importing and Exporting Data in Hyperstage
	About Importing and Exporting Data
	Distributed Load Processor (DLP)
	INSERT
	COPY FROM

	Hyperstage COPY FROM Syntax
	Usage Examples
	Data Format (Mandatory)

	Hyperstage Loader Reject File
	Importing Files With Invalid Values
	Hyperstage COPY TO Syntax
	Usage Examples

	Single-character Delimiter
	About Transactions
	About Transaction Behavior
	Failure Handling

	About Export Differences in Hyperstage
	Escape Characters
	Exporting NULL Values

	Hyperstage Binary Format
	Exporting and Importing Query Results

	8. Running Queries in Hyperstage
	About the Knowledge Grid
	About Knowledge Node

	Running Queries
	Viewing Queries Redirected to the PostgreSQL Engine
	Preventing Queries From Redirecting to the PostgreSQL Engine
	Terminating a Query

	Creating VIEWs in Hyperstage
	Create VIEW Syntax

	SELECT Syntax Supported in Hyperstage
	SELECT Syntax
	JOIN Syntax
	Union Syntax
	Subqueries

	Query Performance

	9. Hyperstage Backup and Recovery
	Backup Procedure
	Restore Procedure

	A. Functions and Operators
	Hyperstage Optimizer Supported Functions and Operators
	Comparison Functions and Operators
	Control Flow Functions
	String Functions
	Numeric Functions
	Date and Time Functions
	Text Search and Other Functions
	Group By Aggregate Functions

	B. Hyperstage Data Tools
	Hyperstage Consistency Manager
	Hyperstage Consistency Manager Tests
	Syntax: How to Run the Hyperstage Consistency Manager
	About Rebuilding or Repairing Knowledge Nodes
	About Cleanup Procedures

	Hyperstage MySQL to PostgreSQL Migrator (“External Migrator”)
	MySQL to PostgreSQL Data Type Mappings
	Limitations and Notes
	Working With the ibtop Tool
	Command Options
	Running ibtop
	Reference: Using a Configuration File to Protect a Database Password

	Collecting Database Process CPU/Memory Utilization From the Operating System
	Collecting Hyperstage Statistics
	Summary of Information Collected by ibtop
	Format of JSON Output
	Create Hyperstage Table Syntax for CSV Output

	Using the External Migrator

	Index
	Feedback

