
Functions Reference
Release 7709

February 21, 2019

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2019, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

Preface . 13

Conventions . 15

Related Publications . 16

Customer Support . 16

Information You Should Have .17

User Feedback . 18

iWay Software Training and Professional Services . 18

1. Functions Overview .19

Function Arguments .19

Function Categories .20

Character Chart for ASCII and EBCDIC . 20

2. Simplified Analytic Functions . 29

FORECAST_MOVAVE: Using a Simple Moving Average .29

FORECAST_EXPAVE: Using Single Exponential Smoothing . 35

FORECAST_DOUBLEXP: Using Double Exponential Smoothing . 38

FORECAST_SEASONAL: Using Triple Exponential Smoothing . 40

FORECAST_LINEAR: Using a Linear Regression Equation . 45

PARTITION_AGGR: Creating Rolling Calculations .48

PARTITION_REF: Using Prior Field Values in Calculations . 58

3. Simplified Character Functions .63

CHAR_LENGTH: Returning the Length in Characters of a String .64

CONCAT: Concatenating Strings After Removing Trailing Blanks From the First 64

DIGITS: Converting a Number to a Character String .65

GET_TOKEN: Extracting a Token Based on a String of Delimiters . 66

INITCAP: Capitalizing the First Letter of Each Word in a String . 67

LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing 67

LOWER: Returning a String With All Letters Lowercase . 69

LPAD: Left-Padding a Character String . 69

LTRIM: Removing Blanks From the Left End of a String .70

PATTERNS: Returning a Pattern That Represents the Structure of the Input String 71

POSITION: Returning the First Position of a Substring in a Source String .72

Functions Reference 3

REGEX: Matching a String to a Regular Expression . 72

REPLACE: Replacing a String . 74

RPAD: Right-Padding a Character String .75

RTRIM: Removing Blanks From the Right End of a String . 76

SPLIT: Extracting an Element From a String .76

SUBSTRING: Extracting a Substring From a Source String . 77

TOKEN: Extracting a Token From a String . 78

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String 79

UPPER: Returning a String With All Letters Uppercase . 80

4. Character Functions . 83

ARGLEN: Measuring the Length of a String . 84

ASIS: Distinguishing Between Space and Zero . 84

BITSON: Determining If a Bit Is On or Off .86

BITVAL: Evaluating a Bit String as an Integer . 87

BYTVAL: Translating a Character to Decimal . 88

CHKFMT: Checking the Format of a String .89

CHKNUM: Checking a String for Numeric Format . 91

CTRAN: Translating One Character to Another . 91

CTRFLD: Centering a Character String . 93

EDIT: Extracting or Adding Characters . 94

GETTOK: Extracting a Substring (Token) .95

LCWORD: Converting a String to Mixed-Case . 96

LCWORD2: Converting a String to Mixed-Case . 97

LCWORD3: Converting a String to Mixed-Case . 98

LJUST: Left-Justifying a String . 99

LOCASE: Converting Text to Lowercase . 99

OVRLAY: Overlaying a Character String . 100

PARAG: Dividing Text Into Smaller Lines . 101

PATTERN: Generating a Pattern From a String . 103

POSIT: Finding the Beginning of a Substring . 104

REVERSE: Reversing the Characters in a String . 105

RJUST: Right-Justifying a Character String .106

Contents

4 Information Builders

SOUNDEX: Comparing Character Strings Phonetically .106

SPELLNM: Spelling Out a Dollar Amount . 107

SQUEEZ: Reducing Multiple Spaces to a Single Space .108

STRIP: Removing a Character From a String . 109

STRREP: Replacing Character Strings . 110

SUBSTR: Extracting a Substring . 111

TRIM: Removing Leading and Trailing Occurrences . 113

UPCASE: Converting Text to Uppercase .114

XMLDECOD: Decoding XML-Encoded Characters . 115

XMLENCOD: XML-Encoding Characters . 116

5. Variable Length Character Functions . 119

Overview . 119

LENV: Returning the Length of an Alphanumeric Field .120

LOCASV: Creating a Variable Length Lowercase String . 120

POSITV: Finding the Beginning of a Variable Length Substring .121

SUBSTV: Extracting a Variable Length Substring . 123

TRIMV: Removing Characters From a String . 124

UPCASV: Creating a Variable Length Uppercase String .125

6. Character Functions for DBCS Code Pages .127

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another . 127

DEDIT: Extracting or Adding Characters . 128

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String 130

DSUBSTR: Extracting a Substring . 131

JPTRANS: Converting Japanese Specific Characters . 132

KKFCUT: Truncating a String . 137

SFTDEL: Deleting the Shift Code From DBCS Data . 138

SFTINS: Inserting the Shift Code Into DBCS Data . 139

7. Data Source and Decoding Functions . 141

CHECKMD5: Computing an MD5 Hash Check Value . 141

CHECKSUM: Computing a Hash Sum .142

COALESCE: Returning the First Non-Missing Value . 143

DB_EXPR: Inserting an SQL Expression Into a Request . 143

Contents

Functions Reference 5

DB_INFILE: Testing Values Against a File or an SQL Subquery . 145

DB_LOOKUP: Retrieving Data Source Values . 150

DECODE: Decoding Values .152

FIND: Verifying the Existence of a Value in a Data Source . 153

LAST: Retrieving the Preceding Value .154

LOOKUP: Retrieving a Value From a Cross-referenced Data Source . 155

NULLIF: Returning a Null Value When Parameters Are Equal . 157

8. Simplified Date and Date-Time Functions . 159

DT_CURRENT_DATE: Returning the Current Date .160

DT_CURRENT_DATETIME: Returning the Current Date and Time . 160

DT_CURRENT_TIME: Returning the Current Time . 161

DTADD: Incrementing a Date or Date-Time Component . 161

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values . 163

DTIME: Extracting Time Components From a Date-Time Value .164

DTPART: Returning a Date or Date-Time Component in Integer Format . 165

DTRUNC: Returning the Start of a Date Period for a Given Date . 166

9. Date Functions .169

Overview of Date Functions . 170

Using Standard Date Functions .170

Specifying Work Days. 171

Specifying Business Days. .171

Specifying Holidays. 172

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager.176

DATEADD: Adding or Subtracting a Date Unit to or From a Date . 177

DATECVT: Converting the Format of a Date .179

DATEDIF: Finding the Difference Between Two Dates . 181

DATEMOV: Moving a Date to a Significant Point .183

DATETRAN: Formatting Dates in International Formats . 187

FIYR: Obtaining the Financial Year . 203

FIQTR: Obtaining the Financial Quarter . 205

FIYYQ: Converting a Calendar Date to a Financial Date .207

TODAY: Returning the Current Date . 208

Contents

6 Information Builders

Using Legacy Date Functions .209

Using Old Versions of Legacy Date Functions. 210

AYMD: Adding or Subtracting Days .210

CHGDAT: Changing How a Date String Displays . 211

DA Functions: Converting a Legacy Date to an Integer . 214

DMY, MDY, YMD: Calculating the Difference Between Two Dates . 215

DOWK and DOWKL: Finding the Day of the Week .215

DT Functions: Converting an Integer to a Date . 216

GREGDT: Converting From Julian to Gregorian Format .217

JULDAT: Converting From Gregorian to Julian Format . 218

YM: Calculating Elapsed Months . 219

10. Date-Time Functions . 221

Using Date-Time Functions . 222

Date-Time Parameters. .222

Specifying the Order of Date Components. .222

Specifying the First Day of the Week for Use in Date-Time Functions. 223

Controlling Processing of Date-Time Values. 225

Supplying Arguments for Date-Time Functions. .225

HADD: Incrementing a Date-Time Value .227

HCNVRT: Converting a Date-Time Value to Alphanumeric Format . 229

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format 230

HDIFF: Finding the Number of Units Between Two Date-Time Values . 230

HDTTM: Converting a Date Value to a Date-Time Value . 232

HGETC: Storing the Current Local Date and Time in a Date-Time Field .233

HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field234

HHMMSS: Retrieving the Current Time . 235

HHMS: Converting a Date-Time Value to a Time Value . 236

HINPUT: Converting an Alphanumeric String to a Date-Time Value . 237

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight . 238

HNAME: Retrieving a Date-Time Component in Alphanumeric Format .239

HPART: Retrieving a Date-Time Component as a Numeric Value . 239

HSETPT: Inserting a Component Into a Date-Time Value . 240

Contents

Functions Reference 7

HTIME: Converting the Time Portion of a Date-Time Value to a Number .241

HTMTOTS: Converting a Time to a Timestamp . 242

HYYWD: Returning the Year and Week Number From a Date-Time Value .243

11. Simplified Conversion Functions . 245

CHAR: Returning a Character Based on a Numeric Code . 245

COMPACTFORMAT: Displaying Numbers in an Abbreviated Format . 246

CTRLCHAR: Returning a Non-Printable Control Character . 247

FPRINT: Displaying a Value in a Specified Format . 248

HEXTYPE: Returning the Hexadecimal View of an Input Value . 249

PHONETIC: Returning a Phonetic Key for a String . 250

TO_INTEGER: Converting a Character String to an Integer Value . 251

TO_NUMBER: Converting a Character String to a Numeric Value .251

12. Format Conversion Functions . 253

ATODBL: Converting an Alphanumeric String to Double-Precision Format 253

EDIT: Converting the Format of a Field .254

FPRINT: Converting Fields to Alphanumeric Format . 255

FTOA: Converting a Number to Alphanumeric Format . 256

HEXBYT: Converting a Decimal Integer to a Character . 257

ITONUM: Converting a Large Number to Double-Precision Format .259

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format .260

ITOZ: Converting a Number to Zoned Format . 261

PCKOUT: Writing a Packed Number of Variable Length . 262

PTOA: Converting a Packed-Decimal Number to Alphanumeric Format . 263

TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal263

UFMT: Converting an Alphanumeric String to Hexadecimal . 265

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File265

13. Simplified Numeric Functions .267

CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value 267

EXPONENT: Raising e to a Power . 268

FLOOR: Returning the Largest Integer Less Than or Equal to a Value . 268

MOD: Calculating the Remainder From a Division . 269

POWER: Raising a Value to a Power .270

Contents

8 Information Builders

14. Numeric Functions . 271

ABS: Calculating Absolute Value .271

CHKPCK: Validating a Packed Field . 272

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division .273

EXP: Raising e to the Nth Power . 274

EXPN: Evaluating a Number in Scientific Notation . 275

INT: Finding the Greatest Integer . 276

LOG: Calculating the Natural Logarithm .277

MAX and MIN: Finding the Maximum or Minimum Value .277

NORMSDST and NORMSINV: Calculating Normal Distributions . 278

NORMSDST: Calculating Standard Cumulative Normal Distribution.278

NORMSINV: Calculating Inverse Cumulative Normal Distribution. 281

PRDNOR and PRDUNI: Generating Reproducible Random Numbers . 282

RDNORM and RDUNIF: Generating Random Numbers .283

SQRT: Calculating the Square Root . 283

15. Simplified Statistical Functions .285

Specify the Partition Size for Simplified Statistical Functions . 285

CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data 286

KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean

Value . 286

MULTIREGRESS: Creating a Multivariate Linear Regression Column . 289

RSERVE: Running an R Script . 291

STDDEV: Calculating the Standard Deviation for a Set of Data Values .296

16. Simplified System Functions . 299

EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File . 299

ENCRYPT: Encrypting a Password .300

GETENV: Retrieving the Value of an Environment Variable . 301

PUTENV: Assigning a Value to an Environment Variable . 301

17. System Functions . 303

CLSDDREC: Closing All Files Opened by the PUTDDREC Function .303

FEXERR: Retrieving an Error Message . 304

FGETENV: Retrieving the Value of an Environment Variable . 305

Contents

Functions Reference 9

FPUTENV: Assigning a Value to an Environment Variable . 305

GETUSER: Retrieving a User ID . 307

JOBNAME: Retrieving the Current Process Identification String . 307

PUTDDREC: Writing a Character String as a Record in a Sequential File . 309

SLEEP: Suspending Execution for a Given Number of Seconds .310

SYSVAR: Retrieving the Value of a z/OS System Variable . 311

18. Simplified Geography Functions . 313

Sample Geography Files .314

GIS_DISTANCE: Calculating the Distance Between Geometry Points . 318

GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points 320

GIS_GEOCODE_ADDR: Geocoding a Complete Address . 322

GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State 323

GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code 325

GIS_GEOMETRY: Building a JSON Geometry Object .326

GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon . 328

GIS_LINE: Building a JSON Line . 330

GIS_POINT: Building a Geometry Point .332

GIS_REVERSE_COORDINATE: Returning a Geographic Component .334

GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point .335

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate 337

19. SQL Character Functions . 341

CHAR_LENGTH: Finding the Length of a Character String . 341

CONCAT: Concatenating Two Character Strings . 342

DIGITS: Converting a Numeric Value to a Character String .343

EDIT: Editing a Value According to a Format (SQL) .344

LCASE: Converting a Character String to Lowercase . 345

LTRIM: Removing Leading Spaces . 345

POSITION: Finding the Position of a Substring . 346

RTRIM: Removing Trailing Spaces . 347

SUBSTR: Extracting a Substring From a String Value (SQL) . 347

TRIM: Removing Leading or Trailing Characters (SQL) .349

UCASE: Converting a Character String to Uppercase .350

Contents

10 Information Builders

VARGRAPHIC: Converting to Double-byte Character Data . 350

20. SQL Date and Time Functions . 353

CURRENT_DATE: Obtaining the Date . 353

CURRENT_TIME: Obtaining the Time . 354

CURRENT_TIMESTAMP: Obtaining the Timestamp (Date/Time) .354

DAY: Obtaining the Day of the Month From a Date/Timestamp .355

DAYS: Obtaining the Number of Days Since January 1, 0001 . 356

EXTRACT: Obtaining a Datetime Field From Date/Time/Timestamp . 356

HOUR: Obtaining the Hour From Time/Timestamp .357

MICROSECOND: Obtaining Microseconds From Time/Timestamp .358

MILLISECOND: Obtaining Milliseconds From Time/Timestamp . 359

MINUTE: Obtaining the Minute From Time/Timestamp . 359

MONTH: Obtaining the Month From Date/Timestamp . 360

SECOND: Obtaining the Second Field From Time/Timestamp . 360

QUARTER: Returning the Quarter of the Year . 361

WEEKDAY: Returning the Day of the Week . 362

YEAR: Obtaining the Year From a Date or Timestamp . 362

21. SQL Data Type Conversion Functions . 365

CAST: Converting to a Specific Data Type . 365

CHAR: Converting to a Character String .366

CHAR: Converting to a Standard Date-Time Format . 367

DATE: Converting to a Date . 368

DECIMAL: Converting to Decimal Format .368

FLOAT: Converting to Floating Point Format .369

INT: Converting to an Integer .370

SMALLINT: Converting to a Small Integer . 370

TIME: Converting to a Time . 371

TIMESTAMP: Converting to a Timestamp .372

22. SQL Numeric Functions .373

ABS: Returning an Absolute Value (SQL) . 373

CEIL: Returning the Smallest Integer Greater Than or Equal to a Value . 374

FLOOR: Returning the Largest Integer Less Than or Equal to a Value (SQL) 374

Contents

Functions Reference 11

GREATEST: Returning the Largest Value . 375

LEAST: Returning the Smallest Value .376

LOG: Returning a Logarithm (SQL) . 377

EXP: Returning e Raised to a Power .377

MOD: Returning the Remainder of a Division . 378

POWER: Raising a Value to a Power (SQL) . 378

SQRT: Returning a Square Root (SQL) . 379

23. SQL Miscellaneous Functions .381

COUNTBY: Incrementing Column Values Row by Row . 381

DB_EXPR: Inserting an SQL Expression Into a Request (SQL) . 382

HEX: Converting to Hexadecimal .383

IF: Testing a Condition . 384

LENGTH: Obtaining the Physical Length of a Data Item . 385

VALUE: Coalescing Data Values . 385

24. SQL Operators . 387

CASE: SQL Case Operator . 387

COALESCE: Coalescing Data Values . 389

NULLIF: NULLIF Operator . 390

Contents

12 Information Builders

Preface

This content describes how to use Information Builders-supplied functions to perform complex
calculations and manipulate data in procedures. It is intended for application developers and
end users.

How This Manual Is Organized

This manual includes the following chapters:

Chapter/Appendix Contents

1 Functions Overview Introduces functions and explains the different
types of available functions.

2 Simplified Analytic Functions Describes analytic functions that have streamlined
parameter lists, similar to those used by SQL
functions.

3 Simplified Character
Functions

Describes character functions that have
streamlined parameter lists, similar to those used
by SQL functions.

4 Character Functions Describes character functions that manipulate
alphanumeric fields and character strings.

5 Variable Length Character
Functions

Describes variable-length character functions which
manipulate alphanumeric fields and character
strings.

6 Character Functions for DBCS
Code Pages

Describes functions that manipulate strings of
DBCS and SBCS characters when the configuration
uses a DBCS code page.

7 Data Source and Decoding
Functions

Describes data source and decoding functions that
search for data source records, retrieve data source
records or values, and assign values based on the
value of an input field.

8 Simplified Date and Date-
Time Functions

Describes date and date-time functions that have
streamlined parameter lists, similar to those used
by SQL functions.

9 Date Functions Describes date functions that manipulate date
values.

Functions Reference 13

Chapter/Appendix Contents

10 Date-Time Functions Describes date-time functions that manipulate date-
time values.

11 Simplified Conversion
Functions

Describes conversion functions that have
streamlined parameter lists, similar to those used
by SQL functions.

12 Format Conversion Functions Describes format conversion functions that convert
fields from one format to another.

13 Simplified Numeric Functions Describes numeric functions that have streamlined
parameter lists, similar to those used by SQL
functions.

14 Numeric Functions Describes numeric functions that perform
calculations on numeric constants and fields.

15 Simplified Statistical
Functions

Describes functions that perform statistical
calculations.

16 Simplified System Functions Describes system functions that have streamlined
parameter lists, similar to those used by SQL
functions.

17 System Functions Describes system functions that call the operating
system to obtain information about the operating
environment or to use a system service.

18 Simplified Geography
Functions

Describes geography functions that have
streamlined parameter lists, similar to those used
by SQL functions.

19 SQL Character Functions Describes SQL character functions which
manipulate alphanumeric fields and character
strings.

20 SQL Date and Time Functions Describes SQL date and time functions which
manipulate date and time values.

21 SQL Data Type Conversion
Functions

Describes SQL format conversion functions which
convert fields from one format to another.

14 Information Builders

Chapter/Appendix Contents

22 SQL Numeric Functions Describes SQL numeric functions which perform
calculations on numeric constants and fields.

23 SQL Miscellaneous Functions Describes miscellaneous SQL functions which
perform conversions, tests and manipulations.

24 SQL Operators Describes SQL operators which used to evaluate
expressions.

Conventions

The following table describes the conventions that are used in this manual.

Convention Description

THIS TYPEFACE

or

this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or
dialog box option that you can click or select.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices. Type one of them, not the braces.

[] Indicates a group of optional parameters. None are required, but
you may select one of them. Type only the parameter in the
brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one of them,
not the symbol.

Preface

Functions Reference 15

Convention Description

... Indicates that you can enter a parameter multiple times. Type only
the parameter, not the ellipsis (...).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications

Visit our Technical Content Library, http://documentation.informationbuilders.com. You can also
contact the Publications Order Department at (800) 969-4636.

Customer Support

Do you have any questions about this product?

Join the Focal Point community. Focal Point is our online developer center and more than a
message board. It is an interactive network of more than 3,000 developers from almost every
profession and industry, collaborating on solutions and sharing tips and techniques. Access
Focal Point at http://forums.informationbuilders.com/eve/forums.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our website, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update, and
view the status of cases in the tracking system and read descriptions of reported software
issues. New users can register immediately for this service. The technical support section of
www.informationbuilders.com also provides usage techniques, diagnostic tips, and answers to
frequently asked questions.

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212)
736-6130. Customer Support Consultants are available Monday through Friday between 8:00
a.m. and 8:00 p.m. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities. Please be ready to provide your
six-digit site code number (xxxx.xx) when you call.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Related Publications

16 Information Builders

http://documentation.informationbuilders.com
http://forums.informationbuilders.com/eve/forums
http://www.informationbuilders.com
http://www.informationbuilders.com

Information You Should Have

To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

Your six-digit site code (xxxx.xx).

Your iWay Software configuration:

The iWay Software version and release. You can find your server version and release
using the Version option in the Web Console.

Note: the MVS and VM servers do not use the Web Console.

The communications protocol (for example, TCP/IP or LU6.2), including vendor and
release.

The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

The database server release level.

The database name and release level.

The Master File and Access File.

The exact nature of the problem:

Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

Provide the error message and return code, if applicable.

Is this related to any other problem?

Has the procedure or query ever worked in its present form? Has it been changed recently?
How often does the problem occur?

What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

Is this problem reproducible? If so, how?

Have you tried to reproduce your problem in the simplest form possible? For example, if you
are having problems joining two data sources, have you tried executing a query containing
just the code to access the data source?

Preface

Functions Reference 17

Do you have a trace file?

How is the problem affecting your business? Is it halting development or production? Do
you just have questions about functionality or documentation?

User Feedback

In an effort to produce effective documentation, the Technical Content Management staff
welcomes your opinions regarding this document. You can contact us through our website
http://documentation.informationbuilders.com/connections.asp.

Thank you, in advance, for your comments.

iWay Software Training and Professional Services

Interested in training? Our Education Department offers a wide variety of training courses for
iWay Software and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our website (http://education.informationbuilders.com) or call (800) 969-INFO to speak to an
Education Representative.

Interested in technical assistance for your implementation? Our Professional Services
department provides expert design, systems architecture, implementation, and project
management services for all your business integration projects. For information, visit our
website (http://www.informationbuilders.com/support).

User Feedback

18 Information Builders

http://documentation.informationbuilders.com/connections.asp
http://education.informationbuilders.com
http://www.informationbuilders.com/support

Chapter1
Functions Overview

Functions provide a convenient way to perform certain calculations and manipulations.
They operate on one or more arguments and return a single value that is assigned to an
output_format. The returned value can be stored in a field, assigned to a Dialogue
Manager variable, used in an expression or other processing, or used in a selection or
validation test. These functions can be used in source and target objects.

In this chapter:

Function Arguments

Function Categories

Character Chart for ASCII and EBCDIC

Function Arguments

All function arguments except the last one are input arguments. The formats for these
arguments are described with each function. Unless specified, every input argument can be
provided as one of the following:

A literal (that is, a number for numeric formats or a character string enclosed in single
quotation marks for alphanumeric formats).

A field of the correct format.

A variable assigned by a Dialogue Manager command.

An expression result evaluated in the correct format.

The output argument is the last function argument. With few exceptions, it is a required
argument whose only goal is to provide a format for the output of a function. It is not a field to
put the result in. The format can be provided as either:

A character string enclosed in single quotation marks.

A field name whose format is to be used.

This field is the one to which the result of the expression evaluation is assigned. If the
output_format is alphanumeric, its size should be large enough to fit the function output and
avoid truncation; excessive size causes the output to be padded with blanks.

Functions Reference 19

Note: With CDN ON, numeric function arguments must be delimited by a comma followed by a
space.

Function Categories

Functions are grouped into the following areas:

Character Functions

Variable Length Character Functions

Character Functions for DBCS Code Pages

Data Source and Decoding Functions

Date Functions

Using Standard Date Functions

Using Legacy Date Functions

Date-Time Functions

Format Conversion Functions

Numeric Functions

System Functions

Character Chart for ASCII and EBCDIC

This chart shows the primary printable characters in the ASCII and EBCDIC character sets and
their decimal equivalents. Extended ASCII codes (above 127) are not included.

Decimal ASCII EBCDIC

33 ! exclamation point

34 " quotation mark

35 # number sign

36 $ dollar sign

37 % percent

Function Categories

20 Information Builders

Decimal ASCII EBCDIC

38 & ampersand

39 ' apostrophe

40 (left parenthesis

41) right parenthesis

42 * asterisk

43 + plus sign

44 , comma

45 - hyphen

46 . period

47 / slash

48 0 0

49 1 1

50 2 2

51 3 3

52 4 4

53 5 5

54 6 6

55 7 7

56 8 8

57 9 9

58 : colon

59 ; semicolon

1. Functions Overview

Functions Reference 21

Decimal ASCII EBCDIC

60 < less-than sign

61 = equal sign

62 > greater-than sign

63 ? question mark

64 @ at sign

65 A A

66 B B

67 C C

68 D D

69 E E

70 F F

71 G G

72 H H

73 I I

74 J J ¢ cent sign

75 K K . period

76 L L < less-than sign

77 M M (left parenthesis

78 N N + plus sign

79 O O | logical or

80 P P & ampersand

81 Q Q

Character Chart for ASCII and EBCDIC

22 Information Builders

Decimal ASCII EBCDIC

82 R R

83 S S

84 T T

85 U U

86 V V

87 W W

88 X X

89 Y Y

90 Z Z ! exclamation point

91 [opening bracket $ dollar sign

92 \ back slant * asterisk

93] closing bracket) right parenthesis

94 ^ caret ; semicolon

95 _ underscore ¬ logical not

96 ` grave accent - hyphen

97 a a / slash

98 b b

99 c c

100 d d

101 e e

102 f f

103 g g

1. Functions Overview

Functions Reference 23

Decimal ASCII EBCDIC

104 h h

105 i i

106 j j

107 k k , comma

108 l l % percent

109 m m _ underscore

110 n n > greater-than sign

111 o o ? question mark

112 p p

113 q q

114 r r

115 s s

116 t t

117 u u

118 v v

119 w w

120 x x

121 y y

122 z z : colon

123 { opening brace # number sign

124 | vertical line @ at sign

125 } closing brace ' apostrophe

Character Chart for ASCII and EBCDIC

24 Information Builders

Decimal ASCII EBCDIC

126 ~ tilde = equal sign

127 " quotation mark

129 a a

130 b b

131 c c

132 d d

133 e e

134 f f

135 g g

136 h h

137 i i

145 j j

146 k k

147 l l

148 m m

149 n n

150 o o

151 p p

152 q q

153 r r

162 s s

163 t t

1. Functions Overview

Functions Reference 25

Decimal ASCII EBCDIC

164 u u

165 v v

166 w w

167 x x

168 y y

169 z z

185 ` grave accent

193 A A

194 B B

195 C C

196 D D

197 E E

198 F F

199 G G

200 H H

201 I I

209 J J

210 K K

211 L L

212 M M

213 N N

214 O O

Character Chart for ASCII and EBCDIC

26 Information Builders

Decimal ASCII EBCDIC

215 P P

216 Q Q

217 R R

226 S S

227 T T

228 U U

229 V V

230 W W

231 X X

232 Y Y

233 Z Z

240 0 0

241 1 1

242 2 2

243 3 3

244 4 4

245 5 5

246 6 6

247 7 7

248 8 8

249 9 9

1. Functions Overview

Functions Reference 27

Character Chart for ASCII and EBCDIC

28 Information Builders

Chapter2
Simplified Analytic Functions

The analytic functions enable you do perform calculations and retrievals using multiple
rows in the internal matrix.

In this chapter:

FORECAST_MOVAVE: Using a Simple Moving Average

FORECAST_EXPAVE: Using Single Exponential Smoothing

FORECAST_DOUBLEXP: Using Double Exponential Smoothing

FORECAST_SEASONAL: Using Triple Exponential Smoothing

FORECAST_LINEAR: Using a Linear Regression Equation

PARTITION_AGGR: Creating Rolling Calculations

PARTITION_REF: Using Prior Field Values in Calculations

FORECAST_MOVAVE: Using a Simple Moving Average

A simple moving average is a series of arithmetic means calculated with a specified number of
values from a field. Each new mean in the series is calculated by dropping the first value used
in the prior calculation, and adding the next data value to the calculation.

Simple moving averages are sometimes used to analyze trends in stock prices over time. In
this scenario, the average is calculated using a specified number of periods of stock prices. A
disadvantage to this indicator is that because it drops the oldest values from the calculation
as it moves on, it loses its memory over time. Also, mean values are distorted by extreme
highs and lows, since this method gives equal weight to each point.

Predicted values beyond the range of the data values are calculated using a moving average
that treats the calculated trend values as new data points.

Functions Reference 29

The first complete moving average occurs at the nth data point because the calculation
requires n values. This is called the lag. The moving average values for the lag rows are
calculated as follows: the first value in the moving average column is equal to the first data
value, the second value in the moving average column is the average of the first two data
values, and so on until the nth row, at which point there are enough values to calculate the
moving average with the number of values specified.

Syntax: How to Calculate a Simple Moving Average Column

FORECAST_MOVAVE(display, infield, interval,
 npredict, npoint1)

where:

display

Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

INPUT_FIELD. This displays the original field values for rows that represent existing
data.

MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

interval
Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredict
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only

FORECAST_MOVAVE: Using a Simple Moving Average

30 Information Builders

supported with a non-recursive FORECAST. For the SEASONAL method, npredict is the
number of periods to calculate. The number of points generated is:

nperiod * npredict

npoint1
Is the number of values to average for the MOVAVE method.

Example: Calculating a New Simple Moving Average Column

This request defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of the retrieved data.
The MOVAVE column on the report output shows the calculated moving average numbers for
existing data points.

DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
SMONTH/M = SDATE;
PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS DOLLARS
COMPUTE MOVAVE/D10.1= FORECAST_MOVAVE(MODEL_DATA, DOLLARS,1,3,3);
BY CATEGORY BY PERIOD
WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

2. Simplified Analytic Functions

Functions Reference 31

The output is:

In the report, the number of values to use in the average is 3 and there are no UNITS or
DOLLARS values for the generated PERIOD values.

Each average (MOVAVE value) is computed using DOLLARS values where they exist. The
calculation of the moving average begins in the following way:

The first MOVAVE value (801,123.0) is equal to the first DOLLARS value.

FORECAST_MOVAVE: Using a Simple Moving Average

32 Information Builders

The second MOVAVE value (741,731.5) is the mean of DOLLARS values one and two:
(801,123 + 682,340) /2.

The third MOVAVE value (749,513.7) is the mean of DOLLARS values one through three:
(801,123 + 682,340 + 765,078) / 3.

The fourth MOVAVE value (712,897.3) is the mean of DOLLARS values two through four:
(682,340 + 765,078 + 691,274) /3.

For predicted values beyond the supplied values, the calculated MOVAVE values are used as
new data points to continue the moving average. The predicted MOVAVE values (starting with
694,975.6 for PERIOD 13) are calculated using the previous MOVAVE values as new data
points. For example, the first predicted value (694,975.6) is the average of the data points
from periods 11 and 12 (620,264 and 762,328) and the moving average for period 12
(702,334.7). The calculation is: 694,975 = (620,264 + 762,328 + 702,334.7)/3.

Example: Displaying Original Field Values in a Simple Moving Average Column

This request defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of the retrieved data.
It uses the keyword INPUT_FIELD as the first argument in the FORECAST parameter list. The
trend values do not display in the report. The actual data values for DOLLARS are followed by
the predicted values in the report column.

DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
SMONTH/M = SDATE;
PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS DOLLARS
COMPUTE MOVAVE/D10.1 = FORECAST_MOVAVE(INPUT_FIELD,DOLLARS,1,3,3);
BY CATEGORY BY PERIOD
WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

2. Simplified Analytic Functions

Functions Reference 33

The output is shown in the following image:

FORECAST_MOVAVE: Using a Simple Moving Average

34 Information Builders

FORECAST_EXPAVE: Using Single Exponential Smoothing

The single exponential smoothing method calculates an average that allows you to choose
weights to apply to newer and older values.

The following formula determines the weight given to the newest value.

k = 2/(1+n)

where:

k
Is the newest value.

n
Is an integer greater than one. Increasing n increases the weight assigned to the earlier
observations (or data instances), as compared to the later ones.

The next calculation of the exponential moving average (EMA) value is derived by the following
formula:

EMA = (EMA * (1-k)) + (datavalue * k)

This means that the newest value from the data source is multiplied by the factor k and the
current moving average is multiplied by the factor (1-k). These quantities are then summed to
generate the new EMA.

Note: When the data values are exhausted, the last data value in the sort group is used as the
next data value.

Syntax: How to Calculate a Single Exponential Smoothing Column

FORECAST_EXPAVE(display, infield, interval,
 npredict, npoint1)

where:

display

Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

INPUT_FIELD. This displays the original field values for rows that represent existing
data.

MODEL_DATA. This displays the calculated values for rows that represent existing
data.

2. Simplified Analytic Functions

Functions Reference 35

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

interval
Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredict
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST.

npoint1
For EXPAVE, this number is used to calculate the weights for each component in the
average. This value must be a positive whole number. The weight, k, is calculated by
the following formula:

k=2/(1+npoint1)

Example: Calculating a Single Exponential Smoothing Column

The following defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of retrieved data.

DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
SMONTH/M = SDATE;
PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS DOLLARS
COMPUTE EXPAVE/D10.1= FORECAST_EXPAVE(MODEL_DATA,DOLLARS,1,3,3);
BY CATEGORY BY PERIOD
WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE

FORECAST_EXPAVE: Using Single Exponential Smoothing

36 Information Builders

The output is shown in the following image:

Category PERIOD Unit Sales Dollar Sales EXPAVE
-------- ------ ---------- ------------ ------
Coffee 1 61666 801123 801,123.0
 2 54870 682340 741,731.5
 3 61608 765078 753,404.8
 4 57050 691274 722,339.4
 5 59229 720444 721,391.7
 6 58466 742457 731,924.3
 7 60771 747253 739,588.7
 8 54633 655896 697,742.3
 9 57829 730317 714,029.7
 10 57012 724412 719,220.8
 11 51110 620264 669,742.4
 12 58981 762328 716,035.2
 13 0 0 739,181.6
 14 0 0 750,754.8
 15 0 0 756,541.4
Food 1 54394 672727 672,727.0
 2 54894 699073 685,900.0
 3 52713 642802 664,351.0
 4 58026 718514 691,432.5
 5 53289 660740 676,086.3
 6 58742 734705 705,395.6
 7 60127 760586 732,990.8
 8 55622 695235 714,112.9
 9 55787 683140 698,626.5
 10 57340 713768 706,197.2
 11 57459 710138 708,167.6
 12 57290 705315 706,741.3
 13 0 0 706,028.2
 14 0 0 705,671.6
 15 0 0 705,493.3

In the report, three predicted values of EXPAVE are calculated within each value of CATEGORY.
For values outside the range of the data, new PERIOD values are generated by adding the
interval value (1) to the prior PERIOD value.

Each average (EXPAVE value) is computed using DOLLARS values where they exist. The
calculation of the moving average begins in the following way:

The first EXPAVE value (801,123.0) is the same as the first DOLLARS value.

The second EXPAVE value (741,731.5) is calculated as follows. Note that because of
rounding and the number of decimal places used, the value derived in this sample
calculation varies slightly from the one displayed in the report output:

n=3 (number used to calculate weights)

k = 2/(1+n) = 2/4 = 0.5

EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) = (801123*0.5) + (682340*0.50) =
400561.5 + 341170 = 741731.5

2. Simplified Analytic Functions

Functions Reference 37

The third EXPAVE value (753,404.8) is calculated as follows:

EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) = (741731.5*0.5)+(765078*0.50) =
370865.75 + 382539 = 753404.75

FORECAST_DOUBLEXP: Using Double Exponential Smoothing

Double exponential smoothing produces an exponential moving average that takes into
account the tendency of data to either increase or decrease over time without repeating. This
is accomplished by using two equations with two constants.

The first equation accounts for the current time period and is a weighted average of the
current data value and the prior average, with an added component (b) that represents the
trend for the previous period. The weight constant is k:

DOUBLEXP(t) = k * datavalue(t) + (1-k) * ((DOUBLEXP(t-1) + b(t-1))

The second equation is the calculated trend value, and is a weighted average of the
difference between the current and previous average and the trend for the previous time
period. b(t) represents the average trend. The weight constant is g:

b(t) = g * (DOUBLEXP(t)-DOUBLEXP(t-1)) + (1 - g) * (b(t-1))

These two equations are solved to derive the smoothed average. The first smoothed average is
set to the first data value. The first trend component is set to zero. For choosing the two
constants, the best results are usually obtained by minimizing the mean-squared error (MSE)
between the data values and the calculated averages. You may need to use nonlinear
optimization techniques to find the optimal constants.

The equation used for forecasting beyond the data points with double exponential smoothing is

forecast(t+m) = DOUBLEXP(t) + m * b(t)

where:

m
Is the number of time periods ahead for the forecast.

Syntax: How to Calculate a Double Exponential Smoothing Column

FORECAST_DOUBLEXP(display, infield,
interval, npredict, npoint1, npoint2)

FORECAST_DOUBLEXP: Using Double Exponential Smoothing

38 Information Builders

where:

display

Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

INPUT_FIELD. This displays the original field values for rows that represent existing
data.

MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

interval
Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredict
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST.

nperiod
For the SEASONAL method, it is a positive whole number that specifies the number of
data points in a period.

npoint1
For DOUBLEXP, this number is used to calculate the weights for each component in
the average. This value must be a positive whole number. The weight, k, is calculated
by the following formula:

k=2/(1+npoint1)

2. Simplified Analytic Functions

Functions Reference 39

npoint2
For DOUBLEXP, this positive whole number is used to calculate the weights for each
term in the trend. The weight, g, is calculated by the following formula:

g=2/(1+npoint2)

Example: Calculating a Double Exponential Smoothing Column

The following sums the ACTUAL_YTD field of the CENTSTMT data source by period, and
calculates a single exponential and double exponential moving average. The report columns
show the calculated values for existing data points.

TABLE FILE CENTSTMT
SUM ACTUAL_YTD
COMPUTE EXP/D15.1 = FORECAST_EXPAVE(MODEL_DATA,ACTUAL_YTD,1,0,3);
DOUBLEXP/D15.1 = FORECAST_DOUBLEXP(MODEL_DATA,ACTUAL_YTD,1,0,3,3);
BY PERIOD
WHERE GL_ACCOUNT LIKE '3%%%'
ON TABLE SET STYLE *
GRID=OFF,$
END

The output is shown in the following image:

FORECAST_SEASONAL: Using Triple Exponential Smoothing

Triple exponential smoothing produces an exponential moving average that takes into account
the tendency of data to repeat itself in intervals over time. For example, sales data that is
growing and in which 25% of sales always occur during December contains both trend and
seasonality. Triple exponential smoothing takes both the trend and seasonality into account by
using three equations with three constants.

FORECAST_SEASONAL: Using Triple Exponential Smoothing

40 Information Builders

For triple exponential smoothing you, need to know the number of data points in each time
period (designated as L in the following equations). To account for the seasonality, a seasonal
index is calculated. The data is divided by the prior season index and then used in calculating
the smoothed average.

The first equation accounts for the current time period, and is a weighted average of the
current data value divided by the seasonal factor and the prior average adjusted for the
trend for the previous period. The weight constant is k:

SEASONAL(t) = k * (datavalue(t)/I(t-L)) + (1-k) * (SEASONAL(t-1) +
b(t-1))

The second equation is the calculated trend value, and is a weighted average of the
difference between the current and previous average and the trend for the previous time
period. b(t) represents the average trend. The weight constant is g:

b(t) = g * (SEASONAL(t)-SEASONAL(t-1)) + (1-g) * (b(t-1))

The third equation is the calculated seasonal index, and is a weighted average of the
current data value divided by the current average and the seasonal index for the previous
season. I(t) represents the average seasonal coefficient. The weight constant is p:

I(t) = p * (datavalue(t)/SEASONAL(t)) + (1 - p) * I(t-L)

These equations are solved to derive the triple smoothed average. The first smoothed average
is set to the first data value. Initial values for the seasonality factors are calculated based on
the maximum number of full periods of data in the data source, while the initial trend is
calculated based on two periods of data. These values are calculated with the following steps:

1. The initial trend factor is calculated by the following formula:

b(0) = (1/L) ((y(L+1)-y(1))/L + (y(L+2)-y(2))/L + ... + (y(2L) -
y(L))/L)

2. The calculation of the initial seasonality factor is based on the average of the data values
within each period, A(j) (1<=j<=N):

A(j) = (y((j-1)L+1) + y((j-1)L+2) + ... + y(jL)) / L

3. Then, the initial periodicity factor is given by the following formula, where N is the number
of full periods available in the data, L is the number of points per period and n is a point
within the period (1<= n <= L):

I(n) = (y(n)/A(1) + y(L+n)/A(2) + ... + y((N-1)L+n)/A(N)) / N

2. Simplified Analytic Functions

Functions Reference 41

The three constants must be chosen carefully. The best results are usually obtained by
choosing the constants to minimize the mean-squared error (MSE) between the data values
and the calculated averages. Varying the values of npoint1 and npoint2 affect the results, and
some values may produce a better approximation. To search for a better approximation, you
may want to find values that minimize the MSE.

The equation used to forecast beyond the last data point with triple exponential smoothing is:

forecast(t+m) = (SEASONAL(t) + m * b(t)) / I(t-L+MOD(m/L))

where:

m
Is the number of periods ahead for the forecast.

Syntax: How to Calculate a Triple Exponential Smoothing Column

FORECAST_SEASONAL(display, infield,
interval, npredict, nperiod, npoint1, npoint2, npoint3)

where:

display

Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

INPUT_FIELD. This displays the original field values for rows that represent existing
data.

MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

interval
Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

FORECAST_SEASONAL: Using Triple Exponential Smoothing

42 Information Builders

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredict
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST. For the SEASONAL method, npredict is the
number of periods to calculate. The number of points generated is:

nperiod * npredict

nperiod
For the SEASONAL method, is a positive whole number that specifies the number of
data points in a period.

npoint1
For SEASONAL, this number is used to calculate the weights for each component in
the average. This value must be a positive whole number. The weight, k, is calculated
by the following formula:

k=2/(1+npoint1)

npoint2
For SEASONAL, this positive whole number is used to calculate the weights for each
term in the trend. The weight, g, is calculated by the following formula:

g=2/(1+npoint2)

npoint3
For SEASONAL, this positive whole number is used to calculate the weights for each
term in the seasonal adjustment. The weight, p, is calculated by the following formula:

p=2/(1+npoint3)

2. Simplified Analytic Functions

Functions Reference 43

Example: Calculating a Triple Exponential Smoothing Column

In the following, the data has seasonality but no trend. Therefore, npoint2 is set high (1000) to
make the trend factor negligible in the calculation:

TABLE FILE VIDEOTRK
SUM TRANSTOT
COMPUTE SEASONAL/D10.1 = FORECAST_SEASONAL(MODEL_DATA,TRANSTOT,
1,3,3,3,1000,1);
BY TRANSDATE
WHERE TRANSDATE NE '19910617'
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

In the output, npredict is 3. Therefore, three periods (nine points, nperiod * npredict) are
generated.

FORECAST_SEASONAL: Using Triple Exponential Smoothing

44 Information Builders

FORECAST_LINEAR: Using a Linear Regression Equation

The linear regression equation estimates values by assuming that the dependent variable (the
new calculated values) and the independent variable (the sort field values) are related by a
function that represents a straight line:

y = mx + b

where:

y
Is the dependent variable.

x
Is the independent variable.

m
Is the slope of the line.

b
Is the y-intercept.

FORECAST_LINEAR uses a technique called Ordinary Least Squares to calculate values for m
and b that minimize the sum of the squared differences between the data and the resulting
line.

The following formulas show how m and b are calculated.

where:

n
Is the number of data points.

y
Is the data values (dependent variables).

x
Is the sort field values (independent variables).

Trend values, as well as predicted values, are calculated using the regression line equation.

2. Simplified Analytic Functions

Functions Reference 45

Syntax: How to Calculate a Linear Regression Column

FORECAST_LINEAR(display, infield, interval,
 npredict)

where:

display

Keyword

Specifies which values to display for rows of output that represent existing data. Valid
values are:

INPUT_FIELD. This displays the original field values for rows that represent existing
data.

MODEL_DATA. This displays the calculated values for rows that represent existing
data.

Note: You can show both types of output for any field by creating two independent
COMPUTE commands in the same request, each with a different display option.

infield
Is any numeric field. It can be the same field as the result field, or a different field. It
cannot be a date-time field or a numeric field with date display options.

interval
Is the increment to add to each sort field value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sort field values is converted
to the same format as the sort field.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days. If the format is YM, the 2 is interpreted as meaning two
months.

npredict
Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST.

FORECAST_LINEAR: Using a Linear Regression Equation

46 Information Builders

Example: Calculating a New Linear Regression Field

The following request calculates a regression line using the VIDEOTRK data source of
QUANTITY by TRANSDATE. The interval is one day, and three predicted values are calculated.

TABLE FILE VIDEOTRK
SUM QUANTITY
COMPUTE FORTOT=FORECAST_LINEAR(MODEL_DATA,QUANTITY,1,3);
BY TRANSDATE
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image:

Note:

Three predicted values of FORTOT are calculated. For values outside the range of the data,
new TRANSDATE values are generated by adding the interval value (1) to the prior
TRANSDATE value.

There are no QUANTITY values for the generated FORTOT values.

Each FORTOT value is computed using a regression line, calculated using all of the actual
data values for QUANTITY.

2. Simplified Analytic Functions

Functions Reference 47

TRANSDATE is the independent variable (x) and QUANTITY is the dependent variable (y).
The equation is used to calculate QUANTITY FORECAST trend and predicted values.

The following version of the request charts the data values and the regression line.

GRAPH FILE VIDEOTRK
SUM QUANTITY
COMPUTE FORTOT=FORECAST_LINEAR(MODEL_DATA,QUANTITY,1,3);
BY TRANSDATE
ON GRAPH PCHOLD FORMAT JSCHART
ON GRAPH SET LOOKGRAPH VLINE
END

The output is shown in the following image.

PARTITION_AGGR: Creating Rolling Calculations

Using the PARTITION_AGGR function, you can generate rolling calculations based on a block of
rows from the internal matrix of a TABLE request. In order to determine the limits of the rolling
calculations, you specify a partition of the data based on either a sort field or the entire TABLE.
Within either type of break, you can start calculating from the beginning of the break or a
number of rows prior to the current row. You can stop the rolling calculation at the current row
or the end of the partition.

PARTITION_AGGR: Creating Rolling Calculations

48 Information Builders

By default, the field values used in the calculations are the summed values of a measure in
the request. Certain prefix operators can be used to add a column to the internal matrix and
use that column in the rolling calculations. The rolling calculation can be SUM, AVE, CNT, MIN,
MAX, FST, or LST.

Syntax: How to Generate Rolling Calculations Using PARTITION_AGGR

PARTITION_AGGR([prefix.]measure,{sortfield|TABLE},from,to,operation)

where:

prefix.

Defines an aggregation operator to apply to the measure before using it in the rolling
calculation. Valid operators are:

SUM. which calculates the sum of the measure field values. SUM is the default
operator.

CNT. which calculates a count of the measure field values.

AVE. which calculates the average of the measure field values.

MIN. which calculates the minimum of the measure field values.

MAX. which calculates the maximum of the measure field values.

FST. which retrieves the first value of the measure field.

LST. which retrieves the last value of the measure field.

Note: The operators PCT., RPCT., TOT., MDN., and DST. are not supported. COMPUTEs
that reference those unsupported operators are also not supported.

measure

Is the measure field to be aggregated. It can be a real field in the request or a calculated
value generated with the COMPUTE command, as long as the COMPUTE does not
reference an unsupported prefix operator.

sortfield

Is a BY or ACROSS field that defines the boundary of the partition. Operations will not
cross a boundary. In the request the BY HIGHEST phrase to sort high-to-low is supported.
ACROSS COLUMNS AND is also supported, but BY ROWS OVER and FOR are not
supported.

Specifying TABLE as the boundary makes the partition boundary the entire internal matrix.

2. Simplified Analytic Functions

Functions Reference 49

For example, if the sort is BY YEAR BY MONTH, with data from both 2014 and 2015,
specifying the boundary as YEAR means that January 2015 - 2 will be valued as zero (0) or
MISSING, as two months prior to January 2015 would cross the YEAR boundary. However,
specifying TABLE as the boundary and requesting - 2 months would return the data for
November 2014.

from

Identifies the starting point for the rolling calculation. Valid values are:

-n, which starts the calculation n rows back from the current row.

B, which starts the calculation at the beginning of the current sort break (the first line
with the same sort field value as the current line).

to

Identifies the ending point of the rolling calculation. Valid values are:

C, which ends the rolling calculation at the current row in the internal matrix.

E, which ends the rolling calculation at the end of the sort break (the last line with the
same sort value as the current row.)

operation

Specifies the rolling calculation used on the values in the internal matrix. Supported
operations are:

SUM. which calculates a rolling sum.

AVE. which calculates a rolling average.

CNT. which counts the rows in the partition.

MIN. which returns the minimum value in the partition.

MAX, which returns the maximum value in the partition.

FST. which returns the first value in the partition.

LST. which returns the last value in the partition.

The calculation is performed prior to any WHERE TOTAL tests, but after any WHERE_GROUPED
tests.

PARTITION_AGGR: Creating Rolling Calculations

50 Information Builders

Example: Calculating a Rolling Average

The following request calculates a rolling average of the current line and the previous line in
the internal matrix within the quarter.

TABLE FILE WF_RETAIL_LITE
SUM COGS_US
COMPUTE AVE1/D12.2M = PARTITION_AGGR(COGS_US, TIME_QTR, -1, C, AVE);
BY BUSINESS_REGION
BY TIME_QTR
BY TIME_MTH
WHERE BUSINESS_REGION EQ 'North America' OR 'South America'
ON TABLE SET PAGE NOLEAD
END

2. Simplified Analytic Functions

Functions Reference 51

The output is shown in the following image. Within each quarter, the first average is just the
value from Q1, as going back 1 would cross a boundary. The second average is calculated
using the first two rows within that quarter, and the third average is calculated using rows 2
and 3 within the quarter.

The following changes the rolling average to start from the beginning of the sort break.

COMPUTE AVE1/D12.2M = PARTITION_AGGR(COGS_US, TIME_QTR ,B, C, AVE);

PARTITION_AGGR: Creating Rolling Calculations

52 Information Builders

The output is shown in the following image. Within each quarter, the first average is just the
value from Q1, as going back would cross a boundary. The second average is calculated using
the first two rows within that quarter, and the third average is calculated using rows 1 through
3 within the quarter.

The following command uses the partition boundary TABLE.

COMPUTE AVE1/D12.2M = PARTITION_AGGR(COGS_US, TABLE, B, C, AVE);

2. Simplified Analytic Functions

Functions Reference 53

The output is shown in the following image. The rolling average keeps adding the next row to
the average until a break in the business region sort field.

PARTITION_AGGR: Creating Rolling Calculations

54 Information Builders

Reference: Usage Notes for PARTITION_AGGR

Fields referenced in the PARTITION_AGGR parameters but not previously mentioned in the
request will not be counted in column notation or propagated to HOLD files.

Using the WITHIN phrase for a sum is the same as computing PARTITION_AGGR on the
WITHIN sort field from B (beginning of sort break) to E (end of sort break) using SUM, as in
the following example.

TABLE FILE WF_RETAIL_LITE
SUM COGS_US WITHIN TIME_QTR AS 'WITHIN Qtr'
COMPUTE PART_WITHIN_QTR/D12.2M = PARTITION_AGGR(COGS_US, TIME_QTR, B, E,
SUM);
BY BUSINESS_REGION AS Region
BY TIME_QTR
BY TIME_MTH
WHERE BUSINESS_REGION EQ 'North America' OR 'South America'
ON TABLE SET PAGE NOPAGE
END

2. Simplified Analytic Functions

Functions Reference 55

The output is shown in the following image.

PARTITION_AGGR: Creating Rolling Calculations

56 Information Builders

With other types of calculations, the results are not the same. For example, the following
request calculates the average within quarter using the WITHIN phrase and the average
with quarter using PARTITION_AGGR.

TABLE FILE WF_RETAIL_LITE
SUM COGS_US AS Cost
CNT.COGS_US AS Count AVE.COGS_US WITHIN TIME_QTR AS 'Ave Within'
COMPUTE PART_WITHIN_QTR/D12.2M = PARTITION_AGGR(COGS_US, TIME_QTR, B, E,
AVE);
BY BUSINESS_REGION AS Region
BY TIME_QTR
ON TIME_QTR SUBTOTAL COGS_US CNT.COGS_US
BY TIME_MTH
WHERE BUSINESS_REGION EQ 'North America'
ON TABLE SET PAGE NOPAGE
END

The output is shown in the following image. The average using the WITHIN phrase divides
the total cost for the quarter by the total count of instances for the quarter (for example,
$435,992.00/1514 =$287.97), while PARTITION_AGGR divides the total cost for the
quarter by the number of report rows in the quarter (for example, $435,992.00/3 =
$145,330.67).

2. Simplified Analytic Functions

Functions Reference 57

If you use PARTITION_AGGR to perform operations for specific time periods using an offset,
for example, an operation on the quarters for different years, you must make sure that
every quarter is represented. If some quarters are missing for some years, the offset will
not access the correct data. In this case, generate a HOLD file that has every quarter
represented for every year (you can use BY QUARTER ROWS OVER 1 OVER 2 OVER 3 OVER
4) and use PARTITION_AGGR on the HOLD file.

PARTITION_REF: Using Prior Field Values in Calculations

Use of LAST in a calculation retrieves the LAST value of the specified field the last time this
calculation was performed. The PARTITION_REF function enables you to specify both how many
rows back to go in order to retrieve a prior value, and a sort break within which the prior value
calculation will be contained.

Syntax: How to Retrieve Prior Field Values for Use in a Calculation

PARTITION_REF([prefix.]field, {sortfield|TABLE}, -offset)

where:

prefix

Is optional. If used, it can be one of the following aggregation operators:

AVE. Average

MAX. Maximum

MIN. Minimum

CNT. Count

SUM. Sum

field

Is the field whose prior value is to be retrieved.

{srtfield|TABLE}

Is the sort break within which to go back to retrieve the value. TABLE means retrieve the
value without regard to sort breaks. Operations will not cross a partition boundary.

The Sort field may use BY HIGHEST to indicate a HIGH-TO-LOW sort. ACROSS COLUMNS
AND is supported. BY ROWS OVER and FOR are not supported.

-offset

Is the integer number of records back to go to retrieve the value.

PARTITION_REF: Using Prior Field Values in Calculations

58 Information Builders

If the offset is prior to the partition boundary sort value, the return will be the default value
for the field. The calculation is performed prior to any WHERE TOTAL tests, but after
WHERE_GROUPED tests.

Example: Retrieving a Previous Record With PARTITION_REF

The following request retrieves the previous record within the sort field PRODUCT_CATEGORY.

TABLE FILE WF_RETAIL_LITE
SUM DAYSDELAYED
COMPUTE NEWDAYS/I5=PARTITION_REF(DAYSDELAYED, PRODUCT_CATEGORY, -1);
BY PRODUCT_CATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOPAGE
END

2. Simplified Analytic Functions

Functions Reference 59

The output is shown in the following image. The first value within each sort break is zero
because there is no prior record to retrieve.

The following request retrieves the average cost of goods from two records prior to the current
record within the PRODUCT_CATEGORY sort field.

TABLE FILE WF_RETAIL_LITE
SUM COGS_US AVE.COGS_US AS Average
COMPUTE PartitionAve/D12.2M=PARTITION_REF(AVE.COGS_US, PRODUCT_CATEGORY,
-2);
BY PRODUCT_CATEGORY
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOPAGE
END

PARTITION_REF: Using Prior Field Values in Calculations

60 Information Builders

The output is shown in the following image.

2. Simplified Analytic Functions

Functions Reference 61

Replacing the function call with the following syntax changes the partition boundary to TABLE.

COMPUTE PartitionAve/D12.2M=PARTITION_REF(AVE.COGS_US, TABLE, -2);

The output is shown in the following image.

Reference: Usage Notes for PARTITION_REF

Fields referenced in the PARTITION_REF parameters but not previously mentioned in the
request, will not be counted in column notation or propagated to HOLD files.

PARTITION_REF: Using Prior Field Values in Calculations

62 Information Builders

Chapter3
Simplified Character Functions

Simplified character functions have streamlined parameter lists, similar to those used by
SQL functions. In some cases, these simplified functions provide slightly different
functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

In this chapter:

CHAR_LENGTH: Returning the Length in
Characters of a String

CONCAT: Concatenating Strings After
Removing Trailing Blanks From the First

DIGITS: Converting a Number to a
Character String

GET_TOKEN: Extracting a Token Based
on a String of Delimiters

INITCAP: Capitalizing the First Letter of
Each Word in a String

LAST_NONBLANK: Retrieving the Last
Field Value That is Neither Blank nor
Missing

LOWER: Returning a String With All
Letters Lowercase

LPAD: Left-Padding a Character String

LTRIM: Removing Blanks From the Left
End of a String

POSITION: Returning the First Position of
a Substring in a Source String

REGEX: Matching a String to a Regular
Expression

REPLACE: Replacing a String

RPAD: Right-Padding a Character String

RTRIM: Removing Blanks From the Right
End of a String

SPLIT: Extracting an Element From a
String

SUBSTRING: Extracting a Substring From
a Source String

TOKEN: Extracting a Token From a String

TRIM_: Removing a Leading Character,
Trailing Character, or Both From a String

UPPER: Returning a String With All
Letters Uppercase

Functions Reference 63

PATTERNS: Returning a Pattern That
Represents the Structure of the Input
String

CHAR_LENGTH: Returning the Length in Characters of a String

The CHAR_LENGTH function returns the length, in characters, of a string. In Unicode
environments, this function uses character semantics, so that the length in characters may not
be the same as the length in bytes. If the string includes trailing blanks, these are counted in
the returned length. Therefore, if the format source string is type An, the returned value will
always be n.

Syntax: How to Return the Length of a String in Characters

CHAR_LENGTH(string)

where:

string

Alphanumeric

Is the string whose length is returned.

The data type of the returned length value is Integer.

Example: Returning the Length of a String

LASTNAME has format A15V and contains the last name with trailing blanks removed.
CHAR_LENGTH returns the number of characters:

CHAR_LENGTH(LASTNAME)

For SMITH, the result is 5.

CONCAT: Concatenating Strings After Removing Trailing Blanks From the First

CONCAT removes trailing blanks from a string and then concatenates another string to it. The
output is returned as variable length alphanumeric.

Syntax: How to Concatenate Strings After Removing Trailing Blanks From the First

CONCAT(string1, string2)

CHAR_LENGTH: Returning the Length in Characters of a String

64 Information Builders

where:

string2

Alphanumeric

Is a string whose trailing blanks will be removed.

string1

Alphanumeric

Is a string whose leading and trailing blanks will be preserved.

Example: Concatenating Strings After Removing Blanks From the First

CONCAT concatenates CITY and STATE.

CONCAT(CITY,STATE)

For Montgomery Alabama, the result is MontgomeryAlabama.

DIGITS: Converting a Number to a Character String

Given a number, DIGITS converts it to a character string of the specified length. The format of
the field that contains the number must be Integer.

Syntax: How to Convert a Number to a Character String

DIGITS(number,length)

where:

number

Integer

Is the number to be converted, stored in a field with data type Integer.

length

Integer between 1 and 10

Is the length of the returned character string. If length is longer than the number of digits
in the number being converted, the returned value is padded on the left with zeros. If
length is shorter than the number of digits in the number being converted, the returned
value is truncated on the left.

Example: Converting a Number to a Character String

DIGITS converts the integer expression ID_PRODUCT+1 to a six-character string:

DIGITS(ID_PRODUCT,6)

3. Simplified Character Functions

Functions Reference 65

For the number 1106, the result is the character string '001106'.

Reference: Usage Notes for DIGITS

Only I format numbers will be converted. D, P, and F formats generate error messages and
should be converted to I before using the DIGITS function. The limit for the number that can
be converted is 2 GB.

Negative integers are turned into positive integers.

Integer formats with decimal places are truncated.

DIGITS is not supported in Dialogue Manager.

GET_TOKEN: Extracting a Token Based on a String of Delimiters

GET_TOKEN extracts a token (substring) based on a string that can contain multiple
characters, each of which represents a single-character delimiter.

GET_TOKEN can be optimized if there is a single delimiter character, not a string containing
multiple delimiter characters.

Syntax: How to Extract a Token Based on a String of Delimiters

GET_TOKEN(string, delimiter_string, occurrence)

where:

string

Alphanumeric

Is the input string from which the token will be extracted. This can be an alphanumeric
field or constant.

delimiter_string

Alphanumeric constant

Is a string that contains the list of delimiter characters. For example, '; ,' contains three
delimiter characters, semi-colon, blank space, and comma.

occurrence

Integer constant

Is a positive integer that specifies the token to be extracted. A negative integer will be
accepted in the syntax, but will not extract a token. The value zero (0) is not supported.

GET_TOKEN: Extracting a Token Based on a String of Delimiters

66 Information Builders

Example: Extracting a Token Based on a String of Delimiters

GET_TOKEN extracts a token based on a string of delimiters.

GET_TOKEN(InputString, ',;/', 4)

For input string 'ABC,DEF;GHI/JKL', the result is JKL.

INITCAP: Capitalizing the First Letter of Each Word in a String

INITCAP capitalizes the first letter of each word in an input string and makes all other letters
lowercase. A word starts at the beginning of the string, after a blank space, or after a special
character.

Syntax: How to Capitalize the First Letter of Each Word in a String

INITCAP(input_string)

where:

input_string

Alphanumeric

Is the string to capitalize.

Example: Capitalizing the First Letter of Each Word in a String

INITCAP capitalizes the first letter of each word.

INITCAP(NewName)

For the string abc,def!ghi'jKL MNO, the result is Abc,Def!Ghi'Jkl Mno.

For MCKNIGHT, the result is Mcknight.

LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing

LAST_NONBLANK retrieves the last field value that is neither blank nor missing. If all previous
values are either blank or missing, LAST_NONBLANK returns a missing value.

Syntax: How to Return the Last Value That is Neither Blank nor Missing

LAST_NONBLANK(field)

where:

field

Is the field name whose last non-blank value is to be retrieved. If the current value is not
blank or missing, the current value is returned.

3. Simplified Character Functions

Functions Reference 67

Note: LAST_NONBLANK cannot be used in a compound expression, for example, as part of an
IF condition.

Example: Retrieving the Last Non-Blank Value

Consider the following delimited file named input1.csv that has two fields named FIELD_1 and
FIELD_2.

,
A,
,
 ,
B,
C,

The input1 Master File follows.

FILENAME=INPUT1, SUFFIX=DFIX ,
 DATASET=baseapp/input1.csv(LRECL 15 RECFM V, BV_NAMESPACE=OFF, $
 SEGMENT=INPUT1, SEGTYPE=S0, $
 FIELDNAME=FIELD_1, ALIAS=E01, USAGE=A1V, ACTUAL=A1V,
 MISSING=ON, $
 FIELDNAME=FIELD_2, ALIAS=E02, USAGE=A1V, ACTUAL=A1V,
 MISSING=ON, $

The input1 Access File follows.

SEGNAME=INPUT1,
 DELIMITER=',',
 HEADER=NO,
 PRESERVESPACE=NO,
 CDN=COMMAS_DOT,
 CONNECTION=<local>, $

The following request displays the FIELD_1 values and computes the last non-blank value for
each FIELD_1 value.

TABLE FILE baseapp/INPUT1
PRINT FIELD_1 AS Input
COMPUTE
Last_NonBlank/A1 MISSING ON = LAST_NONBLANK(FIELD_1);
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing

68 Information Builders

The output is shown in the following image.

LOWER: Returning a String With All Letters Lowercase

The LOWER function takes a source string and returns a string of the same data type with all
letters translated to lowercase.

Syntax: How to Return a String With All Letters Lowercase

LOWER(string)

where:

string

Alphanumeric

Is the string to convert to lowercase.

The returned string is the same data type and length as the source string.

Example: Converting a String to Lowercase

LOWER converts LAST_NAME to lowercase.

LOWER(LAST_NAME)

For STEVENS, the result is stevens.

LPAD: Left-Padding a Character String

LPAD uses a specified character and output length to return a character string padded on the
left with that character.

3. Simplified Character Functions

Functions Reference 69

Syntax: How to Pad a Character String on the Left

LPAD(string, out_length, pad_character)

where:

string

Fixed length alphanumeric

Is a string to pad on the left side.

out_length

Integer

Is the length of the output string after padding.

pad_character

Fixed length alphanumeric

Is a single character to use for padding.

Example: Left-Padding a String

LPAD left-pads the PRODUCT_CATEGORY column with @ symbols:

LPAD(PRODUCT_CATEGORY,25,'@')

For Stereo Systems, the output is @@@@@@@@@@@Stereo Systems.

Reference: Usage Notes for LPAD

To use the single quotation mark (') as the padding character, you must double it and
enclose the two single quotation marks within single quotation marks (LPAD(COUNTRY,
20,''''). You can use an amper variable in quotation marks for this parameter, but you
cannot use a field, virtual or real.

Input can be fixed or variable length alphanumeric.

Output, when optimized to SQL, will always be data type VARCHAR.

If the output is specified as shorter than the original input, the original data will be
truncated, leaving only the padding characters. The output length can be specified as a
positive integer or an unquoted &variable (indicating a numeric).

LTRIM: Removing Blanks From the Left End of a String

The LTRIM function removes all blanks from the left end of a string.

LTRIM: Removing Blanks From the Left End of a String

70 Information Builders

Syntax: How to Remove Blanks From the Left End of a String

LTRIM(string)

where:

string

Alphanumeric

Is the string to trim on the left.

The data type of the returned string is AnV, with the same maximum length as the source
string.

Example: Removing Blanks From the Left End of a String

RDIRECTOR has the director name right justified. LTRIM removes the leading blanks.

LTRIM(RDIRECTOR)

For BROOKS R. the result is BROOKS R.

PATTERNS: Returning a Pattern That Represents the Structure of the Input String

PATTERNS returns a string that represents the structure of the input argument. The returned
pattern includes the following characters:

A is returned for any position in the input string that has an uppercase letter.

a is returned for any position in the input string that has a lowercase letter.

9 is returned for any position in the input string that has a digit.

Note that special characters (for example, +-/=%) are returned exactly as they were in the input
string.

The output is returned as variable length alphanumeric.

Syntax: How to Return a String That Represents the Pattern Profile of the Input Argument

PATTERNS(string)

where:

string

Alphanumeric

Is a string whose pattern will be returned.

3. Simplified Character Functions

Functions Reference 71

Example: Returning a Pattern Representing an Input String

PATTERNS returns the pattern representing the field ADDRESS_LINE_1.

PATTERNS(ADDRESS_LINE_1)

For 1010 Milam St # Ifp-2352

The result is 9999 Aaaaa Aa # Aaa-9999.

POSITION: Returning the First Position of a Substring in a Source String

The POSITION function returns the first position (in characters) of a substring in a source
string.

Syntax: How to Return the First Position of a Substring in a Source String

POSITION(pattern, string)

where:

pattern

Alphanumeric

Is the substring whose position you want to locate. The string can be as short as a single
character, including a single blank.

string

Alphanumeric

Is the string in which to find the pattern.

The data type of the returned value is Integer.

Example: Returning the First Position of a Substring

POSITION determines the position of the first capital letter I in LAST_NAME.

POSITION('I', LAST_NAME)

For STEVENS, the result is 0.

For SMITH, the result is 3.

REGEX: Matching a String to a Regular Expression

The REGEX function matches a string to a regular expression and returns true (1) if it matches
and false (0) if it does not match.

POSITION: Returning the First Position of a Substring in a Source String

72 Information Builders

A regular expression is a sequence of special characters and literal characters that you can
combine to form a search pattern.

Many references for regular expressions exist on the web.

Syntax: How to Match a String to a Regular Expression

REGEX(string, regular_expression)

where:

string

Alphanumeric

Is the character string to match.

regular_expression

Alphanumeric

Is a regular expression enclosed in single quotation marks constructed using literals and
metacharacters. The following metacharacters are supported

. represents any single character

* represents zero or more occurrences

+ represents one or more occurrences

? represents zero or one occurrence

^ represents beginning of line

$ represents end of line

[] represents any one character in the set listed within the brackets

[^] represents any one character not in the set listed within the brackets

| represents the Or operator

\ is the Escape Special Character

() contains a character sequence

For example, the regular expression '^Ste(v|ph)en$' matches values starting with Ste
followed by either ph or v, and ending with en.

Note: The output value is numeric.

3. Simplified Character Functions

Functions Reference 73

Example: Matching a String Against a Regular Expression

REGEX matches the FIRSTNAME field against the regular expression '^Sara(h?)$', which
matches Sara or Sarah:

REGEX(FIRSTNAME,'^Sara(h?)$')

For Sara, the result is 1.

For Amber, the result is 0.

REPLACE: Replacing a String

REPLACE replaces all instances of a search string in an input string with the given replacement
string. The output is always variable length alphanumeric with a length determined by the input
parameters.

Syntax: How to Replace all Instances of a String

REPLACE(input_string , search_string , replacement)

where:

input_string

Alphanumeric or text (An, AnV, TX)

Is the input string.

search_string

Alphanumeric or text (An, AnV, TX)

Is the string to search for within the input string.

replacement

Alphanumeric or text (An, AnV, TX)

Is the replacement string to be substituted for the search string. It can be a null string ('').

Example: Replacing a String

REPLACE replaces the string 'South' in the Country Name with the string 'S.'

REPLACE(COUNTRY_NAME, 'SOUTH', 'S.');

For South Africa, the result is S. Africa.

REPLACE: Replacing a String

74 Information Builders

Example: Replacing All Instances of a String

REPLACE removes the characters 'DAY' from the string DAY1:

REPLACE(DAY1, 'DAY', '')

For 'SUNDAY MONDAY TUESDAY', the result is 'SUN MON TUES'.

RPAD: Right-Padding a Character String

RPAD uses a specified character and output length to return a character string padded on the
right with that character.

Syntax: How to Pad a Character String on the Right

RPAD(string, out_length, pad_character)

where:

string

Alphanumeric

Is a string to pad on the right side.

out_length

Integer

Is the length of the output string after padding.

pad_character

Alphanumeric

Is a single character to use for padding.

Example: Right-Padding a String

RPAD right-pads the PRODUCT_CATEGORY column with @ symbols:

RPAD(PRODUCT_CATEGORY,25,'@')

For Stereo Systems, the output is Stereo Systems@@@@@@@@@@@.

Reference: Usage Notes for RPAD

The input string can be data type AnV, VARCHAR, TX, and An.

Output can only be AnV or An.

3. Simplified Character Functions

Functions Reference 75

When working with relational VARCHAR columns, there is no need to trim trailing spaces
from the field if they are not desired. However, with An and AnV fields derived from An
fields, the trailing spaces are part of the data and will be included in the output, with the
padding being placed to the right of these positions. You can use TRIM or TRIMV to remove
these trailing spaces prior to applying the RPAD function.

RTRIM: Removing Blanks From the Right End of a String

The RTRIM function removes all blanks from the right end of a string.

Syntax: How to Remove Blanks From the Right End of a String

RTRIM(string)

where:

string

Alphanumeric

Is the string to trim on the right.

The data type of the returned string is AnV, with the same maximum length as the source
string.

Example: Removing Blanks From the Right End of a String

RTRIM removes trailing blanks from DIRECTOR.

RTRIM(DIRECTOR)

For BROOKS R. , the result is BROOKS R.

SPLIT: Extracting an Element From a String

The SPLIT function returns a specific type of element from a string. The output is returned as
variable length alphanumeric.

Syntax: How to Extract an Element From a String

SPLIT(element, string)

RTRIM: Removing Blanks From the Right End of a String

76 Information Builders

where:

element

Can be one of the following keywords:

EMAIL_DOMAIN. Is the domain name portion of an email address in the string.

EMAIL_USERID. Is the user ID portion of an email address in the string.

URL_PROTOCOL. Is the URL protocol in the string.

URL_HOST. Is the host name of the URL in the string.

URL_PORT. Is the port number of the URL in the string.

URL_PATH. Is the URL path in the string.

NAME_FIRST. Is the first token (group of characters) in the string. Tokens are delimited
by blanks.

NAME_LAST. Is the last token (group of characters) in the string. Tokens are delimited
by blanks.

string

Alphanumeric

Is the string from which the element will be extracted.

Example: Extracting an Element From a String

SPLIT extracts the URL protocol from the string STRING1.

SPLIT(URL_PROTOCOL, STRING1)

For 'http://www.informationbuilders.com', the result is http.

SUBSTRING: Extracting a Substring From a Source String

The SUBSTRING function extracts a substring from a source string. If the ending position you
specify for the substring is past the end of the source string, the position of the last character
of the source string becomes the ending position of the substring.

3. Simplified Character Functions

Functions Reference 77

Syntax: How to Extract a Substring From a Source String

SUBSTRING(string, position, length)

where:

string

Alphanumeric

Is the string from which to extract the substring. It can be a field, a literal in single
quotation marks (‘), or a variable.

position

Positive Integer

Is the starting position of the substring in string.

length

Integer

Is the limit for the length of the substring. The ending position of the substring is
calculated as position + length - 1. If the calculated position beyond the end of the source
string, the position of the last character of string becomes the ending position.

The data type of the returned substring is AnV.

Example: Extracting a Substring From a Source String

POSITION determines the position of the first letter I in LAST_NAME.

SUBSTRING(LAST_NAME, I_IN_NAME, I_IN_NAME+2)

For BANNING, the result is 5.

TOKEN: Extracting a Token From a String

The token function extracts a token (substring) from a string of characters. The tokens are
separated by a delimiter consisting of one or more characters and specified by a token number
reflecting the position of the token in the string.

Syntax: How to Extract a Token From a String

TOKEN(string, delimiter, number)

TOKEN: Extracting a Token From a String

78 Information Builders

where:

string

Fixed length alphanumeric

Is the character string from which to extract the token.

delimiter

Fixed length alphanumeric

Is a delimiter consisting of one or more characters.

TOKEN can be optimized if the delimiter consists of a single character.

number

Integer

Is the token number to extract.

Example: Extracting a Token From a String

TOKEN extracts the second token from the PRODUCT_SUBCATEG column, where the delimiter
is a blank:

TOKEN(PRODUCT_SUBCATEG,' ',2)

For iPod Docking Station, the result is Docking.

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

The TRIM_ function removes all occurrences of a single character from either the beginning or
end of a string, or both.

Note:

Leading and trailing blanks count as characters. If the character you want to remove is
preceded (for leading) or followed (for trailing) by a blank, the character will not be removed.
Alphanumeric fields that are longer than the number of characters stored within them are
padded with trailing blanks.

The function will be optimized when run against a relational DBMS that supports trimming
the character and location specified.

3. Simplified Character Functions

Functions Reference 79

Syntax: How to Remove a Leading Character, Trailing Character, or Both From a String

TRIM_(where, pattern, string)

where:

where

Keyword

Defines where to trim the source string. Valid values are:

LEADING, which removes leading occurrences.

TRAILING, which removes trailing occurrences.

BOTH, which removes leading and trailing occurrences.

pattern

Alphanumeric

Is a single character, enclosed in single quotation marks ('), whose occurrences are to be
removed from string. For example, the character can be a single blank (‘ ‘).

string

Alphanumeric

Is the string to be trimmed.

The data type of the returned string is AnV.

Example: Trimming a Character From a String

TRIM_ removes leading occurrences of the character ‘B’ from DIRECTOR.

TRIM_(LEADING, 'B', DIRECTOR)

For BROOKS R., the result is ROOKS R.

UPPER: Returning a String With All Letters Uppercase

The UPPER function takes a source string and returns a string of the same data type with all
letters translated to uppercase.

UPPER: Returning a String With All Letters Uppercase

80 Information Builders

Syntax: How to Return a String With All Letters Uppercase

UPPER(string)

where:

string

Alphanumeric

Is the string to convert to uppercase.

The returned string is the same data type and length as the source string.

Example: Converting Letters to Uppercase

LAST_NAME_MIXED has the last name in mixed case. UPPER converts LAST_NAME_MIXED to
uppercase.

UPPER(LAST_NAME_MIXED)

For Banning , the result is BANNING.

3. Simplified Character Functions

Functions Reference 81

UPPER: Returning a String With All Letters Uppercase

82 Information Builders

Chapter4
Character Functions

Character functions manipulate alphanumeric fields and character strings.

In this chapter:

ARGLEN: Measuring the Length of a
String

ASIS: Distinguishing Between Space and
Zero

BITSON: Determining If a Bit Is On or Off

BITVAL: Evaluating a Bit String as an
Integer

BYTVAL: Translating a Character to
Decimal

CHKFMT: Checking the Format of a
String

CHKNUM: Checking a String for Numeric
Format

CTRAN: Translating One Character to
Another

CTRFLD: Centering a Character String

EDIT: Extracting or Adding Characters

GETTOK: Extracting a Substring (Token)

LCWORD: Converting a String to Mixed-
Case

LCWORD2: Converting a String to Mixed-
Case

LCWORD3: Converting a String to Mixed-
Case

OVRLAY: Overlaying a Character String

PARAG: Dividing Text Into Smaller Lines

PATTERN: Generating a Pattern From a
String

POSIT: Finding the Beginning of a
Substring

REVERSE: Reversing the Characters in a
String

RJUST: Right-Justifying a Character
String

SOUNDEX: Comparing Character Strings
Phonetically

SPELLNM: Spelling Out a Dollar Amount

SQUEEZ: Reducing Multiple Spaces to a
Single Space

STRIP: Removing a Character From a
String

STRREP: Replacing Character Strings

SUBSTR: Extracting a Substring

TRIM: Removing Leading and Trailing
Occurrences

UPCASE: Converting Text to Uppercase

XMLDECOD: Decoding XML-Encoded
Characters

Functions Reference 83

LJUST: Left-Justifying a String

LOCASE: Converting Text to Lowercase

XMLENCOD: XML-Encoding Characters

ARGLEN: Measuring the Length of a String

The ARGLEN function measures the length of a character string within a field, excluding trailing
spaces. The field format in a Master File specifies the length of a field, including trailing
spaces.

Syntax: How to Measure the Length of a Character String

ARGLEN(length, source_string, output)

where:

length

Integer

Is the length of the field containing the character string, or a field that contains the length.

source_string

Alphanumeric

Is the name of the field containing the character string.

output

Integer

Example: Measuring the Length of a Character String

ARGLEN determines the length of the character string in LAST_NAME and stores the result in a
column with the format I3:

ARGLEN(15, LAST_NAME, 'I3')

For SMITH, the result is 5.

For BLACKWOOD, the result is 9.

ASIS: Distinguishing Between Space and Zero

The ASIS function distinguishes between a space and a zero in Dialogue Manager. It
differentiates between a numeric string, a constant or variable defined as a numeric string
(number within single quotation marks), and a field defined simply as numeric. ASIS forces a
variable to be evaluated as it is entered rather than be converted to a number. It is used in
Dialogue Manager equality expressions only.

ARGLEN: Measuring the Length of a String

84 Information Builders

Syntax: How to Distinguish Between a Space and a Zero

ASIS(argument)

where:

argument

Alphanumeric

Is the value to be evaluated.

If you specify an alphanumeric literal, enclose it in single quotation marks. If you specify
an expression, use parentheses, as needed, to ensure the correct order of evaluation.

Example: Distinguishing Between a Space and a Zero

The first request does not use ASIS. No difference is detected between variables defined as a
space and 0.

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ &VAR1 GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 TRUE

The next request uses ASIS to distinguish between the two variables.

-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ ASIS(&VAR1) GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:

VAR1 EQ VAR2 0 NOT TRUE

4. Character Functions

Functions Reference 85

Reference: Usage Notes for ASIS

In general, Dialogue Manager variables are treated as alphanumeric values. However, a
Dialogue Manager variable with the value of '.' may be treated as an alphanumeric value ('.') or
a number (0) depending on the context used.

If the Dialogue Manager variable '.' is used in a mathematical expression, its value will be
treated as a number. For example, in the following request, &DMVAR1 is used in an
arithmetic expression and is evaluated as zero (0).

-SET &DMVAR1='.';
-SET &DMVAR2=10 + &DMVAR1;
-TYPE DMVAR2 = &DMVAR2

The output is;

DMVAR2 = 10

If the Dialogue Manager variable value '.' is used in an IF test and is compared to the
values ' ', '0', or '.', the result will be TRUE even if ASIS is used, as shown in the following
example. The following IF tests all evaluate to TRUE.

-SET &DMVAR1='.';
-SET &DMVAR2=IF &DMVAR1 EQ ' ' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR3=IF &DMVAR1 EQ '.' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR4=IF &DMVAR1 EQ '0' THEN 'TRUE' ELSE 'FALSE';

If the Dialogue Manager variable is used with ASIS, the result of the ASIS function will be
always be considered alphanumeric and will distinguish between the space (‘ ‘), zero (‘0’),
or period (‘.’), as in the following example. The following IF tests all evaluate to TRUE.

-SET &DMVAR2=IF ASIS('.') EQ '.' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR3=IF ASIS(' ') EQ ' ' THEN 'TRUE' ELSE 'FALSE';
-SET &DMVAR4=IF ASIS('0') EQ '0' THEN 'TRUE' ELSE 'FALSE';

Comparing ASIS('0') to ' ' and ASIS(' ') to '0' always evaluates to FALSE.

BITSON: Determining If a Bit Is On or Off

The BITSON function evaluates an individual bit within a character string to determine whether
it is on or off. If the bit is on, BITSON returns a value of 1. If the bit is off, it returns a value of
0. This function is useful in interpreting multi-punch data, where each punch conveys an item
of information.

BITSON: Determining If a Bit Is On or Off

86 Information Builders

Syntax: How to Determine If a Bit Is On or Off

BITSON(bitnumber, source_string, output)

where:

bitnumber

Integer

Is the number of the bit to be evaluated, counted from the left-most bit in the character
string.

source_string

Alphanumeric

Is the character string to be evaluated. The character string is in multiple eight-bit blocks.

output

Integer

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks.

Example: Evaluating a Bit in a Field

BITSON evaluates the 24th bit of LAST_NAME:

BITSON(24, LAST_NAME, 'I1')

For SMITH, the result is 1.

For CROSS, the result is 9.

BITVAL: Evaluating a Bit String as an Integer

The BITVAL function evaluates a string of bits within a character string. The bit string can be
any group of bits within the character string and can cross byte and word boundaries. The
function evaluates the subset of bits in the string as an integer value.

If the number of bits is:

Less than 1, the returned value is 0.

Between 1 and 31 (the recommended range), the returned value is a zero or positive
number representing the bits specified, extended with high-order zeroes for a total of 32
bits.

Exactly 32, the returned value is the positive, zero, or the complement value of negative
two, of the specified 32 bits.

4. Character Functions

Functions Reference 87

Greater than 32 (33 or more), the returned value is the positive, zero, or the complement
value of negative two, of the rightmost 32 bits specified.

Syntax: How to Evaluate a Bit String

BITVAL(source_string, startbit, number, output)

where:

source_string

Alphanumeric

Is the character string to be evaluated.

startbit

Integer

Is the number of the first bit in the bit string, counting from the left-most bit in the
character string. If this argument is less than or equal to 0, the function returns a value of
zero.

number

Integer

Is the number of bits in the subset of bits. If this argument is less than or equal to 0, the
function returns a value of zero.

output

Integer

Example: Evaluating a Bit String

BITVAL evaluates the bits 12 through 20 of LAST_NAME and stores the result in a column with
the format I5:

BITVAL(LAST_NAME, 12, 9, 'I5')

For SMITH, the result is 332.

For JONES, the result is 365.

BYTVAL: Translating a Character to Decimal

The BYTVAL function translates a character to the ASCII, EBCDIC, or Unicode decimal value
that represents it, depending on the operating system.

BYTVAL: Translating a Character to Decimal

88 Information Builders

Syntax: How to Translate a Character

BYTVAL(character, output)

where:

character

Alphanumeric

Is the character to be translated. If you supply more than one character, the function
evaluates the first.

output

Integer

Example: Translating the First Character of a Field

BYTVAL translates the first character of LAST_NAME into its ASCII decimal value and stores
the result in a column with the format I3.

BYTVAL(LAST_NAME,'I3')

For SMITH, the result is 83.

For JONES the result is 74.

CHKFMT: Checking the Format of a String

The CHKFMT function checks a character string for incorrect characters or character types. It
compares each character string to a second string, called a mask, by comparing each
character in the first string to the corresponding character in the mask. If all characters in the
character string match the characters or character types in the mask, CHKFMT returns the
value 0. Otherwise, CHKFMT returns a value equal to the position of the first character in the
character string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the
character string corresponding to the mask. For example, if you are using a four-character
mask to test a nine-character string, only the first four characters in the string are checked; the
rest are returned as a no match with CHKFMT giving the first non-matching position as the
result.

4. Character Functions

Functions Reference 89

Syntax: How to Check the Format of a Character String

CHKFMT(numchar, source_string, 'mask', output)

where:

numchar

Integer

Is the number of characters being compared to the mask.

string

Alphanumeric

Is the character string to be checked.

'mask'

Alphanumeric

Is the mask, which contains the comparison characters enclosed in single quotation
marks.

Some characters in the mask are generic and represent character types. If a character in
the string is compared to one of these characters and is the same type, it matches.
Generic characters are:

A is any letter between A and Z (uppercase or lowercase).

9 is any digit between 0–9.

X is any letter between A–Z or any digit between 0-9.

$ is any character.

Any other character in the mask represents only that character. For example, if the third
character in the mask is B, the third character in the string must be B to match.

output

Integer

Example: Checking the Format of a Field

CHKFMT examines EMP_ID for nine numeric characters starting with 11 and stores the result
in a column with the format I3.

CHKFMT(9, EMP_ID, '119999999', 'I3')

For 071382660, the result is 1.

For 119265415, the result is 0.

CHKFMT: Checking the Format of a String

90 Information Builders

For 23764317, the result is 2.

CHKNUM: Checking a String for Numeric Format

The CHKNUM function checks a character string for numeric format. If the string contains a
valid numeric format, CHKNUM returns the value 1. If the string contains characters that are
not valid in a number, CHKNUM returns zero (0).

Syntax: How to Check the Format of a Character String

CHKNUM(numchar, source_string, output)

where:

numchar

Integer

Is the number of characters in the string.

string

Alphanumeric

Is the character string to be checked.

output

Numeric

Example: Checking a String for Numeric Format

CHKNUM examines STR1 for numeric format.

CHKNUM(8, str1, 'I1')

For 12345E01, the result is 1.

For ABCDEFG, the result is 0.

CTRAN: Translating One Character to Another

The CTRAN function translates a character within a character string to another character based
on its decimal value. This function is especially useful for changing replacement characters to
unavailable characters, or to characters that are difficult to input or unavailable on your
keyboard. It can also be used for inputting characters that are difficult to enter when
responding to a Dialogue Manager -PROMPT command, such as a comma or apostrophe. It
eliminates the need to enclose entries in single quotation marks (').

4. Character Functions

Functions Reference 91

To use CTRAN, you must know the decimal equivalent of the characters in internal machine
representation. Note that the coding chart for conversion is platform dependent, hence your
platform and configuration option determines whether ASCII, EBCDIC, or Unicode coding is
used. Printable EBCDIC or ASCII characters and their decimal equivalents are listed in
Character Chart for ASCII and EBCDIC on page 20.

In Unicode configurations, this function uses values in the range:

0 to 255 for 1-byte characters.

256 to 65535 for 2-byte characters.

65536 to 16777215 for 3-byte characters.

16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

Syntax: How to Translate One Character to Another

CTRAN(length, source_string, decimal, decvalue, output)

where:

length

Integer

Is the number of characters in the source string,.

source_string

Alphanumeric

Is the character string to be translated.

decimal

Integer

Is the ASCII or EBCDIC decimal value of the character to be translated.

decvalue

Integer

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
decimal.

output

Alphanumeric

CTRAN: Translating One Character to Another

92 Information Builders

Example: Translating Spaces to Underscores on an ASCII Platform

CTRAN translates the spaces in ADDRESS_LN3 (ASCII decimal value of 32) to underscores
(ASCII decimal value of 95) and stores the result in a column with the format A20.

CTRAN(20, PRODNAME, 32, 95, 'A20')

For RUTHERFORD NJ 07073, the result is RUTHERFORD_NJ_07073_.

For NEW YORK NY 10039, the result is NEW_YORK_NY_10039___.

CTRFLD: Centering a Character String

The CTRFLD function centers a character string within a field. The number of leading spaces is
equal to or one less than the number of trailing spaces.

CTRFLD is useful for centering the contents of a field and its report column, or a heading that
consists only of an embedded field. HEADING CENTER centers each field value including
trailing spaces. To center the field value without the trailing spaces, first center the value
within the field using CTRFLD.

Syntax: How to Center a Character String

CTRFLD(source_string, length, output)

where:

source_string

Alphanumeric

Is the character string enclosed in single quotation marks, or a field or variable that
contains the character string.

length

Integer

Is the number of characters in source_string and output. This argument must be greater
than 0. A length less than 0 can cause unpredictable results.

output

Alphanumeric

Example: Centering a Field

CTRFLD centers LAST_NAME and stores the result in a column with the format A12:

CTRFLD(LAST_NAME, 12, 'A12')

4. Character Functions

Functions Reference 93

EDIT: Extracting or Adding Characters

The EDIT function extracts characters from the source string and adds characters to the output
string, according to the mask. It can extract a substring from different parts of the source
string. It can also insert characters from the source string into an output string. For example, it
can extract the first two characters and the last two characters of a string to form a single
output string.

EDIT compares the characters in a mask to the characters in a source string. When it
encounters a nine (9) in the mask, EDIT copies the corresponding character from the source
field to the output string. When it encounters a dollar sign ($) in the mask, EDIT ignores the
corresponding character in the source string. When it encounters any other character in the
mask, EDIT copies that character to the corresponding position in the output string. This
process ends when the mask is exhausted.

Note:

EDIT does not require an output argument because the result is alphanumeric and its size
is determined from the mask value.

EDIT can also convert the format of a field. For information on converting a field with EDIT,
see EDIT: Converting the Format of a Field on page 254.

Syntax: How to Extract or Add Characters

EDIT(source_string, 'mask');

where:

source_string

Alphanumeric

Is a character string from which to pick characters. Each 9 in the mask represents one
digit, so the size of source_string must be at least as large as the number of 9's in the
mask.

mask

Alphanumeric

Is a string of mask characters enclosed in single quotation marks. The length of the mask,
excluding characters other than 9 and $, determines the length of the output field.

Example: Extracting Characters

EDIT extracts the first initials from the FNAME column.

EDIT(FNAME, '9$$$$$$$$$')

EDIT: Extracting or Adding Characters

94 Information Builders

For GREGORY, the result is G.

For STEVEN, the result is S.

GETTOK: Extracting a Substring (Token)

The GETTOK function divides a character string into substrings, called tokens. The data must
have a specific character, called a delimiter, that occurs in the string and separates the string
into tokens. GETTOK returns the token specified by the token_number argument. GETTOK
ignores leading and trailing blanks in the source character string.

For example, suppose you want to extract the fourth word from a sentence. In this case, use
the space character for a delimiter and the number 4 for token_number. GETTOK divides the
sentence into words using this delimiter, then extracts the fourth word. If the string is not
divided by the delimiter, use the PARAG function for this purpose. See PARAG: Dividing Text
Into Smaller Lines on page 101.

Syntax: How to Extract a Substring (Token)

GETTOK(source_string, inlen, token_number, 'delim', outlen, output)

where:

source_string

Alphanumeric

Is the source string from which to extract the token.

inlen

Integer

Is the number of characters in source_string. If this argument is less than or equal to 0,
the function returns spaces.

token_number

Integer

Is the number of the token to extract. If this argument is positive, the tokens are counted
from left to right. If this argument is negative, the tokens are counted from right to left. For
example, -2 extracts the second token from the right. If this argument is 0, the function
returns spaces. Leading and trailing null tokens are ignored.

4. Character Functions

Functions Reference 95

'delim'

Alphanumeric

Is the delimiter in the source string enclosed in single quotation marks. If you specify more
than one character, only the first character is used.

outlen

Integer

Is the size of the token extracted. If this argument is less than or equal to 0, the function
returns spaces. If the token is longer than this argument, it is truncated; if it is shorter, it
is padded with trailing spaces.

output

Alphanumeric

Note that the delimiter is not included in the extracted token.

Example: Extracting a Token

GETTOK extracts the last token from ADDRESS_LN3 and stores the result in a column with the
format A10:

GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, 'A10')

In this case, the last token will be the ZIP code.

For RUTHERFORD NJ 07073, the result is 07073.

For NEW YORK NY 10039, the result is 10039.

LCWORD: Converting a String to Mixed-Case

The LCWORD function converts the letters in a character string to mixed-case. It converts every
alphanumeric character to lowercase except the first letter of each new word and the first letter
after a single or double quotation mark, which it converts to uppercase. For example,
O'CONNOR is converted to O'Connor and JACK'S to Jack'S.

LCWORD skips numeric and special characters in the source string and continues to convert
the following alphabetic characters. The result of LCWORD is a string in which the initial
uppercase characters of all words are followed by lowercase characters.

LCWORD: Converting a String to Mixed-Case

96 Information Builders

Syntax: How to Convert a Character String to Mixed-Case

LCWORD(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

string

Alphanumeric

Is the character string to be converted.

output

Alphanumeric

Example: Converting a Character String to Mixed-Case

LCWORD converts LAST_NAME to mixed-case and stores the result in a column with the format
A15:

LCWORD(15, LAST_NAME, 'A15')

For STEVENS, the result is Stevens.

For SMITH, the result is Smith.

LCWORD2: Converting a String to Mixed-Case

The LCWORD2 function converts the letters in a character string to mixed-case by converting
the first letter of each word to uppercase and converting every other letter to lowercase. In
addition, a double quotation mark or a space indicates that the next letter should be converted
to uppercase.

For example, "SMITH" would be changed to "Smith" and "JACK S" would be changed to
"Jack S".

4. Character Functions

Functions Reference 97

Syntax: How to Convert a Character String to Mixed-Case

LCWORD2(length, string, output)

where:

length

Integer

Is the length, in characters, of the character string or field to be converted, or a field that
contains the length.

string

Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

output

Alphanumeric

The length must be greater than or equal to length.

Example: Converting a Character String to Mixed-Case

LCWORD2 converts the string O'CONNOR’s to mixed-case:

The value returned is O’Connor’s.

LCWORD3: Converting a String to Mixed-Case

The LCWORD3 function converts the letters in a character string to mixed-case by converting
the first letter of each word to uppercase and converting every other letter to lowercase. In
addition, a single quotation mark indicates that the next letter should be converted to
uppercase, as long as it is neither followed by a blank nor the last character in the input string.

For example, 'SMITH' would be changed to 'Smith' and JACK'S would be changed to Jack's.

Syntax: How to Convert a Character String to Mixed-Case Using LCWORD3

LCWORD3(length, string, output)

where:

length

Integer

Is the length, in characters, of the character string or field to be converted, or a field that
contains the length.

LCWORD3: Converting a String to Mixed-Case

98 Information Builders

string

Alphanumeric

Is the character string to be converted, or a field that contains the string.

output

Alphanumeric

The length must be greater than or equal to length.

Example: Converting a Character String to Mixed-Case Using LCWORD3

For the string O'CONNOR’s, LCWORD3 returns O'Connor's.

For the string o'connor’s, LCWORD3 also returns O'Connor's.

LJUST: Left-Justifying a String

LJUST left-justifies a character string.

Syntax: How to Left-Justify a Character String

LJUST(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is the character string to be justified.

output

Alphanumeric

Example: Left-Justifying a String

LJUST left-justifies FNAME and stores the result in a column with the format A25:

LJUST(15, FNAME, 'A25')

LOCASE: Converting Text to Lowercase

The LOCASE function converts alphanumeric text to lowercase.

4. Character Functions

Functions Reference 99

Syntax: How to Convert Text to Lowercase

LOCASE(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output. The length must be greater than
0 .

source_string

Alphanumeric

Is the character string to convert.

output

Alphanumeric

Example: Converting a String to Lowercase

LOCASE converts LAST_NAME to lowercase and stores the result in a column with the format
A15:

LOCASE(15, LAST_NAME, 'A15')

For SMITH, the result is smith.

For JONES, the result is jones.

OVRLAY: Overlaying a Character String

The OVRLAY function overlays a base character string with a substring. The function enables
you to edit part of an alphanumeric field without replacing the entire field.

Syntax: How to Overlay a Character String

OVRLAY(source_string, length, substring, sublen, position, output)

where:

source_string

Alphanumeric

Is the base character string.

OVRLAY: Overlaying a Character String

100 Information Builders

stringlen

Integer

Is the number of characters in source_string and output. If this argument is less than or
equal to 0, unpredictable results occur.

substring

Alphanumeric

Is the substring that will overlay source_string.

sublen

Integer

Is the number of characters in substring. If this argument is less than or equal to 0, the
function returns spaces.

position

Integer

Is the position in source_string at which the overlay begins. If this argument is less than or
equal to 0, the function returns spaces. If this argument is larger than stringlen, the
function returns the source string.

output

Alphanumeric

Note that if the overlaid string is longer than the output field, the string is truncated to fit
the field.

Example: Replacing Characters in a Character String

OVRLAY replaces the last three characters of EMP_ID with CURR_JOBCODE to create a new
identification code and stores the result in a column with the format A9:

OVRLAY(EMP_ID, 9, CURR_JOBCODE, 3, 7, 'A9')

For EMP_ID of 326179357 with CURR_JOBCODE of B04, the result is 26179B04.

For EMP_ID of 818692173 with CURR_JOBCODE of A17, the result is 818692A17.

PARAG: Dividing Text Into Smaller Lines

The PARAG function divides a character string into substrings by marking them with a delimiter.
It scans a specific number of characters from the beginning of the string and replaces the last
space in the group scanned with the delimiter, thus creating a first substring, also known as a
token. It then scans the next group of characters in the line, starting from the delimiter, and
replaces its last space with a second delimiter, creating a second token. It repeats this
process until it reaches the end of the line.

4. Character Functions

Functions Reference 101

Once each token is marked off by the delimiter, you can use the function GETTOK to place the
tokens into different fields (see GETTOK: Extracting a Substring (Token) on page 95). If PARAG
does not find any spaces in the group it scans, it replaces the first character after the group
with the delimiter. Therefore, make sure that any group of characters has at least one space.
The number of characters scanned is provided as the maximum token size.

For example, if you have a field called 'subtitle' which contains a large amount of text
consisting of words separated by spaces, you can cut the field into roughly equal substrings by
specifying a maximum token size to divide the field. If the field is 350 characters long, divide it
into three substrings by specifying a maximum token size of 120 characters. This technique
enables you to print lines of text in paragraph form.

Tip: If you divide the lines evenly, you may create more sub-lines than you intend. For example,
suppose you divide 120-character text lines into two lines of 60 characters maximum, but one
line is divided so that the first sub-line is 50 characters and the second is 55. This leaves
room for a third sub-line of 15 characters. To correct this, insert a space (using weak
concatenation) at the beginning of the extra sub-line, then append this sub-line (using strong
concatenation) to the end of the one before it. Note that the sub-line will be longer than 60
characters.

Syntax: How to Divide Text Into Smaller Lines

PARAG(length, source_string, 'delimiter', max_token_size, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is a string to divide into tokens.

delimiter

Alphanumeric

Is the delimiter enclosed in single quotation marks. Choose a character that does not
appear in the text.

max_token_size

Integer

Is the upper limit for the size of each token.

PARAG: Dividing Text Into Smaller Lines

102 Information Builders

output

Alphanumeric

Example: Dividing Text Into Smaller Lines

PARAG divides ADDRESS_LN2 into smaller lines of not more than ten characters, using a
comma as the delimiter. The result is stored in a column with the format A20:

PARAG(20, ADDRESS_LN2, ',', 10, 'A20')

For 147-15 NORTHERN BLD, the result is 147-15,NORTHERN,BLD.

For 13 LINDEN AVE., the result is 13 LINDEN,AVE.

PATTERN: Generating a Pattern From a String

The PATTERN function examines a source string and produces a pattern that indicates the
sequence of numbers, uppercase letters, and lowercase letters in the source string. This
function is useful for examining data to make sure that it follows a standard pattern.

In the output pattern:

Any character from the input that represents a single-byte digit becomes the character 9.

Any character that represents an uppercase letter becomes A, and any character that
represents a lowercase letter becomes a. For European NLS mode (Western Europe,
Central Europe), A and a are extended to apply to accented alphabets.

For Japanese, double-byte characters and Hankaku-katakana become C (uppercase). Note
that double-byte includes Hiragana, Katakana, Kanji, full-width alphabets, full-width
numbers, and full-width symbols. This means that all double-byte letters such as Chinese
and Korean are also represented as C.

Special characters remain unchanged.

An unprintable character becomes the character X.

Syntax: How to Generate a Pattern From an Input String

PATTERN (length, source_string, output)

where:

length

Numeric

Is the length of source_string.

4. Character Functions

Functions Reference 103

source_string

Alphanumeric

Is the source string.

output

Alphanumeric

Example: Producing a Pattern From Alphanumeric Data

PATTERN generates a pattern for each instance of TESTFLD. The result is stored in a column
with the format A14:

PATTERN (14, TESTFLD, 'A14')

For 212-736-6250, the result is 999-999-9999.

For 800-969-INFO, the result is 1999-999-AAAA.

POSIT: Finding the Beginning of a Substring

The POSIT function finds the starting position of a substring within a source string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value 0.

Syntax: How to Find the Beginning of a Substring

POSIT(source_string, length, substring, sublength, output)

where:

source_string

Alphanumeric

Is the string to parse.

length

Integer

Is the number of characters in the source string. If this argument is less than or equal to
0, the function returns a 0.

substring

Alphanumeric

Is the substring whose position you want to find.

POSIT: Finding the Beginning of a Substring

104 Information Builders

sublength

Integer

Is the number of characters in substring. If this argument is less than or equal to 0, or if it
is greater than length, the function returns a 0.

output

Integer

Example: Finding the Position of a Letter

POSIT determines the position of the first capital letter I in LAST_NAME and stores the result
in a column with the format I2:

POSIT(LAST_NAME, 15, 'I', 1, 'I2')

For STEVENS, the result is 0.

For SMITH, the result is 3.

For IRVING, the result is 1.

REVERSE: Reversing the Characters in a String

The REVERSE function reverses the characters in a string.

Syntax: How to Reverse the Characters in a String

REVERSE(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is the character string to reverse.

output

Alphanumeric

4. Character Functions

Functions Reference 105

Example: Reversing the Characters in a String

REVERSE reverses the characters in PRODCAT and stores the result in a column with the
format A15:

REVERSE(15, PRODCAT, 'A15')

For VCRs, the result is sRCV.

For DVD, the result is DVD.

RJUST: Right-Justifying a Character String

The RJUST function right-justifies a character string. All trailing blacks become leading blanks.
This is useful when you display alphanumeric fields containing numbers.

Syntax: How to Right-Justify a Character String

RJUST(length, source_string, output)

where:

length
Integer

Is the number of characters in source_string and output Their lengths must be the same to
avoid justification problems.

source_string

Alphanumeric

Is the character string to right justify.

output

Alphanumeric

Example: Right-Justifying a String

RJUST right-justifies LAST_NAME and stores the result in a column with the format A15:

RJUST(15, LAST_NAME, 'A15')

SOUNDEX: Comparing Character Strings Phonetically

The SOUNDEX function analyzes a character string phonetically, without regard to spelling. It
converts character strings to four character codes. The first character must be the first
character in the string. The last three characters represent the next three significant sounds in
the source string.

RJUST: Right-Justifying a Character String

106 Information Builders

Syntax: How to Compare Character Strings Phonetically

SOUNDEX(length, source_string, output)

where:

length

Alphanumeric

Is the number of characters in source_string. The number must be from 01 to 99,
expressed with two digits (for example '01'); a number larger than 99 causes the function
to return asterisks (*) as output.

source_string

Alphanumeric

Is the string to analyze.

output

Alphanumeric

Example: Comparing Character Strings Phonetically

SOUNDEX analyzes LAST_NAME phonetically and stores the result in a column with the format
A4.

SOUNDEX('15', LAST_NAME, 'A4')

SPELLNM: Spelling Out a Dollar Amount

The SPELLNM function spells out an alphanumeric string or numeric value containing two
decimal places as dollars and cents. For example, the value 32.50 is THIRTY TWO DOLLARS
AND FIFTY CENTS.

Syntax: How to Spell Out a Dollar Amount

SPELLNM(outlength, number, output)

where:

outlength

Integer

Is the number of characters in output.

4. Character Functions

Functions Reference 107

If you know the maximum value of number, use the following table to determine the value
of outlength:

If number is less than... ...outlength should be

$10 37

$100 45

$1,000 59

$10,000 74

$100,000 82

$1,000,000 96

number

Alphanumeric or Numeric (9.2)

Is the number to be spelled out. This value must contain two decimal places.

output

Alphanumeric

Example: Spelling Out a Dollar Amount

SPELLNM spells out the values in CURR_SAL and stores the result in a column with the format
A82:

SPELLNM(82, CURR_SAL, 'A82')

For $13,200.00, the result is THIRTEEN THOUSAND TWO HUNDRED DOLLARS AND NO CENTS.

For $18,480.00, the result is EIGHTEEN THOUSAND FOUR HUNDRED EIGHTY DOLLARS AND
NO CENTS.

SQUEEZ: Reducing Multiple Spaces to a Single Space

The SQUEEZ function reduces multiple contiguous spaces within a character string to a single
space. The resulting character string has the same length as the original string but is padded
on the right with spaces.

SQUEEZ: Reducing Multiple Spaces to a Single Space

108 Information Builders

Syntax: How to Reduce Multiple Spaces to a Single Space

SQUEEZ(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

source_string

Alphanumeric

Is the character string to squeeze.

output

Alphanumeric

Example: Reducing Multiple Spaces to a Single Space

SQUEEZ reduces multiple spaces in NAME to a single blank and stores the result in a column
with the format A30:

SQUEEZ(30, NAME, 'A30')

For MARY SMITH, the result is MARY SMITH.

For DIANE JONES, the result is DIANE JONES.

For JOHN MCCOY, the result is JOHN MCCOY.

STRIP: Removing a Character From a String

The STRIP function removes all occurrences of a specific character from a string. The resulting
character string has the same length as the original string but is padded on the right with
spaces.

Syntax: How to Remove a Character From a String

STRIP(length, source_string, char, output)

where:

length

Integer

Is the number of characters in source_string and output.

4. Character Functions

Functions Reference 109

source_string

Alphanumeric

Is the string from which the character will be removed.

char

Alphanumeric

Is the character to be removed from the string. If more than one character is provided, the
left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You must
then enclose this character combination in single quotation marks.

output

Alphanumeric

Example: Removing Occurrences of a Character From a String

STRIP removes all occurrences of a period (.) from DIRECTOR and stores the result in a field
with the format A17:

STRIP(17, DIRECTOR, '.', 'A17')

For ZEMECKIS R., the result is ZEMECKIS R.

For BROOKS J.L., the result is BROOKS JL.

STRREP: Replacing Character Strings

The STRREP replaces all instances of a specified string within a source string. It also supports
replacement by null strings.

Syntax: How to Replace Character Strings

STRREP (inlength, instring, searchlength, searchstring, replength,
repstring, outlength, output)

where:

inlength

Numeric

Is the number of characters in the source string.

instring

Alphanumeric

Is the source string.

STRREP: Replacing Character Strings

110 Information Builders

searchlength

Numeric

Is the number of characters in the (shorter length) string to be replaced.

searchstring

Alphanumeric

Is the character string to be replaced.

replength

Numeric

Is the number of characters in the replacement string. Must be zero (0) or greater.

repstring

Alphanumeric

Is the replacement string (alphanumeric). Ignored if replength is zero (0).

outlength

Numeric

Is the number of characters in the resulting output string. Must be 1 or greater.

output

Alphanumeric

Reference: Usage Note for STRREP Function

The maximum string length is 4095.

Example: Replacing Commas and Dollar Signs

STRREP finds and replaces commas and then dollar signs and stores the result in field with
the format A17:

STRREP(15,CS_ALPHA,1,',',0,'X',14,'A14')
STRREP(14,CS_NOCOMMAS,1,'$',4,'USD ',17,'A17')

For $29,700.00, the result is USD 29700.00.

For $9,000.00, the result is USD 9000.00.

SUBSTR: Extracting a Substring

The SUBSTR function extracts a substring based on where it begins and its length in the
source string.

4. Character Functions

Functions Reference 111

Syntax: How to Extract a Substring

SUBSTR(length, source_string, start, end, sublength, output)

where:

length

Integer

Is the number of characters in source_string.

source_string

Alphanumeric

Is the string from which to extract a substring .

start

Integer

Is the starting position of the substring in the source string. If start is less than one or
greater than length, the function returns spaces.

end

Integer

Is the ending position of the substring. If this argument is less than start or greater than
length, the function returns spaces.

sublength

Integer

Is the number of characters in the substring (normally end - start + 1). If sublength is
longer than end - start +1, the substring is padded with trailing spaces. If it is shorter, the
substring is truncated. This value should be the declared length of output. Only sublength
characters will be processed.

output

Alphanumeric

SUBSTR: Extracting a Substring

112 Information Builders

Example: Extracting a String

SUBSTR extracts the first three characters from LAST_NAME, and stores the results in a
column with the format A3:

SUBSTR(15, LAST_NAME, 1, 3, 3, 'A3')

For BANNING, the result is BAN.

For MCKNIGHT, the result is MCK.

TRIM: Removing Leading and Trailing Occurrences

The TRIM function removes leading and/or trailing occurrences of a pattern within a character
string.

Syntax: How to Remove Leading and Trailing Occurrences

TRIM(trim_where, source_string, length, pattern, sublength, output)

where:

trim_where

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

source_string

Alphanumeric

Is the string to trim .

string_length

Integer

Is the number of characters in the source string.

pattern

Alphanumeric

Is the character string pattern to remove.

4. Character Functions

Functions Reference 113

sublength

Integer

Is the number of characters in the pattern.

output

Alphanumeric

Example: Removing Leading Occurrences

TRIM removes leading occurrences of the characters BR from DIRECTOR and stores the result
in a column with the format A17:

TRIM('L', DIRECTOR, 17, 'BR', 2, 'A17')

For BROOKS R., the result is OOKS R.

For ABRAHAMS J., the result is ABRAHAMS J.

UPCASE: Converting Text to Uppercase

The UPCASE function converts a character string to uppercase. It is useful for sorting on a field
that contains both mixed-case and uppercase values. Sorting on a mixed-case field produces
incorrect results because the sorting sequence in EBCDIC always places lowercase letters
before uppercase letters, while the ASCII sorting sequence always places uppercase letters
before lowercase. To obtain correct results, define a new field with all of the values in
uppercase, and sort on that field.

Syntax: How to Convert Text to Uppercase

UPCASE(length, source_string, output)

where:

length

Integer

Is the number of characters in source_string and output.

input

Alphanumeric

Is the string to convert.

UPCASE: Converting Text to Uppercase

114 Information Builders

output

Alphanumeric of type AnV or An

If the format of the output_format is AnV, then the length returned is equal to the smaller
of the source_string length and the upper_limit length.

Example: Converting a Mixed-Case String to Uppercase

UPCASE converts LAST_NAME_MIXED to uppercase and stores the result in a column with the
format A15:

UPCASE(15, LAST_NAME_MIXED, 'A15')

For Banning, the result is BANNING.

For McKnight, the result is MCKNIGHT.

XMLDECOD: Decoding XML-Encoded Characters

The XMLDECOD function decodes the following five standard XML-encoded characters when
they are encountered in a string:

Character Name Character XML-Encoded Representation

ampersand & &

greater than symbol > >

less than symbol < <

double quotation mark " "

single quotation mark (apostrophe) ' '

Syntax: How to Decode XML-Encoded Characters

XMLDECOD(inlength, source_string, outlength, output)

where:

inlength

Integer

Is the length of the field containing the source character string, or a field that contains the
length.

4. Character Functions

Functions Reference 115

source_string

Alphanumeric

Is the name of the field containing the source character string or the string enclosed in
single quotation marks (').

outlength

Integer

Is the length of the output character string, or a field that contains the length.

output

Integer

Example: Decoding XML-Encoded Characters

XMLDECOD decodes XML-encoded characters and stores the output in a string with format
A30:

XMLDECOD(30, INSTRING, 30, 'A30')

For &, the result is &.

For >, the result is >.

XMLENCOD: XML-Encoding Characters

The XMLENCOD function encodes the following five standard characters when they are
encountered in a string:

Character Name Character Encoded Representation

ampersand & &

greater than symbol > >

less than symbol < <

double quotation mark " "

single quotation mark (apostrophe) ' '

XMLENCOD: XML-Encoding Characters

116 Information Builders

Syntax: How to XML-Encode Characters

XMLENCOD(inlength, source_string, option, outlength, output)

where:

inlength

Integer

Is the length of the field containing the source character string, or a field that contains the
length.

source_string

Alphanumeric

Is the name of the field containing the source character string or a string enclosed in
single quotation marks (').

option

Integer

Is a code that specifies whether to process a string that already contains XML-encoded
characters. Valid values are:

0, the default, which cancels processing of a string that already contains at least one
XML-encoded character.

1, which processes a string that contains XML-encoded characters.

outlength

Integer

Is the length of the output character string, or a field that contains the length.

Note: The output length, in the worst case, could be six times the length of the input.

output

Integer

Example: XML-Encoding Characters

XMLENCOD XML-encodes characters and stores the output in a string with format A30:

XMLENCOD(30, INSTRING, 30, 1, 'A30')

For &, the result is &.

For >, the result is >.

4. Character Functions

Functions Reference 117

XMLENCOD: XML-Encoding Characters

118 Information Builders

Chapter5
Variable Length Character Functions

The character format AnV is supported in synonyms for FOCUS, XFOCUS, and relational
data sources. This format is used to represent the VARCHAR (variable length character)
data types supported by relational database management systems.

In this chapter:

Overview

LENV: Returning the Length of an Alphanumeric Field

LOCASV: Creating a Variable Length Lowercase String

POSITV: Finding the Beginning of a Variable Length Substring

SUBSTV: Extracting a Variable Length Substring

TRIMV: Removing Characters From a String

UPCASV: Creating a Variable Length Uppercase String

Overview

For relational data sources, AnV keeps track of the actual length of a VARCHAR column. This
information is especially valuable when the value is used to populate a VARCHAR column in a
different RDBMS. It affects whether trailing blanks are retained in string concatenation and, for
Oracle, string comparisons (the other relational engines ignore trailing blanks in string
comparisons).

In a FOCUS or XFOCUS data source, AnV does not provide true variable length character
support. It is a fixed-length character field with an extra two leading bytes to contain the actual
length of the data stored in the field. This length is stored as a short integer value occupying
two bytes. Because of the two bytes of overhead and the additional processing required to
strip them, AnV format is not recommended for use with non-relational data sources.

AnV fields can be used as arguments to all Information Builders-supplied functions that expect
alphanumeric arguments. An AnV input parameter is treated as an An parameter and is padded
with blanks to its declared size (n). If the last parameter specifies an AnV format, the function
result is converted to type AnV with actual length set equal to its size.

Functions Reference 119

The functions described in this topic are designed to work specifically with the AnV data type
parameters.

LENV: Returning the Length of an Alphanumeric Field

LENV returns the actual length of an AnV field or the size of an An field.

Syntax: How to Find the Length of an Alphanumeric Field

LENV(source_string, output)

where:

source_string

Alphanumeric of type An or AnV

Is the source string or field. If it is an An format field, the function returns its size, n. For a
character string enclosed in quotation marks or a variable, the size of the string or variable
is returned. For a field of AnV format, its length, taken from the length-in-bytes of the field,
is returned.

output

Integer

Example: Finding the Length of an AnV Field

LENV returns the length of TITLEV and stores the result in a column with the format I2:

LENV(TITLEV, 'I2')

For ALICE IN WONDERLAND, the result is 19.

For SLEEPING BEAUTY, the result is 15.

LOCASV: Creating a Variable Length Lowercase String

The LOCASV function converts alphabetic characters in the source string to lowercase and is
similar to LOCASE. LOCASV returns AnV output whose actual length is the lesser of the actual
length of the AnV source string and the value of the input parameter upper_limit.

LENV: Returning the Length of an Alphanumeric Field

120 Information Builders

Syntax: How to Create a Variable Length Lowercase String

LOCASV(upper_limit, source_string, output)

where:

upper_limit

Integer

Is the limit for the length of the source string.

source_string

Alphanumeric of type An or AnV

Is the string to be converted to lowercase. If it is a field, it can have An or AnV format. If it
is a field of type AnV, its length is taken from the length in bytes stored in the field. If
upper_limit is smaller than the actual length, the source string is truncated to this upper
limit.

output

Alphanumeric of type An or AnV

If the output format is AnV, the actual length returned is equal to the smaller of the source
string length and the upper limit.

Example: Creating a Variable Length Lowercase String

LOCASV converts LAST_NAME to lowercase and specifies a length limit of five characters. The
results are stored in a column with the format A15V:

LOCASV(5, LAST_NAME, 'A15V')

For SMITH, the result is smith.

For JONES, the result is jones.

POSITV: Finding the Beginning of a Variable Length Substring

The POSITV function finds the starting position of a substring within a larger string. For
example, the starting position of the substring DUCT in the string PRODUCTION is 4. If the
substring is not in the parent string, the function returns the value 0. This is similar to POSIT;
however, the lengths of its AnV parameters are based on the actual lengths of those
parameters in comparison with two other parameters that specify their sizes.

5. Variable Length Character Functions

Functions Reference 121

Syntax: How to Find the Beginning of a Variable Length Substring

POSITV(source_string, upper_limit, substring, sub_limit, output)

where:

source_string

Alphanumeric of type An or AnV

Is the source string that contains the substring whose position you want to find. If it is a
field of AnV format, its length is taken from the length bytes stored in the field. If
upper_limit is smaller than the actual length, the source string is truncated to this upper
limit.

upper_limit

Integer

Is a limit for the length of the source string.

substring

Alphanumeric of type An or AnV

Is the substring whose position you want to find. If it is a field of type AnV, its length is
taken from the length bytes stored in the field. If sub_limit is smaller than the actual
length, the source string is truncated to this limit.

sub_limit

Integer

Is the limit for the length of the substring.

output

Integer

Example: Finding the Starting Position of a Variable Length Pattern

POSITV finds the starting position of a comma in TITLEV, which would indicate a trailing
definite or indefinite article in a movie title (such as ", THE" in SMURFS, THE). LENV is used to
determine the length of title. The result is stored in a column with the format I4:

POSITV(TITLEV,LENV(TITLEV,'I4'), ',', 1,'I4')

For “SMURFS, THE”, the result is 7.

For “SHAGGY DOG, THE”, the result is 11.

POSITV: Finding the Beginning of a Variable Length Substring

122 Information Builders

SUBSTV: Extracting a Variable Length Substring

The SUBSTV function extracts a substring from a string and is similar to SUBSTR. However, the
end position for the string is calculated from the starting position and the substring length.
Therefore, it has fewer parameters than SUBSTR. Also, the actual length of the output field, if
it is an AnV field, is determined based on the substring length.

Syntax: How to Extract a Variable Length Substring

SUBSTV(upper_limit, source_string, start, sub_limit, output)

where:

upper_limit

Integer

Is the limit for the length of the source string.

source_string

Alphanumeric of type An or AnV

Is the character string that contains the substring you want to extract. If it is a field of type
AnV, its length is taken from the length bytes stored in the field. If upper_limit is smaller
than the actual length, the source string is truncated to the upper limit. The final length
value determined by this comparison is referred to as p_length (see the description of the
output parameter for related information).

start

Integer

Is the starting position of the substring in the source string. The starting position can
exceed the source string length, which results in spaces being returned.

sub_limit

Integer

Is the length, in characters, of the substring. Note that the ending position can exceed the
input string length depending on the provided values for start and sub_limit.

output

Alphanumeric of type An or AnV

If the format of output is AnV, and assuming end is the ending position of the substring,
the actual length, outlen, is computed as follows from the values for end, start, and
p_length (see the source_string parameter for related information):

If end > p_length or end < start, then outlen = 0. Otherwise, outlen = end - start + 1.

5. Variable Length Character Functions

Functions Reference 123

Example: Extracting a Variable Length Substring

SUBSTV extracts the first three characters from the TITLEV and stores the result in a column
with the format A20V:

SUBSTV(39, TITLEV, 1, 3, 'A20V')

For SMURFS, the result is SMU.

For SHAGGY DOG, the result is SHA.

TRIMV: Removing Characters From a String

The TRIMV function removes leading and/or trailing occurrences of a pattern within a character
string. TRIMV is similar to TRIM. However, TRIMV allows the source string and the pattern to
be removed to have AnV format.

TRIMV is useful for converting an An field to an AnV field (with the length in bytes containing
the actual length of the data up to the last non-blank character).

Syntax: How to Remove Characters From a String

TRIMV(trim_where, source_string, upper_limit, pattern, pattern_limit,
output)

where:

trim_where

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.

source_string

Alphanumeric of type An or AnV

Is the source string to be trimmed. If it is a field of type AnV, its length is taken from the
length in bytes stored in the field. If upper_limit is smaller than the actual length, the
source string is truncated to this upper limit.

upper_limit

Integer

Is the upper limit for the length of the source string.

TRIMV: Removing Characters From a String

124 Information Builders

pattern

Alphanumeric of type An or AnV

Is the pattern to remove. If it is a field of type AnV, its length is taken from the length in
bytes stored in the field. If pattern_limit is smaller than the actual length, the pattern is
truncated to this limit.

plength_limit

Integer

Is the limit for the length of the pattern.

output

Alphanumeric of type An or AnV

If the output format is AnV, the length is set to the number of characters left after
trimming.

Example: Creating an AnV Field by Removing Trailing Blanks

TRIMV removes trailing blanks from TITLE and stores the result in a column with the format
A39V:

TRIMV('T', TITLE, 39, ' ', 1, 'A39V')

UPCASV: Creating a Variable Length Uppercase String

UPCASV converts alphabetic characters to uppercase, and is similar to UPCASE. However,
UPCASV can return AnV output whose actual length is the lesser of the actual length of the
AnV source string and an input parameter that specifies the upper limit.

Syntax: How to Create a Variable Length Uppercase String

UPCASV(upper_limit, source_string, output)

where:

upper_limit

Integer

Is the limit for the length of the source string.

source_string

Alphanumeric of type An or AnV

is the string to convert to uppercase. If it is a field of type AnV, its length is taken from the
length in bytes stored in the field. If upper_limit is smaller than the actual length, the
source string is truncated to the upper limit.

5. Variable Length Character Functions

Functions Reference 125

output

Alphanumeric of type An or AnV

If the output format is AnV, the length returned is equal to the smaller of the source string
length and upper_limit.

Example: Creating a Variable Length Uppercase String

UPCASEV converts LAST_NAME_MIXED to uppercase and stores the result in a column with the
format A15V:

UPCASEV(15, LAST_NAME_MIXED, 'A15V5')

For Banning, the result is BANNING.

For McKnight, the result is MCKNIGHT.

UPCASV: Creating a Variable Length Uppercase String

126 Information Builders

Chapter6
Character Functions for DBCS Code
Pages

The functions in this topic manipulate strings of DBCS and SBCS characters when your
configuration uses a DBCS code page.

In this chapter:

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another

DEDIT: Extracting or Adding Characters

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

DSUBSTR: Extracting a Substring

JPTRANS: Converting Japanese Specific Characters

KKFCUT: Truncating a String

SFTDEL: Deleting the Shift Code From DBCS Data

SFTINS: Inserting the Shift Code Into DBCS Data

DCTRAN: Translating A Single-Byte or Double-Byte Character to Another

The DCTRAN function translates a single-byte or double-byte character within a character string
to another character based on its decimal value. To use DCTRAN, you need to know the
decimal equivalent of the characters in internal machine representation.

The DCTRAN function can translate single-byte to double-byte characters and double-byte to
single-byte characters, as well as single-byte to single-byte characters and double-byte to
double-byte characters.

Syntax: How to Translate a Single-Byte or Double-Byte Character to Another

DCTRAN(length, source_string, indecimal, outdecimal, output)

where:

length

Double

Functions Reference 127

Is the number of characters in source_string.

source_string

Alphanumeric

Is the character string to be translated.

indecimal

Double

Is the ASCII or EBCDIC decimal value of the character to be translated.

outdecimal

Double

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
indecimal.

output

Alphanumeric

Example: Using DCTRAN to Translate Double-Byte Characters

In the following:

DEDIT: Extracting or Adding Characters

If your configuration uses a DBCS code page, you can use the DEDIT function to extract
characters from or add characters to a string.

DEDIT works by comparing the characters in a mask to the characters in a source field. When
it encounters a nine (9) in the mask, DEDIT copies the corresponding character from the
source field to the new field. When it encounters a dollar sign ($) in the mask, DEDIT ignores
the corresponding character in the source field. When it encounters any other character in the
mask, DEDIT copies that character to the corresponding position in the new field.

DEDIT: Extracting or Adding Characters

128 Information Builders

Syntax: How to Extract or Add DBCS or SBCS Characters

DEDIT(inlength, source_string, mask_length, mask, output)

where:

inlength

Integer

Is the number of bytes in source_string. The string can have a mixture of DBCS and SBCS
characters. Therefore, the number of bytes represents the maximum number of characters
possible in the source string.

source_string

Alphanumeric

Is the string to edit.

mask_length

Integer

Is the number of characters in mask.

mask

Alphanumeric

Is the string of mask characters.

Each nine (9) in the mask causes the corresponding character from the source field to be
copied to the new field.

Each dollar sign ($) in the mask causes the corresponding character in the source field to
be ignored.

Any other character in the mask is copied to the new field.

output

Alphanumeric

Example: Adding and Extracting DBCS Characters

The following example copies alternate characters from the source string to the new field,
starting with the first character in the source string, and then adds several new characters at
the end of the extracted string:

6. Character Functions for DBCS Code Pages

Functions Reference 129

The following example copies alternate characters from the source string to the new field,
starting with the second character in the source string, and then adds several new characters
at the end of the extracted string:

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

The DSTRIP function removes all occurrences of a specific single-byte or double-byte character
from a string. The resulting character string has the same length as the original string, but is
padded on the right with spaces.

Syntax: How to Remove a Single-Byte or Double-Byte Character From a String

DSTRIP(length, source_string, char, output)

where:

length

Double

Is the number of characters in source_string and outfield.

source_string

Alphanumeric

Is the string from which the character will be removed.

char

Alphanumeric

Is the character to be removed from the string. If more than one character is provided, the
left-most character will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You must
then enclose this character combination in single quotation marks.

output

Alphanumeric

DSTRIP: Removing a Single-Byte or Double-Byte Character From a String

130 Information Builders

Example: Removing a Double-Byte Character From a String

In the following:

DSUBSTR: Extracting a Substring

If your configuration uses a DBCS code page, you can use the DSUBSTR function to extract a
substring based on its length and position in the source string.

Syntax: How to Extract a Substring

DSUBSTR(inlength, source_string, start, end, sublength, output)

where:

inlength

Integer

Is the length of the source string in bytes. The string can have a mixture of DBCS and
SBCS characters. Therefore, the number of bytes represents the maximum number of
characters possible in the source string.

source_string

Alphanumeric

Is the string from which the substring will be extracted .

start

Integer

Is the starting position (in number of characters) of the substring in the source string. If
this argument is less than one or greater than end, the function returns spaces.

end

Integer

Is the ending position (in number of characters) of the substring. If this argument is less
than start or greater than inlength, the function returns spaces.

6. Character Functions for DBCS Code Pages

Functions Reference 131

sublength

Integer

Is the length of the substring, in characters (normally end - start + 1). If sublength is longer
than end - start +1, the substring is padded with trailing spaces. If it is shorter, the
substring is truncated. This value should be the declared length of output. Only sublength
characters will be processed.

output

Alphanumeric

Example: Extracting a Substring

The following example extracts the 3-character substring in positions 4 through 6 from a 15-
byte string of characters:

JPTRANS: Converting Japanese Specific Characters

The JPTRANS function converts Japanese specific characters.

Syntax: How to Convert Japanese Specific Characters

JPTRANS ('type_of_conversion', length, source_string, 'output_format')

where:

type_of_conversion

Is one of the following options indicating the type of conversion you want to apply to
Japanese specific characters. The following table shows the single component input types:

Conversion Type Description

'UPCASE' Converts Zenkaku (Fullwidth) alphabets to Zenkaku uppercase.

'LOCASE' Converts Zenkaku alphabets to Zenkaku lowercase.

'HNZNALPHA' Converts alphanumerics from Hankaku (Halfwidth) to Zenkaku.

'HNZNSIGN' Converts ASCII symbols from Hankaku to Zenkaku.

JPTRANS: Converting Japanese Specific Characters

132 Information Builders

Conversion Type Description

'HNZNKANA' Converts Katakana from Hankaku to Zenkaku.

'HNZNSPACE' Converts space (blank) from Hankaku to Zenkaku.

'ZNHNALPHA' Converts alphanumerics from Zenkaku to Hankaku.

'ZNHNSIGN' Converts ASCII symbols from Zenkaku to Hankaku.

'ZNHNKANA' Converts Katakana from Zenkaku to Hankaku.

'ZNHNSPACE' Converts space from Zenkaku to Hankaku.

'HIRAKATA' Converts Hiragana to Zenkaku Katakana.

'KATAHIRA' Converts Zenkaku Katakana to Hiragana.

'930TO939' Converts codepage from 930 to 939.

'939TO930' Converts codepage from 939 to 930.

length

Integer

Is the number of characters in the source_string.

source_string

Alphanumeric

Is the string to convert.

output_format

Alphanumeric

Is the name of the field that contains the output, or the format enclosed in single
quotation marks (').

Example: Using the JPTRANS Function

JPTRANS('UPCASE', 20, Alpha_DBCS_Field, 'A20')

6. Character Functions for DBCS Code Pages

Functions Reference 133

JPTRANS('LOCASE', 20, Alpha_DBCS_Field, 'A20')

JPTRANS('HNZNALPHA', 20, Alpha_SBCS_Field, 'A20')

JPTRANS('HNZNSIGN', 20, Symbol_SBCS_Field, 'A20')

JPTRANS('HNZNKANA', 20, Hankaku_Katakana_Field, 'A20')

JPTRANS('HNZNSPACE', 20, Hankaku_Katakana_Field, 'A20')

JPTRANS('ZNHNALPHA', 20, Alpha_DBCS_Field, 'A20')

JPTRANS('ZNHNSIGN', 20, Symbol_DBCS_Field, 'A20')

JPTRANS('ZNHNKANA', 20, Zenkaku_Katakana_Field, 'A20')

JPTRANS('ZNHNSPACE', 20, Zenkaku_Katakana_Field, 'A20')

JPTRANS('HIRAKATA', 20, Hiragana_Field, 'A20')

JPTRANS: Converting Japanese Specific Characters

134 Information Builders

JPTRANS('KATAHIRA', 20, Zenkaku_Katakana_Field, 'A20')

In the following, codepoints 0x62 0x63 0x64 are converted to 0x81 0x82 0x83, respectively:

JPTRANS('930TO939', 20, CP930_Field, 'A20')

In the following, codepoints 0x59 0x62 0x63 are converted to 0x81 0x82 0x83, respectively:

JPTRANS('939TO930', 20, CP939_Field, 'A20')

Reference: Usage Notes for the JPTRANS Function

HNZNSIGN and ZNHNSIGN focus on the conversion of symbols.

Many symbols have a one-to-one relation between Japanese Fullwidth characters and ASCII
symbols, whereas some characters have one-to-many relations. For example, the Japanese
punctuation character (U+3001) and Fullwidth comma , (U+FF0C) will be converted to the
same comma , (U+002C). The following EXTRA rule for those special cases is shown below:

HNZNSIGN:

Double Quote " (U+0022) -> Fullwidth Right Double Quote ” (U+201D)

Single Quote ' (U+0027) -> Fullwidth Right Single Quote ’ (U+2019)

Comma , (U+002C) -> Fullwidth Ideographic Comma (U+3001)

Full Stop . (U+002E) -> Fullwidth Ideographic Full Stop ? (U+3002)

Backslash \ (U+005C) -> Fullwidth Backslash \ (U+FF3C)

Halfwidth Left Corner Bracket (U+FF62) -> Fullwidth Left Corner Bracket (U+300C)

Halfwidth Right Corner Bracket (U+FF63) -> Fullwidth Right Corner Bracket (U+300D)

Halfwidth Katakana Middle Dot ? (U+FF65) -> Fullwidth Middle Dot · (U+30FB)

ZNHNSIGN:

Fullwidth Right Double Quote ” (U+201D) -> Double Quote " (U+0022)

Fullwidth Left Double Quote “ (U+201C) -> Double Quote " (U+0022)

Fullwidth Quotation " (U+FF02) -> Double Quote " (U+0022)

Fullwidth Right Single Quote ’ (U+2019) -> Single Quote ' (U+0027)

6. Character Functions for DBCS Code Pages

Functions Reference 135

Fullwidth Left Single Quote ‘ (U+2018) -> Single Quote ' (U+0027)

Fullwidth Single Quote ' (U+FF07) -> Single Quote ' (U+0027)

Fullwidth Ideographic Comma (U+3001) -> Comma , (U+002C)

Fullwidth Comma , (U+FF0C) -> Comma , (U+002C)

Fullwidth Ideographic Full Stop ? (U+3002) -> Full Stop . (U+002E)

Fullwidth Full Stop . (U+FF0E) -> Full Stop . (U+002E)

Fullwidth Yen Sign ¥ (U+FFE5) -> Yen Sign ¥ (U+00A5)

Fullwidth Backslash \ (U+FF3C) -> Backslash \ (U+005C)

Fullwidth Left Corner Bracket (U+300C) -> Halfwidth Left Corner Bracket (U+FF62)

Fullwidth Right Corner Bracket (U+300D) -> Halfwidth Right Corner Bracket (U+FF63)

Fullwidth Middle Dot · (U+30FB) -> Halfwidth Katakana Middle Dot · (U+FF65)

HNZNKANA and ZNHNKANA focus on the conversion of Katakana

They convert not only letters, but also punctuation symbols on the following list:

Fullwidth Ideographic Comma (U+3001) <-> Halfwidth Ideographic Comma (U+FF64)

Fullwidth Ideographic Full Stop (U+3002) <-> Halfwidth Ideographic Full Stop (U+FF61)

Fullwidth Left Corner Bracket (U+300C) <-> Halfwidth Left Corner Bracket (U+FF62)

Fullwidth Right Corner Bracket (U+300D) <-> Halfwidth Right Corner Bracket (U+FF63)

Fullwidth Middle Dot · (U+30FB) <-> Halfwidth Katakana Middle Dot · (U+FF65)

Fullwidth Prolonged Sound (U+30FC) <-> Halfwidth Prolonged Sound (U+FF70)

JPTRANS can be nested for multiple conversions.

For example, text data may contain fullwidth numbers and fullwidth symbols. In some
situations, they should be cleaned up for ASCII numbers and symbols.

JPTRANS('ZNHNALPHA', 20, JPTRANS('ZNHNSIGN', 20, Symbol_DBCS_Field,
'A20'), 'A20')

HNZNSPACE and ZNHNSPACE focus on the conversion of a space (blank character).

JPTRANS: Converting Japanese Specific Characters

136 Information Builders

Currently only conversion between U+0020 and U+3000 is supported.

KKFCUT: Truncating a String

If your configuration uses a DBCS code page, you can use the KKFCUT function to truncate a
string.

Syntax: How to Truncate a String

KKFCUT(length, source_string, output)

where:

length

Integer

Is the length of the source string in bytes. The string can have a mixture of DBCS and
SBCS characters. Therefore, the number of bytes represents the maximum number of
characters possible in the source string.

source_string

Alphanumeric

Is the string that will be truncated .

output

Alphanumeric

The string will be truncated to the number of bytes in the output field.

Example: Truncating a String

In the following, KKFCUT truncates the COUNTRY field (up to 10 bytes long) to A4 format:

COUNTRY_CUT/A4 = KKFCUT(10, COUNTRY, 'A4');

The output in ASCII environments is shown in the following image:

6. Character Functions for DBCS Code Pages

Functions Reference 137

The output in EBCDIC environments is shown in the following image:

SFTDEL: Deleting the Shift Code From DBCS Data

If your configuration uses a DBCS code page, you can use the SFTDEL function to delete the
shift code from DBCS data.

Syntax: How to Delete the Shift Code From DBCS Data

SFTDEL(source_string, length, output)

where:

source_string

Alphanumeric

Is the string from which the shift code will be deleted .

length

Integer

Is the length of the source string in bytes. The string can have a mixture of DBCS and
SBCS characters. Therefore, the number of bytes represents the maximum number of
characters possible in the source string.

output

Alphanumeric

Example: Deleting the Shift Code From a String

In the following, SFTDEL deleted the shift code from the COUNTRY field (up to 10 bytes long):

COUNTRY_DEL/A10 = SFTDEL(COUNTRY, 10, 'A10');

SFTDEL: Deleting the Shift Code From DBCS Data

138 Information Builders

The output in ASCII environments is shown in the following image:

The output in EBCDIC environments is shown in the following image:

SFTINS: Inserting the Shift Code Into DBCS Data

If your configuration uses a DBCS code page, you can use the SFTINS function to insert the
shift code into DBCS data.

Syntax: How to Insert the Shift Code Into DBCS Data

SFTINS(source_string, length, output)

where:

source_string

Alphanumeric

Is the string into which the shift code will be inserted .

length

Integer

Is the length of the source string in bytes. The string can have a mixture of DBCS and
SBCS characters. Therefore, the number of bytes represents the maximum number of
characters possible in the source string.

6. Character Functions for DBCS Code Pages

Functions Reference 139

output

Alphanumeric

Example: SFTINS: Inserting the Shift Code Into a String

In the following example, SFTINS inserts the shift code into the COUNTRY_DEL field (which is
the COUNTRY field with the shift code deleted):

COUNTRY_INS/A10 = SFTINS(COUNTRY_DEL, 10, 'A10');

The output displays the original COUNTRY field, the COUNTRY_DEL field with the shift code
deleted, and the COUNTRY_INS field with the shift code re-inserted.

The output in ASCII environments, is shown in the following image:

The output in EBCDIC environments is shown in the following image:

SFTINS: Inserting the Shift Code Into DBCS Data

140 Information Builders

Chapter7
Data Source and Decoding Functions

Data source and decoding functions search for data source records, retrieve data source
records or values, and assign values based on the value of an input field.

In this chapter:

CHECKMD5: Computing an MD5 Hash Check Value

CHECKSUM: Computing a Hash Sum

COALESCE: Returning the First Non-Missing Value

DB_EXPR: Inserting an SQL Expression Into a Request

DB_INFILE: Testing Values Against a File or an SQL Subquery

DB_LOOKUP: Retrieving Data Source Values

DECODE: Decoding Values

FIND: Verifying the Existence of a Value in a Data Source

LAST: Retrieving the Preceding Value

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

NULLIF: Returning a Null Value When Parameters Are Equal

CHECKMD5: Computing an MD5 Hash Check Value

CHECKMD5 takes an alphanumeric input value and returns a 128-bit value in a fixed length
alphanumeric string, using the MD5 hash function. A hash function is any function that can be
used to map data of arbitrary size to data of fixed size. The values returned by a hash function
are called hash values. They can be used for assuring the integrity of transmitted data.

Syntax: How to Compute an MD5 Hash Check Value

CHECKMD5(buffer)

Functions Reference 141

where:

buffer

Is a data buffer whose hash value is to be calculated. It can be a set of data of different
types presented as a single field, or a group field in one of the following data type formats:
An, AnV, or TXn.

Example: Calculating an MD5 Hash Check Value

CHECKMD5 calculates a fixed length MD5 hash check value, and HEXTYPE converts it to a
printable hexadecimal string.

HEXTYPE(CHECKMD5(PRODUCT_CATEGORY))

For Accessories, the result is 98EDB85B00D9527AD5ACEBE451B3FAE6.

CHECKSUM: Computing a Hash Sum

CHECKSUM computes a hash sum, called the checksum, of its input parameter, as a whole
number in format I11. This can be used for equality search of the fields. A checksum is a hash
sum used to ensure the integrity of a file after it has been transmitted from one storage device
to another.

Syntax: How to Compute a CHECKSUM Hash Value

CHECKSUM(buffer)

where:

buffer

Is a data buffer whose hash index is to be calculated. It can be a set of data of different
types presented as a single field, in one of the following data type formats: An, AnV, or
TXn.

Example: Calculating a CHECKSUM Hash Value

CHECKSUM calculates a checksum hash value.

CHECKSUM(PRODUCT_CATEGORY)

For Accessories, the result is -830549649.

CHECKSUM: Computing a Hash Sum

142 Information Builders

COALESCE: Returning the First Non-Missing Value

Given a list of arguments, COALESCE returns the value of the first argument that is not
missing. If all argument values are missing, it returns a missing value if MISSING is ON.
Otherwise it returns a default value (zero or blank).

Syntax: How to Return the First Non-Missing Value

COALESCE(arg1, arg2, ...)

where:

arg1, arg2, ...

Any field, expression, or constant. The arguments should all be either numeric or
alphanumeric.

Are the input parameters that are tested for missing values.

The output data type is the same as the input data types.

Example: Returning the First Non-Missing Value

COALESCE returns the first non-missing value:

COALESCE(DAMAGED, RETURNS)

The following table shows sample inputs and results.

DAMAGED RETURNS RESULT

MISSING 4 4

6 4 6

DB_EXPR: Inserting an SQL Expression Into a Request

The DB_EXPR function inserts a native SQL expression exactly as entered into the native SQL
generated for a FOCUS or SQL language request.

The DB_EXPR function can be used in a DEFINE command, a DEFINE in a Master File, a
WHERE clause, a FILTER FILE command, a filter in a Master File, or in an SQL statement. It
can be used in a COMPUTE command if the request is an aggregate request (uses the SUM,
WRITE, or ADD command) and has a single display command. The expression must return a
single value.

7. Data Source and Decoding Functions

Functions Reference 143

Syntax: How to Insert an SQL Expression Into a Request With DB_EXPR

DB_EXPR(native_SQL_expression)

where:

native_SQL_expression

Is a partial native SQL string that is valid to insert into the SQL generated by the request.
The SQL string must have double quotation marks (") around each field reference, unless
the function is used in a DEFINE with a WITH phrase.

Reference: Usage Notes for the DB_EXPR Function

The expression must return a single value.

Any request that includes one or more DB_EXPR functions must be for a synonym that has
a relational SUFFIX.

Field references in the native SQL expression must be within the current synonym context.

The native SQL expression must be coded inline. SQL read from a file is not supported.

Example: Inserting the DB2 BIGINT and CHAR Functions Into a TABLE Request

The following TABLE request against the WF_RETAIL data source uses the DB_EXPR function in
the COMPUTE command to call two DB2 functions. It calls the BIGINT function to convert the
squared revenue to a BIGINT data type, and then uses the CHAR function to convert that value
to alphanumeric.

TABLE FILE WF_RETAIL
SUM REVENUE NOPRINT
AND COMPUTE BIGREV/A31 = DB_EXPR(CHAR(BIGINT("REVENUE" * "REVENUE"))) ;
AS 'Alpha Square Revenue'
BY REGION
ON TABLE SET PAGE NOPAGE
END

DB_EXPR: Inserting an SQL Expression Into a Request

144 Information Builders

The trace shows that the expression from the DB_EXPR function was inserted into the DB2
SELECT statement:

 SELECT
 T11."REGION",
 SUM(T1."Revenue"),
 ((CHAR(BIGINT(SUM(T1."Revenue") * SUM(T1."Revenue")))))
 FROM
 wrd_fact_sales T1,
 wrd_dim_customer T5,
 wrd_dim_geography T11
 WHERE
 (T5."ID_CUSTOMER" = T1."ID_CUSTOMER") AND
 (T11."ID_GEOGRAPHY" = T5."ID_GEOGRAPHY")
 GROUP BY
 T11."REGION "
 ORDER BY
 T11."REGION "
 FOR FETCH ONLY;
END

DB_INFILE: Testing Values Against a File or an SQL Subquery

The DB_INFILE function compares one or more field values in a source file to values in a target
file. The comparison can be based on one or more field values. DB_INFILE returns the value 1
(TRUE) if the set of source fields matches a set of values from the target file. Otherwise, the
function returns 0 (zero, FALSE). DB_INFILE can be used where a function is valid in a FOCUS
request, such as in a DEFINE or a WHERE phrase.

The target file can be any data source that FOCUS can read. Depending on the data sources
accessed and the components in the request, either FOCUS or an RDBMS will process the
comparison of values.

If FOCUS processes the comparison, it reads the target data source and dynamically creates a
sequential file containing the target data values, along with a synonym describing the data file.
It then builds IF or WHERE structures in memory with all combinations of source and target
values. If the target data contains characters that FOCUS considers wildcard characters, it will
treat them as wildcard characters unless the command SET EQTEST = EXACT is in effect.

The following situations exist when a relational data source is the source file:

The target values are in a relational data source from the same RDBMS and connection.
In this case, the target file referenced by DB_INFILE can be:

An SQL file containing a subquery that retrieves the target values. A synonym must exist
that describes the target SQL file. The Access File must specify the CONNECTION and
DATASET for the target file.

7. Data Source and Decoding Functions

Functions Reference 145

If the subquery results in a SELECT statement supported by the RDBMS, the relational
adapter inserts the subquery into the WHERE predicate of the generated SQL.

If the subquery does not result in a valid SELECT statement for the RDBMS, the
relational adapter retrieves the target values. It then generates a WHERE predicate, with
a list of all combinations of source and target field values.

You can create an SQL file containing a subquery and a corresponding synonym using
the HOLD FORMAT SQL_SCRIPT command.

A relational data source. A synonym must exist that describes the target data source.

If the data source contains only those fields referenced by DB_INFILE as target fields,
the relational adapter creates a subquery that retrieves the target values. If the
subquery results in a SELECT statement supported by the RDBMS, the relational
adapter inserts the subquery into the WHERE predicate of the generated SQL.

If the subquery does not result in a valid SELECT statement for the RDBMS, the
relational adapter retrieves a unique list of the target values. It then generates a
WHERE predicate with a list of all combinations of source and target field values.

The target values are in a non-relational data source or a relational data source from a
different RDBMS or connection. In this case, the target values are retrieved and passed to
FOCUS for processing.

Syntax: How to Compare Source and Target Field Values With DB_INFILE

DB_INFILE(target_file, s1, t1, ... sn, tn)

where:

target_file

Is the synonym for the target file.

s1, ..., sn

Are fields from the source file.

t1, ..., tn

Are fields from the target file.

The function returns the value 1 if a set of target values matches the set of source values.
Otherwise, the function returns a zero (0).

DB_INFILE: Testing Values Against a File or an SQL Subquery

146 Information Builders

Reference: Usage Notes for DB_INFILE

If both the source and target data sources have MISSING=ON for a comparison field, then
a missing value in both files is considered an equality. If MISSING=OFF in one or both files,
a missing value in one or both files results in an inequality.

Values are not padded or truncated when compared, except when comparing date and date-
time values.

If the source field is a date field and the target field is a date-time field, the time
component is removed before comparison.

If the source field is a date-time field and the target field is a date field, a zero time
component is added to the target value before comparison.

If an alphanumeric field is compared to a numeric field, an attempt will be made to convert
the alphanumeric value to a number before comparison.

If FOCUS processes the comparison, and the target data contains characters that FOCUS
considers wildcard characters, it will treat them as wildcard characters unless the
command SET EQTEST = EXACT is in effect.

Example: Comparing Source and Target Values Using an SQL Subquery File

This example uses the WF_RETAIL DB2 data source.

The SQL file named retail_subquery.sql contains the following subquery that retrieves specified
state codes in the Central and NorthEast regions:

SELECT MAX(T11.REGION), MAX(T11.STATECODE) FROM wrd_dim_geography T11
WHERE (T11.STATECODE IN('AR', 'IA', 'KS', 'KY', 'WY', 'CT', 'MA', 'NJ',
'NY', 'RI')) AND (T11.REGION IN('Central', 'NorthEast')) GROUP BY
T11.REGION, T11.STATECODE

The retail_subquery.mas Master File follows:

FILENAME=RETAIL_SUBQUERY, SUFFIX=DB2 , $
 SEGMENT=RETAIL_SUBQUERY, SEGTYPE=S0, $
 FIELDNAME=REGION, ALIAS=E01, USAGE=A15V, ACTUAL=A15V,
 MISSING=ON, $
 FIELDNAME=STATECODE, ALIAS=E02, USAGE=A2, ACTUAL=A2,
 MISSING=ON, $

The retail_subquery.acx Access File follows:

SEGNAME=RETAIL_SUBQUERY, CONNECTION=CON1, DATASET=RETAIL_SUBQUERY.SQL, $

7. Data Source and Decoding Functions

Functions Reference 147

The following request uses the DB_INFILE function to compare region names and state codes
against the names retrieved by the subquery:

TABLE FILE WF_RETAIL
SUM REVENUE
BY REGION
BY STATECODE
WHERE DB_INFILE(RETAIL_SUBQUERY, REGION, REGION, STATECODE, STATECODE)
ON TABLE SET PAGE NOPAGE
END

The trace shows that the subquery was inserted into the WHERE predicate in the generated
SQL:

 SELECT
 T11."REGION",
 T11."STATECODE",
 SUM(T1."Revenue")
 FROM
 wrd_fact_sales T1,
 wrd_dim_customer T5,
 wrd_dim_geography T11
 WHERE
 (T5."ID_CUSTOMER" = T1."ID_CUSTOMER") AND
 (T11."ID_GEOGRAPHY" = T5."ID_GEOGRAPHY") AND
 ((T11."REGION", T11."STATECODE") IN (SELECT MAX(T11.REGION),
 MAX(T11.STATECODE) FROM wrd_dim_geography T11 WHERE
 (T11.STATECODE IN('AR', 'IA', 'KS', 'KY', 'WY', 'CT', 'MA',
 'NJ', 'NY', 'RI')) AND (T11.REGION IN('Central', 'NorthEast'))
 GROUP BY T11.REGION, T11.STATECODE))
 GROUP BY
 T11."REGION",
 T11."STATECODE "
 ORDER BY
 T11."REGION",
 T11."STATECODE "
 FOR FETCH ONLY;
END

Example: Comparing Source and Target Values Using a Sequential File

The empvalues.ftm sequential file contains the last and first names of employees in the MIS
department:

SMITH MARY JONES DIANE MCCOY
JOHN BLACKWOOD ROSEMARIE GREENSPAN MARY
CROSS BARBARA

DB_INFILE: Testing Values Against a File or an SQL Subquery

148 Information Builders

The empvalues.mas Master File describes the data in the empvalues.ftm file

FILENAME=EMPVALUES, SUFFIX=FIX , IOTYPE=BINARY, $
 SEGMENT=EMPVALUE, SEGTYPE=S0, $
 FIELDNAME=LN, ALIAS=E01, USAGE=A15, ACTUAL=A16, $
 FIELDNAME=FN, ALIAS=E02, USAGE=A10, ACTUAL=A12, $

Note: You can create a sequential file, along with a corresponding synonym, using the HOLD
FORMAT SQL_SCRIPT command.

The following request against the FOCUS EMPLOYEE data source uses the DB_INFILE function
to compare employee names against the names stored in the empvalues.ftm file:

FILEDEF EMPVALUES DISK baseapp/empvalues.ftm
TABLE FILE EMPLOYEE
SUM CURR_SAL
BY LAST_NAME BY FIRST_NAME
WHERE DB_INFILE(EMPVALUES, LAST_NAME, LN, FIRST_NAME, FN)
ON TABLE SET PAGE NOPAGE
END

The output is:

Syntax: How to Control DB_INFILE Optimization

To control whether to prevent optimization of the DB_INFILE expression, issue the following
command:

SET DB_INFILE = {DEFAULT|EXPAND_ALWAYS|EXPAND_NEVER}

In a TABLE request, issue the following command:

ON TABLE SET DB_INFILE {DEFAULT|EXPAND_ALWAYS|EXPAND_NEVER}

7. Data Source and Decoding Functions

Functions Reference 149

where:

DEFAULT

Enables DB_INFILE to create a subquery if its analysis determines that it is possible. This
is the default value.

EXPAND_ALWAYS

Prevents DB_INFILE from creating a subquery. Instead, it expands the expression into IF
and WHERE clauses in memory.

EXPAND_NEVER

Prevents DB_INFILE from expanding the expression into IF and WHERE clauses in memory.
Instead, it attempts to create a subquery. If this is not possible, a FOC32585 message is
generated and processing halts.

DB_LOOKUP: Retrieving Data Source Values

You can use the DB_LOOKUP function to retrieve a value from one data source when running a
request against another data source, without joining or combining the two data sources.

DB_LOOKUP compares pairs of fields from the source and lookup data sources to locate
matching records and retrieve the value to return to the request. You can specify as many
pairs as needed to get to the lookup record that has the value you want to retrieve. If your field
list pairs do not lead to a unique lookup record, the first matching lookup record retrieved is
used.

DB_LOOKUP can be called in a DEFINE command, TABLE COMPUTE command, MODIFY
COMPUTE command, or DataMigrator flow.

There are no restrictions on the source file. The lookup file can be any non-FOCUS data source
that is supported as the cross referenced file in a cluster join. The lookup fields used to find
the matching record are subject to the rules regarding cross-referenced join fields for the
lookup data source. A fixed format sequential file can be the lookup file if it is sorted in the
same order as the source file.

Syntax: How to Retrieve a Value From a Lookup Data Source

DB_LOOKUP(look_mf, srcfld1, lookfld1, srcfld2, lookfld2, ..., returnfld);

where:

look_mf

Is the lookup Master File.

DB_LOOKUP: Retrieving Data Source Values

150 Information Builders

srcfld1, srcfld2 ...

Are fields from the source file used to locate a matching record in the lookup file.

lookfld1, lookfld2 ...

Are columns from the lookup file that share values with the source fields. Only columns in
the table or file can be used; columns created with DEFINE cannot be used. For multi-
segment synonyms, only columns in the top segment can be used.

returnfld

Is the name of a column in the lookup file whose value is returned from the matching
lookup record. Only columns in the table or file can be used; columns created with DEFINE
cannot be used.

Reference: Usage Notes for DB_LOOKUP

The maximum number of pairs that can be used to match records is 63.

If the lookup file is a fixed format sequential file, it must be sorted and retrieved in the
same order as the source file, unless the ENGINE INT SET CACHE=ON command is in
effect. Having this setting in effect may also improve performance if the values will be
looked up more than once. The key field of the sequential file must be the first lookup field
specified in the DB_LOOKUP request. If it is not, no records will match.

In addition, if a DB_LOOKUP request against a sequential file is issued in a DEFINE FILE
command, you must clear the DEFINE FILE command at the end of the TABLE request that
references it, or the lookup file will remain open. It will not be reusable until closed and
may cause problems when you exit. Other types of lookup files can be reused without
clearing the DEFINE. They will be cleared automatically when all DEFINE fields are cleared.

If the lookup field has the MISSING=ON attribute in its Master File and the DEFINE or
COMPUTE command specifies MISSING ON, the missing value is returned when the lookup
field is missing. Without MISSING ON in both places, the missing value is converted to a
default value (blank for an alphanumeric field, zero for a numeric field).

Source records display on the report output even if they lack a matching record in the
lookup file.

Only real fields in the lookup Master File are valid as lookup and return fields.

If there are multiple rows in the lookup table where the source field is equal to the lookup
field, the first value of the return field is returned.

7. Data Source and Decoding Functions

Functions Reference 151

Example: Retrieving a Value From a LOOKUP Table

DB_LOOKUP takes the value for STORE_CODE and retrieves the STORENAME associated with
it.

DB_LOOKUP(dmcomp,STORE_CODE,STORE_CODE,STORENAME)

For 1003CA the result is Audio Expert.

For 1004MD the result is City Video For 2010AZ the result is eMart.

DECODE: Decoding Values

The DECODE function assigns values based on the coded value of an input field. DECODE is
useful for giving a more meaningful value to a coded value in a field. For example, the field
GENDER may have the code F for female employees and M for male employees for efficient
storage (for example, one character instead of six for female). DECODE expands (decodes)
these values to ensure correct interpretation on a report.

You can use DECODE by supplying values directly in the function or by reading values from a
separate file.

Syntax: How to Supply Values in the Function

DECODE fieldname(code1 result1 code2 result2...[ELSE default]);
DECODE fieldname(filename ...[ELSE default]);

where:

fieldname

Alphanumeric or Numeric

Is the name of the input field.

code

Alphanumeric or Numeric

Is the coded value that DECODE compares with the current value of fieldname. If the value
has embedded blanks, commas, or other special characters, it must be enclosed in single
quotation marks. When DECODE finds the specified value, it returns the corresponding
result. When the code is compared to the value of the field name, the code and field name
must be in the same format.

DECODE: Decoding Values

152 Information Builders

result

Alphanumeric or Numeric

Is the returned value that corresponds to the code. If the result has embedded blanks or
commas, or contains a negative number, it must be enclosed in single quotation marks.
Do not use double quotation marks (").

If the result is presented in alphanumeric format, it must be a non-null, non-blank string.
The format of the result must correspond to the data type of the expression.

default

Alphanumeric or Numeric

Is the value returned as a result for non-matching codes. The format must be the same as
the format of result. If you omit a default value, DECODE assigns a blank or zero to non-
matching codes.

filename

Alphanumeric

Is the name of the file in which code/result pairs are stored. Every record in the file must
contain a pair.

You can use up to 40 lines to define the code and result pairs for any given DECODE function,
or 39 lines if you also use an ELSE phrase. Use either a comma or blank to separate the code
from the result, or one pair from another.

Note: DECODE has no output argument.

Example: Supplying Values Using the DECODE Function

DECODE returns the state abbreviation for PLANT.

DECODE PLANT(BOS 'MA' DAL 'TX' LA 'CA')

For BOS, the result is MA.

For DAL, the result is TX.

For LA, the result is CA.

FIND: Verifying the Existence of a Value in a Data Source

The FIND function determines if an incoming data value is in an indexed FOCUS data source
field. The function sets a temporary field to a non-zero value if the incoming value is in the data
source field, and to 0 if it is not. A value greater than zero confirms the presence of the data
value, not the number of instances in the data source field.

7. Data Source and Decoding Functions

Functions Reference 153

You can also use FIND in a VALIDATE command to determine if a transaction field value exists
in another FOCUS data source. If the field value is not in that data source, the function returns
a value of 0, causing the validation test to fail and the request to reject the transaction.

You can use any number of FINDs in a COMPUTE or VALIDATE command. However, more FINDs
increase processing time and require more buffer space in memory.

Limit: FIND does not work on files with different DBA passwords.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1 if the
incoming value is not in the data source and to 0 if the incoming value is in the data source.

Syntax: How to Verify the Existence of a Value in a Data Source

FIND(fieldname [AS dbfield] IN file);

where:

fieldname

Is the name of the field that contains the incoming data value.

AS dbfield

Is the name of the data source field whose values are compared to the incoming field
values.

This field must be indexed. If the incoming field and the data source field have the same
name, omit this phrase.

file

Is the name of the indexed FOCUS data source.

Note:

FIND does not use an output argument.

Do not include a space between FIND and the left parenthesis.

Example: Verifying the Existence of a Value in an Indexed Field

FIND determines if a supplied value in EMP_ID is in the EDUCFILE data source.

FIND(EMP_ID IN EDUCFILE)

LAST: Retrieving the Preceding Value

The LAST function retrieves the preceding value for a field.

LAST: Retrieving the Preceding Value

154 Information Builders

The effect of LAST depends on whether it appears in an extract or load transformation:

In an extract transformation the LAST value applies to the previous record retrieved from
the data source before sorting takes place.

In a load transformation, the LAST value applies to the record in the previous record
loaded.

Syntax: How to Retrieve the Preceding Value

LAST fieldname

where:

fieldname

Alphanumeric or Numeric

Is the field name.

Note: LAST does not use an output argument.

Example: Retrieving the Preceding Value

LAST retrieves the previous value of DEPARTMENT:

LAST DEPARTMENT

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

The LOOKUP function retrieves a data value from a cross-referenced FOCUS data source in a
MODIFY request. You can retrieve data from a data source cross-referenced statically in a
synonym or a data source joined dynamically to another by the JOIN command. LOOKUP
retrieves a value, but does not activate the field. LOOKUP is required because a MODIFY
request, unlike a TABLE request, cannot read cross-referenced data sources freely.

LOOKUP allows a request to use the retrieved data in a computation or message, but it does
not allow you to modify a cross-referenced data source.

LOOKUP can read a cross-referenced segment that is linked directly to a segment in the host
data source (the host segment). This means that the cross-referenced segment must have a
segment type of KU, KM, DKU, or DKM (but not KL or KLU) or must contain the cross-
referenced field specified by the JOIN command. Because LOOKUP retrieves a single cross-
referenced value, it is best used with unique cross-referenced segments.

7. Data Source and Decoding Functions

Functions Reference 155

The cross-referenced segment contains two fields used by LOOKUP:

The field containing the retrieved value. Alternatively, you can retrieve all the fields in a
segment at one time. The field, or your decision to retrieve all the fields, is specified in
LOOKUP.

For example, LOOKUP retrieves all the fields from the segment

RTN = LOOKUP(SEG.DATE_ATTEND);

The cross-referenced field. This field shares values with a field in the host segment called
the host field. These two fields link the host segment to the cross-referenced segment.
LOOKUP uses the cross-referenced field, which is indexed, to locate a specific segment
instance.

When using LOOKUP, the MODIFY request reads a transaction value for the host field. It then
searches the cross-referenced segment for an instance containing this value in the cross-
referenced field:

If there are no instances of the value, the function sets a return variable to 0. If you use
the field specified by LOOKUP in the request, the field assumes a value of blank if
alphanumeric and 0 if numeric.

If there are instances of the value, the function sets the return variable to 1 and retrieves
the value of the specified field from the first instance it finds. There can be more than one
if the cross-referenced segment type is KM or DKM, or if you specified the ALL keyword in
the JOIN command.

Syntax: How to Retrieve a Value From a Cross-referenced Data Source

LOOKUP(field);

where:

field

Is the name of the field to retrieve in the cross-referenced file. If the field name also exists
in the host data source, you must qualify it here. Do not include a space between LOOKUP
and the left parenthesis.

Note: LOOKUP does not use an output argument.

Example: Using the LOOKUP Function

LOOKUP finds the enrollment date from DATE_ENROLL. The result can then be used to validate
an expression.

LOOKUP: Retrieving a Value From a Cross-referenced Data Source

156 Information Builders

LOOKUP(DATE_ENROLL)

NULLIF: Returning a Null Value When Parameters Are Equal

NULLIF returns a null (missing) value when its parameters are equal. If they are not equal, it
returns the first value. The field to which the value is returned should have MISSING ON.

Syntax: How to Return a Null Value for Equal Parameters

NULLIF(arg1,arg2)

where:

arg1,arg2

Any type of field, constant, or expression.

Are the input parameters that are tested for equality. They must either both be numeric or
both be alphanumeric.

The output data type is the same as the input data types.

Example: Testing for Equal Parameters

NULLIF tests the DAMAGED and RETURNS field values for equality.

NULLIF(DAMAGED, RETURNS)

For DAMAGED=3 and RETURNS = 3, the result is MISSING (.).

For DAMAGED=2 and RETURNS = 3, the result is 2.

7. Data Source and Decoding Functions

Functions Reference 157

NULLIF: Returning a Null Value When Parameters Are Equal

158 Information Builders

Chapter8
Simplified Date and Date-Time
Functions

Simplified date and date-time functions have streamlined parameter lists, similar to
those used by SQL functions. In some cases, these simplified functions provide slightly
different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

Standard date and date-time formats refer to YYMD and HYYMD syntax (dates that are
not stored in alphanumeric or numeric fields). Dates not in these formats must be
converted before they can be used in the simplified functions. Input date and date-time
parameters must provide full component dates. Literal date-time values can be used with
the DT function.

All arguments can be either literals, field names, or amper variables.

In this chapter:

DT_CURRENT_DATE: Returning the Current Date

DT_CURRENT_DATETIME: Returning the Current Date and Time

DT_CURRENT_TIME: Returning the Current Time

DTADD: Incrementing a Date or Date-Time Component

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time
Values

DTIME: Extracting Time Components From a Date-Time Value

DTPART: Returning a Date or Date-Time Component in Integer Format

DTRUNC: Returning the Start of a Date Period for a Given Date

Functions Reference 159

DT_CURRENT_DATE: Returning the Current Date

The DT_CURRENT_DATE function returns the current date-time provided by the running
operating environment in date-time format. The time portion of the date-time is set to zero.

Syntax: How to Return the Current Date

DT_CURRENT_DATE()

Example: Returning the Current Date

DT_CURRENT_DATE returns the current date.

DT_CURRENT_DATE()

For September 8, 2016 (returning to a YYMD field), the result is 2016/09/08.

DT_CURRENT_DATETIME: Returning the Current Date and Time

DT_CURRENT_DATETIME returns the current date and time provided by the running operating
environment in date-time format, with a specified time precision.

Syntax: How to Return the Current Date and Time

DT_CURRENT_DATETIME(component)

where:

component

Is one of the following time precisions.

SECOND.

MILLISECOND.

MICROSECOND.

Note: The field to which the value is returned must have a format that supports the time
precision requested.

Example: Returning the Current Date and Time

DT_CURRENT_DATETIME returns the current date and time to microsecond precision.

DT_CURRENT_DATETIME(MICROSECOND)

DT_CURRENT_DATE: Returning the Current Date

160 Information Builders

For September 8,2106 at 5:10:31.605718 p.m. (returned to a field with format HYYMDm), the
result is 2016/09/08 17:10:31.605718.

DT_CURRENT_TIME: Returning the Current Time

The DT_CURRENT_TIME function returns the current time provided by the running operating
environment in date-time format, with a specified time precision. The date portion of the
returned date-time value is set to zero.

Syntax: How to Return the Current Time

DT_CURRENT_TIME(component)

where:

component

Is one of the following time precisions.

SECOND.

MILLISECOND.

MICROSECOND.

Note: The field to which the value is returned must have a format that supports the time
precision requested.

Example: Returning the Current Time

DT_CURRENT_TIME returns the current time in milliseconds.

DT_CURRENT_TIME(MILLISECOND)

For 5:23:13.098 p.m. (returned to a field with format HHISs), the result is 17:23:13.098.

DTADD: Incrementing a Date or Date-Time Component

Given a date in standard date or date-time format, DTADD returns a new date after adding the
specified number of a supported component. The returned date format is the same as the
input date format.

Syntax: How to Increment a Date or Date-Time Component

DTADD(date, component, increment)

8. Simplified Date and Date-Time Functions

Functions Reference 161

where:

date

Date or date-time

Is the date or date-time value to be incremented, which must provide a full component
date.

component

Keyword

Is the component to be incremented. Valid components (and acceptable values) are:

YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

WEEK (1-53). This is affected by the WEEKFIRST setting.

DAY (of the Month, 1-31).

HOUR (0-23).

MINUTE (0-59).

SECOND (0-59).

increment

Integer

Is the value (positive or negative) to add to the component.

Example: Incrementing the DAY Component of a Date

DTADD adds three days to the employee date of birth:

 DTADD(DATE_OF_BIRTH, DAY, 3)

For 1976/10/21, the result is 1976/10/24.

Reference: Usage Notes for DTADD

Each element must be manipulated separately. Therefore, if you want to add 1 year and 1
day to a date, you need to call the function twice, once for YEAR (you need to take care of
leap years) and once for DAY. The simplified functions can be nested in a single
expression, or created and applied in separate DEFINE or COMPUTE expressions.

DTADD: Incrementing a Date or Date-Time Component

162 Information Builders

With respect to parameter validation, DTADD will not allow anything but a standard date or
a date-time value to be used in the first parameter.

The increment is not checked, and the user should be aware that decimal numbers are not
supported and will be truncated. Any combination of values that increases the YEAR beyond
9999 returns the input date as the value, with no message. If the user receives the input
date when expecting something else, it is possible there was an error.

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time
Values

Given two dates in standard date or date-time formats, DTIFF returns the number of given
component boundaries between the two dates. The returned value has integer format for
calendar components or double precision floating point format for time components.

Syntax: How to Return the Number of Component Boundaries

DTDIFF(end_date, start_date, component)

where:

end_date

Date or date-time

Is the ending full-component date in either standard date or date-time format. If this date
is given in standard date format, all time components are assumed to be zero.

start_date

Date or date-time

Is the starting full-component date in either standard date or date-time format. If this date
is given in standard date format, all time components are assumed to be zero.

component

Keyword

Is the component on which the number of boundaries is to be calculated. For example,
QUARTER finds the difference in quarters between two dates. Valid components (and
acceptable values) are:

YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

8. Simplified Date and Date-Time Functions

Functions Reference 163

WEEK (1-53). This is affected by the WEEKFIRST setting.

DAY (of the Month, 1-31).

HOUR (0-23).

MINUTE (0-59).

SECOND (0-59).

Example: Returning the Number of Years Between Two Dates

DTDIFF calculates employee age when hired:

DTDIFF(START_DATE, DATE_OF_BIRTH, YEAR)

For the date of birth 1991/06/04 and the start date 2008/11/14, the result is 17.

DTIME: Extracting Time Components From a Date-Time Value

Given a date-time value and time component keyword as input, DTIME returns the value of all
of the time components up to and including the requested component. The remaining time
components in the value are set to zero. The field to which the time component is returned
must have a time format that supports the component being returned.

Syntax: How to Extract a Time Component From a Date-Time Value

DTIME(datetime, component)

where:

datetime

Date-time

Is the date-time value from which to extract the time component. It can be a field name or
a date-time literal. It must provide a full component date.

component

Keyword

Valid values are:

TIME. The complete time portion is returned. Its smallest component depends on the
input date-time format. Nanoseconds are not supported or returned.

HOUR. The time component up to and including the hour component is extracted.

DTIME: Extracting Time Components From a Date-Time Value

164 Information Builders

MINUTE. The time component up to and including the minute component is extracted.

SECOND. The time component up to and including the second component is extracted.

MILLISECOND. The time component up to and including the millisecond component is
extracted.

MICROSECOND. The time component up to and including the microsecond component
is extracted.

Example: Extracting Time Components

DTIME extracts the TIME component from the data-time value 2018/01/17
05:45:22.777888.

DTIME(DT(2018/01/17 05:45:22.777888), TIME)

The result is 05:45:22.777888.

DTPART: Returning a Date or Date-Time Component in Integer Format

Given a date in standard date or date-time format and a component, DTPART returns the
component value in integer format.

Syntax: How to Return a Date or Date-Time Component in Integer Format

DTPART(date, component)

where:

date

Date or date-time

Is the full-component date in standard date or date-time format.

component

Keyword

Is the component to extract in integer format. Valid components (and values) are:

YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

WEEK (of the year, 1-53). This is affected by the WEEKFIRST setting.

8. Simplified Date and Date-Time Functions

Functions Reference 165

DAY (of the Month, 1-31).

DAY_OF_YEAR (1-366).

WEEKDAY (day of the week, 1-7). This is affected by the WEEKFIRST setting.

HOUR (0-23).

MINUTE (0-59).

SECOND (0-59).

MILLISECOND (0-999).

MICROSECOND (0-999999).

Example: Extracting the Quarter Component as an Integer

DTPART extracts the quarter from the employee start date:

DTPART(START_DATE, QUARTER)

For 2009/04/11, the result is 2.

DTRUNC: Returning the Start of a Date Period for a Given Date

Given a date or timestamp and a component, DTRUNC returns the first date within the period
specified by that component.

Syntax: How to Return the First or Last Date of a Date Period

DTRUNC(date_or_timestamp, date_period)

where:

date_or_timestamp

Date or date-time

Is the date or timestamp of interest, which must provide a full component date.

date_period

Is the period whose starting or ending date you want to find. Can be one of the following:

DAY, returns the date that represents the input date (truncates the time portion, if
there is one).

YEAR, returns the date of the first day of the year.

DTRUNC: Returning the Start of a Date Period for a Given Date

166 Information Builders

MONTH, returns the date of the first day of the month.

QUARTER, returns the date of the first day in the quarter.

WEEK, returns the date that represents the first date of the given week.

By default, the first day of the week will be Sunday, but this can be changed using the
WEEKFIRST parameter.

YEAR_END, returns the last date of the year.

QUARTER_END, returns the last date of the quarter.

MONTH_END, returns the last date of the month.

WEEK_END, returns the last date of the week.

Example: Returning the First Date in a Date Period

DTRUNC returns the first date of the quarter given the date of birth:

DTRUNC(DATE_OF_BIRTH,QUARTER)

For 1993/03/27, the result is 1993/03/01.

Example: Using the Start of Week Parameter for DTRUNC

DTRUNC returns the date that represents the start of the week.

DTRUNC(START_DATE, WEEK)

For 2013/01/15, the result is 2013/01/13

Example: Returning the Date of the Last Day of a Week

DTRUNC calculates the date of the end of the week.

WEEKEND/YYMD = DTRUNC(START_DATE, WEEK_END)

For 2013/01/15, the result is 2013/01/19.

8. Simplified Date and Date-Time Functions

Functions Reference 167

DTRUNC: Returning the Start of a Date Period for a Given Date

168 Information Builders

Chapter9
Date Functions

Date functions manipulate date values. There are two types of date functions:

Standard date functions for use with non-legacy dates.

Legacy date functions for use with legacy dates.

If a date is in an alphanumeric or numeric field that contains date display options (for
example, I6YMD), you must use the legacy date functions.

In this chapter:

Overview of Date Functions

Using Standard Date Functions

DATEADD: Adding or Subtracting a Date
Unit to or From a Date

DATECVT: Converting the Format of a
Date

DATEDIF: Finding the Difference Between
Two Dates

DATEMOV: Moving a Date to a
Significant Point

DATETRAN: Formatting Dates in
International Formats

FIYR: Obtaining the Financial Year

FIQTR: Obtaining the Financial Quarter

FIYYQ: Converting a Calendar Date to a
Financial Date

TODAY: Returning the Current Date

Using Legacy Date Functions

AYMD: Adding or Subtracting Days

CHGDAT: Changing How a Date String
Displays

DA Functions: Converting a Legacy Date
to an Integer

DMY, MDY, YMD: Calculating the
Difference Between Two Dates

DOWK and DOWKL: Finding the Day of
the Week

DT Functions: Converting an Integer to a
Date

GREGDT: Converting From Julian to
Gregorian Format

JULDAT: Converting From Gregorian to
Julian Format

YM: Calculating Elapsed Months

Functions Reference 169

Overview of Date Functions

The following explains the difference between the types of date functions:

Standard date functions are for use with standard date formats, or just date formats. A
date format refers to internally stored data that is capable of holding date components,
such as century, year, quarter, month, and day. It does not include time components. A
synonym does not specify an internal data type or length for a date format. Instead, it
specifies display date components, such as D (day), M (month), Q (quarter), Y (2-digit year),
or YY (4-digit year). For example, format MDYY is a date format that has three date
components; it can be used in the USAGE attribute of a synonym. A real date value, such
as March 9, 2004, described by this format is displayed as 03/09/2004, by default. Date
formats can be full component and non-full component. Full component formats include all
three letters, for example, D, M, and Y. JUL for Julian can also be included. All other date
formats are non-full component. Some date functions require full component arguments for
date fields, while others will accept full or non-full components. A date format was formerly
called a smart date.

Legacy date functions are for use with legacy dates only. A legacy date refers to formats
with date edit options, such as I6YMD, A6MDY, I8YYMD, or A8MDYY. For example, A6MDY
is a 6-byte alphanumeric string. The suffix MDY indicates the order in which the date
components are stored in the field, and the prefix I or A indicates a numeric or
alphanumeric form of representation. For example, a value '030599' can be assigned to a
field with format A6MDY, which will be displayed as 03/05/99.

Date formats have an internal representation matching either numeric or alphanumeric format.
For example, A6MDY matches alphanumeric format, YYMD and I6DMY match numeric format.
When function output is a date in specified by output, it can be used either for assignment to
another date field of this format, or it can be used for further data manipulation in the
expression with data of matching formats. Assignment to another field of a different date
format, will yield a random result.

All but three date functions deal with only one date format. The exceptions are DATECVT,
HCNVRT, and HDATE, which convert one date type into another.

Using Standard Date Functions

When using standard date functions, you need to understand the settings that alter the
behavior of these functions, as well as the acceptable formats and how to supply values in
these formats.

Overview of Date Functions

170 Information Builders

You can affect the behavior of date functions in the following ways:

Defining which days of the week are work days and which are not. Then, when you use a
date function involving work days, dates that are not work days are ignored. For details, see
Specifying Work Days on page 171.

Determining whether to display leading zeros when a date function in Dialogue Manager
returns a date. For details, see Enabling Leading Zeros For Date and Time Functions in
Dialogue Manager on page 176.

For detailed information on each standard date function, see:

DATEADD: Adding or Subtracting a Date Unit to or From a Date on page 177

DATECVT: Converting the Format of a Date on page 179

DATEDIF: Finding the Difference Between Two Dates on page 181

DATEMOV: Moving a Date to a Significant Point on page 183

DATETRAN: Formatting Dates in International Formats on page 187

FIYR: Obtaining the Financial Year on page 203

FIQTR: Obtaining the Financial Quarter on page 205

FIYYQ: Converting a Calendar Date to a Financial Date on page 207

TODAY: Returning the Current Date on page 208

Specifying Work Days

You can determine which days are work days and which are not. Work days affect the
DATEADD, DATEDIF, and DATEMOV functions. You identify work days as business days or
holidays.

Specifying Business Days

Business days are traditionally Monday through Friday, but not every business has this
schedule. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday, and Saturday, you can tailor business day units to reflect that schedule.

9. Date Functions

Functions Reference 171

Syntax: How to Set Business Days

SET BUSDAYS = smtwtfs

where:

smtwtfs

Is the seven character list of days that represents your business week. The list has a
position for each day from Sunday to Saturday:

To identify a day of the week as a business day, enter the first letter of that day in that
day's position.

To identify a non-business day, enter an underscore (_) in that day's position.

If a letter is not in its correct position, or if you replace a letter with a character other than
an underscore, you receive an error message.

Example: Setting Business Days to Reflect Your Work Week

The following designates work days as Sunday, Tuesday, Wednesday, Friday, and Saturday:

SET BUSDAYS = S_TW_FS

Syntax: How to View the Current Setting of Business Days

? SET BUSDAYS

Specifying Holidays

You can specify a list of dates that are designated as holidays in your company. These dates
are excluded when using functions that perform calculations based on working days. For
example, if Thursday in a given week is designated as a holiday, the next working day after
Wednesday is Friday.

To define a list of holidays, you must:

1. Create a holiday file using a standard text editor.

2. Select the holiday file by issuing the SET command with the HDAY parameter.

Reference: Rules for Creating a Holiday File

Dates must be in YYMD format.

Dates must be in ascending order.

Using Standard Date Functions

172 Information Builders

Each date must be on its own line.

Each year for which data exists must be included or the holiday file is considered invalid.
Calling a date function with a date value outside the range of the holiday file returns a zero
for business day requests.

If you are subtracting two dates in 2005, and the latest date in the holiday file is
20041231, the subtraction will not be performed. One way to avoid invalidating the holiday
file is to put a date very far in the future in any holiday file you create (for example,
29991231), and then it will always be considered valid.

You may include an optional description of the holiday, separated from the date by a space.

By default, the holiday file has a file name of the form HDAYxxxx.err and is on your path, or on
z/OS under PDS deployment, is a member named HDAYxxxx of a PDS allocated to DDNAME
ERRORS. In your procedure or request, you must issue the SET HDAY=xxxx command to
identify the file or member name. Alternatively, you can define the file to have any name and
be stored anywhere or, on z/OS under PDS deployment, allocate the holiday file as a
sequential file of any name or as member HDAYxxxx of any PDS. For information about using
non-default holiday file names, see How to FILEDEF or DYNAM the Holiday File on page 174.

Procedure: How to Create a Holiday File

1. In a text editor, create a list of dates designated as holidays using the Rules for Creating a
Holiday File on page 172.

2. Save the file.

If you are not using the default naming convention, see How to FILEDEF or DYNAM the
Holiday File on page 174. If you are using the default naming convention, use the
following instructions:

In Windows and UNIX: The file must be HDAYxxxx.ERR

In z/OS: The file must be a member of ERRORS named HDAYxxxx.

where:

xxxx

Is a string of text four characters long.

9. Date Functions

Functions Reference 173

Syntax: How to Select a Holiday File

SET HDAY = xxxx

where:

xxxx

Is the part of the name of the holiday file after HDAY. This string must be four characters
long.

Example: Creating and Selecting a Holiday File

The following is the HDAYTEST file, which establishes holidays:

19910325 TEST HOLIDAY
19911225 CHRISTMAS

The following sets HDAYTEST as the holiday file:

SET BUSDAYS = SMTWTFS
SET HDAY = TEST

Syntax: How to FILEDEF or DYNAM the Holiday File

In all environments except z/OS under PDS deployment, use the following syntax.

FILEDEF HDAYxxxx DISK {app/|path}/filename.ext

where:

HDAYxxxx

Is the logical name (DDNAME) for the holiday file, where xxxx is any four characters. You
establish this logical name by issuing the SET HDAY=xxxx command in your procedure or
request.

app

Is the name of the application in which the holiday file resides.

path

Is the path to the holiday file.

filename.ext

Is the name of the holiday file.

On z/OS under PDS deployment, use the following to allocate a sequential holiday file.

DYNAM ALLOC {DD|FILE} HDAYxxxx DA qualif.filename.suffix SHR REU

Using Standard Date Functions

174 Information Builders

On z/OS under PDS deployment, use the following to allocate a holiday file that is a member of
a PDS.

DYNAM ALLOC {DD|FILE} HDAYxxxx DA qualif.filename.suffix(HDAYxxx) SHR REU

where:

HDAYxxxx

Is the DDNAME for the holiday file. Your FOCEXEC or request must set the HDAY
parameter to xxxx, where xxxx is any four characters you choose. If your holiday file is a
member of a PDS, HDAYxxxx must also be the member name.

qualif.filename.suffix

Is the fully-qualified name of the sequential file that contains the list of holidays or the PDS
with member HDAYxxxx that contains the list of holidays.

Example: Defining a Holiday File

The following holiday file, named holiday.data in the c:\temp directory on Windows, defines
November 3, 2011 and December 24, 2011 as holidays:

20111103
20111224

The following defines and sets the holiday file. Then DATEADD finds the next business day
taking the holiday file into account:

FILEDEF HDAYMMMM DISK c:\ibi\holiday.data
SET HDAY = MMMM
SET BUSDAYS = _MTWTF_
DATEADD(NEWDATE, 'BD', 1);

For 2011/11/02, DATEADD returns 2011/11/04 because November 3 is a holiday.

Example: Allocating the Holiday File to a Sequential File on z/OS Under PDS Deployment

The following sequential file, named USER1.HOLIDAY.DATA, defines November 3, 2011 and
December 24, 2011 as holidays:

20111103
20111224

The following defines and sets the holiday file. Then DATEADD finds the next business day
taking the holiday file into account:

DYNAM ALLOC DD HDAYMMMM DA USER1.HOLIDAY.DATA SHR REU
SET HDAY = MMMM
DATEADD(NEWDATE, 'BD', 1);

9. Date Functions

Functions Reference 175

For 2011/11/02, DATEADD returns 2011/11/04 because November 3 is a holiday.

Example: Allocating the Holiday File to a PDS Member on z/OS Under PDS Deployment

The following holiday file, member HDAYMMMM in a PDS named USER1.HOLIDAY.DATA,
defines November 3, 2011 and December 24, 2011 as holidays:

20111103
20111224

The following defines and sets the holiday file. Then DATEADD finds the next business day
taking the holiday file into account:

DYNAM ALLOC DD HDAYMMMM DA USER1.HOLIDAY.DATA(HDAYMMMM) SHR REU
SET HDAY = MMMM
SET BUSDAYS = _MTWTF_
DATEADD(NEWDATE, 'BD', 1);

For 2011/11/02, DATEADD returns 2011/11/04 because November 3 is a holiday.

Enabling Leading Zeros For Date and Time Functions in Dialogue Manager

If you use a date and time function in Dialogue Manager that returns a numeric integer format,
Dialogue Manager truncates any leading zeros. For example, if a function returns the value
000101 (indicating January 1, 2000), Dialogue Manager truncates the leading zeros,
producing 101, an incorrect date. To avoid this problem, use the LEADZERO parameter.

LEADZERO only supports an expression that makes a direct call to a function. An expression
that has nesting or another mathematical function always truncates leading zeros. For
example,

-SET &OUT = AYM(&IN, 1, 'I4')/100;

truncates leading zeros regardless of the LEADZERO parameter setting.

Syntax: How to Set the Display of Leading Zeros

SET LEADZERO = {ON|OFF}

where:

ON

Displays leading zeros if present.

OFF

Truncates leading zeros. OFF is the default value.

Using Standard Date Functions

176 Information Builders

Example: Displaying Leading Zeros

The AYM function adds one month to the input date of December 1999:

-SET &IN = '9912';
-RUN
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

Using the default LEADZERO setting, this yields:

1

This represents the date January 2000 incorrectly. Setting the LEADZERO parameter in the
request as follows:

SET LEADZERO = ON
-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

results in the following:

0001

This correctly indicates January 2000.

DATEADD: Adding or Subtracting a Date Unit to or From a Date

The DATEADD function adds a unit to or subtracts a unit from a full component date format. A
unit is one of the following:

Year.

Month. If the calculation using the month unit creates an invalid date, DATEADD corrects it
to the last day of the month. For example, adding one month to October 31 yields
November 30, not November 31, since November has 30 days.

Day.

Weekday. When using the weekday unit, DATEADD does not count Saturday or Sunday. For
example, if you add one day to Friday, first DATEADD moves to the next weekday, Monday,
then it adds a day. The result is Tuesday.

Business day. When using the business day unit, DATEADD uses the BUSDAYS parameter
setting and holiday file to determine which days are working days and disregards the rest. If
Monday is not a working day, then one business day past Sunday is Tuesday.

9. Date Functions

Functions Reference 177

Note that when the DATEADD function calculates the next or previous business day or work
day, it always starts from a business day or work day. So if the actual day is Saturday or
Sunday, and the request wants to calculate the next business day, the function will use
Monday as the starting day, not Saturday or Sunday, and will return Tuesday as the next
business day. Similarly, when calculating the previous business day, it will use the starting day
Friday, and will return Thursday as the previous business day. You can use the DATEMOV
function to move the date to the correct type of day before using DATEADD.

DATEADD requires a date to be in date format. Since Dialogue Manager interprets a date as
alphanumeric or numeric, and DATEADD requires a standard date stored as an offset from the
base date, do not use DATEADD with Dialogue Manager unless you first convert the variable
used as the input date to an offset from the base date.

Syntax: How to Add or Subtract a Date Unit to or From a Date

DATEADD(date, 'component', increment)

where:

date

Date

Is a full component date.

component

Alphanumeric

Is one of the following enclosed in single quotation marks:

Y indicates a year component.

M indicates a month component.

D indicates a day component.

WD indicates a weekday component.

BD indicates a business day component.

increment

Integer

Is the number of date units added to or subtracted from date. If this number is not a whole
unit, it is rounded down to the next largest integer.

DATEADD: Adding or Subtracting a Date Unit to or From a Date

178 Information Builders

Note: DATEADD does not use an output argument. It uses the format of the date argument for
the result. As long as the result is a full component date, it can be assigned only to a full
component date field or to integer field.

Example: Adding or Subtracting a Date Unit to or From a Date

This example finds a delivery date that is 12 business days after today:

DELIV_DATE/YYMD = DATEADD('&DATEMDYY', 'BD', 12);

It returns 20040408, which will be Thursday if today is March 23 2004, Tuesday.

To make sure it is Thursday, assign it as

DELIV_DAY/W = DATEADD('&DATEMDYY', 'BD', 12);

which returns 4, representing Thursday. Note the use of the system variable &YYMD and the
natural date representation of the today's date.

Tip: There is an alternative way to add to or subtract from the date. As long as any standard
date is internally presented as a whole number of the least significant component units (that
is, a number of days for full component dates, a number of months for YYM or MY format
dates, and so on), you can add/subtract the desired number of these units directly, without
DATEADD. Note that you must assign the date result to the same format date field, or the
same field. For example, assuming YYM_DATE is a date field of format YYM, you can add 13
months to it and assign the result to the field NEW_YYM_DT, in the following statement:

NEW_YYM_DT/YYM = YYM_DATE + 13;

Otherwise, a non-full component date must be converted to a full component date before using
DATEADD.

DATECVT: Converting the Format of a Date

The DATECVT function converts the field value of any standard date format or legacy date
format into a date format (offset from the base date), in the desired standard date format or
legacy date format. If you supply an invalid format, DATECVT returns a zero or a blank.

9. Date Functions

Functions Reference 179

Syntax: How to Convert a Date Format

DATECVT(date, 'in_format', output)

where:

date

Date

Is the date to be converted. If you supply an invalid date, DATECVT returns zero. When the
conversion is performed, a legacy date obeys any DEFCENT and YRTHRESH parameter
settings supplied for that field.

in_format

Alphanumeric

Is the format of the date enclosed in single quotation marks. It is one of the following:

A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

A legacy date format (for example, I6YMD or A8MDYY).

A non-date format (such as I8 or A6). A non-date format in in_format functions as an
offset from the base date of a YYMD field (12/31/1900).

output

Alphanumeric

Is the output format. It is one of the following:

A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

A legacy date format (for example, I6YMD or A8MDYY).

A non-date format (such as I8 or A6). This format type causes DATECVT to convert the
date into a full component date and return it as a whole number in the format provided.

Example: Converting the Format of a Date

This example first converts a numeric date, NUMDATE, to a character date, and then assigns
the result to a non-date alphanumeric field, CHARDATE.

CHARDATE/A13 = DATECVT (NUMDATE,'I8YYMD','A8YYMD');

Note: DATECVT does not use an output format; it uses the format of the argument
output_format for the result.

DATECVT: Converting the Format of a Date

180 Information Builders

DATEDIF: Finding the Difference Between Two Dates

The DATEDIF function returns the difference between two full component standard dates in
units of a specified component. A component is one of the following:

Year. Using the year unit with DATEDIF yields the inverse of DATEADD. If subtracting one
year from date X creates date Y, then the count of years between X and Y is one.
Subtracting one year from February 29 produces the date February 28.

Month. Using the month component with DATEDIF yields the inverse of DATEADD. If
subtracting one month from date X creates date Y, then the count of months between X
and Y is one. If the to-date is the end-of-month, then the month difference may be rounded
up (in absolute terms) to guarantee the inverse rule.

If one or both of the input dates is the end of the month, DATEDIF takes this into account.
This means that the difference between January 31 and April 30 is three months, not two
months.

Day.

Weekday. With the weekday unit, DATEDIF does not count Saturday or Sunday when
calculating days. This means that the difference between Friday and Monday is one day.

Business day. With the business day unit, DATEDIF uses the BUSDAYS parameter setting
and holiday file to determine which days are working days and disregards the rest. This
means that if Monday is not a working day, the difference between Friday and Tuesday is
one day. See Rules for Creating a Holiday File on page 172 for more information.

DATEDIF returns a whole number. If the difference between two dates is not a whole number,
DATEDIF truncates the value to the next largest integer. For example, the number of years
between March 2, 2001, and March 1, 2002, is zero. If the end date is before the start date,
DATEDIF returns a negative number.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEDIF requires a
standard date stored as an offset from the base date, do not use DATEDIF with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the base
date.

9. Date Functions

Functions Reference 181

Syntax: How to Find the Difference Between Two Dates

DATEDIF('from_date', 'to_date', 'component')

where:

from_date

Date

Is the start date from which to calculate the difference. Is a full component date.

to_date

Date

Is the end date from which to calculate the difference.

component

Alphanumeric

Is one of the following enclosed in single quotation marks:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

Note: DATEDIF does not use an output argument because for the result it uses the format 'I8'.

Example: Finding the Difference Between Two Dates

The example finds the number of complete months between today, March 23, 2004, and one
specific day in the past

DATEDIF('September 11 2001', '20040323', 'M')

and returns 30, which can be assigned to a numeric field.

Tip: There is an alternative way to find the difference between dates. As long as any standard
date is presented internally as a whole number of the least significant component units (that
is, a number of days for full component dates, a number of months for YYM or MY format
dates, etc.), you can find the difference in these component units (not any units) directly,
without DATEDIF. For example, assume OLD_YYM_DT is a date field in format MYY and
NEW_YYM_DT is another date in format YYM. Note that the least significant component for
both formats is month, M. The difference in months, then, can be found by subtracting the
field OLD_YYM_DT from NEW_YYM_DT in the following statement:

DATEDIF: Finding the Difference Between Two Dates

182 Information Builders

MYDIFF/I8 = NEW_YYM_DT/YYM - OLD_YYM_DT;

Otherwise, non-full component standard dates or legacy dates should be converted to full
component standard dates before using DATEDIF.

DATEMOV: Moving a Date to a Significant Point

The DATEMOV function moves a date to a significant point on the calendar.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and DATEMOV requires
a standard date stored as an offset from the base date, do not use DATEMOV with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the base
date. For example, the following converts the integer legacy date 20050131 to a smart date,
adds one month, and converts the result to an alphanumeric legacy date:

-SET &STRT=DATECVT(20050131,'I8YYMD', 'YYMD');
-SET &NMT=DATEADD(&STRT,'M',1);
-SET &NMTA=DATECVT(&NMT,'YYMD','A8MTDYY');
-TYPE A MONTH FROM 20050131 IS &NMTA

The output shows that the DATEADD function added the actual number of days in the month of
February to get to the end of the month from the end of January:

A MONTH FROM 20050131 IS 02282005

DATEMOV works only with full component dates.

Syntax: How to Move a Date to a Significant Point

DATEMOV(date, 'move-point')

where:

date

Date

Is the date to be moved. It must be a full component format date (for example, MDYY or
YYJUL).

move-point

Alphanumeric

Is the significant point the date is moved to enclosed in single quotation marks ('). An
invalid point results in a return code of zero. Valid values are:

EOM, which is the end of month.

9. Date Functions

Functions Reference 183

BOM, which is the beginning of month.

EOQ, which is the end of quarter.

BOQ, which is the beginning of quarter.

EOY, which is the end of year.

BOY, which is the beginning of year.

EOW, which is the end of week.

BOW, which is the beginning of week.

NWD, which is the next weekday.

NBD, which is the next business day.

PWD, which is the prior weekday.

PBD, which is the prior business day.

WD-, which is a weekday or earlier.

BD-, which is a business day or earlier.

WD+, which is a weekday or later.

BD+, which is a business day or later.

A business day calculation is affected by the BUSDAYS and HDAY parameter settings.

Note that when the DATEADD function calculates the next or previous business day or work
day, it always starts from a business day or work day. So if the actual day is Saturday or
Sunday, and the request wants to calculate the next business day, the function will use
Monday as the starting day, not Saturday or Sunday, and will return Tuesday as the next
business day. Similarly, when calculating the previous business day, it will use the starting day
Friday, and will return Thursday as the previous business day.

To avoid skipping a business day or work day, use DATEMOV. To return the next business or
work day, use BD- or WD- to first move to the previous business or work day (if it is already a
business day or work day, it will not be moved). Then use DATEADD to move to the next
business or work day. If you want to return the previous business or work day, first use BD+ or
WD+ to move to the next business or work day (if it is already the correct type of day, it will not
be moved). Then use DATEADD to return the previous business or work day.

DATEMOV: Moving a Date to a Significant Point

184 Information Builders

Note: DATEMOV does not use an output argument. It uses the format of the date argument for
the result. As long as the result is a full component date, it can be assigned only to a full
component date field or to an integer field.

Example: Moving a Date to a Significant Point

This example finds the end day of the current date week

DATEDIF('&YYMD', 'EOW')

and returns 20040326 if today is 2004, March 23rd. Note the use of the system variable
&YYMD and natural date representation in the first argument.

Example: Returning the Next Business Day

This example shows why you may need to use DATEMOV to get the correct result.

The following request against the GGSALES data source uses the BD (Business Day) move
point against the DATE field. First DATE is converted to a smart date, then DATEADD is called
with the BD move-point:

DEFINE FILE GGSALES
DT1/WMDYY=DATE;
DT2/WMDYY = DATEADD(DT1 ,'BD',1);
DAY/Dt = DT1;
 END

TABLE FILE GGSALES
SUM DT1
DT2
BY DT1 NOPRINT
WHERE RECORDLIMIT EQ 10
 END

When the date is on a Saturday or Sunday on the output, the next business day is returned as
a Tuesday. This is because before doing the calculation, the original date was moved to a
business day:

 DT1 DT2
 --- ---
 SUN, 09/01/1996 TUE, 09/03/1996
 FRI, 11/01/1996 MON, 11/04/1996
 SUN, 12/01/1996 TUE, 12/03/1996
 SAT, 03/01/1997 TUE, 03/04/1997
 TUE, 04/01/1997 WED, 04/02/1997
 THU, 05/01/1997 FRI, 05/02/1997
 SUN, 06/01/1997 TUE, 06/03/1997
 MON, 09/01/1997 TUE, 09/02/1997
 WED, 10/01/1997 THU, 10/02/1997

9. Date Functions

Functions Reference 185

In the following version of the request, DATEMOV is called to make sure the starting day is a
business day. The move point specified in the first call is BD- which only moves the date to the
prior business day if it is not already a business day. The call to DATEADD then uses the BD
move point to return the next business day:

DEFINE FILE GGSALES
DT1/WMDYY=DATE;
DT1A/WMDYY=DATEMOV(DT1, 'BD-');
DT2/WMDYY = DATEADD(DT1A,'BD',1);
DAY/Dt = DT1;
 END

TABLE FILE GGSALES
SUM DT1 DT1A DT2
BY DT1 NOPRINT
WHERE RECORDLIMIT EQ 10
 END

On the output, the next business day after a Saturday or Sunday is now returned as Monday:

DT1 DT1A DT2
 --- ---- ---
 SUN, 09/01/1996 FRI, 08/30/1996 MON, 09/02/1996
 FRI, 11/01/1996 FRI, 11/01/1996 MON, 11/04/1996
 SUN, 12/01/1996 FRI, 11/29/1996 MON, 12/02/1996
 SAT, 03/01/1997 FRI, 02/28/1997 MON, 03/03/1997
 TUE, 04/01/1997 TUE, 04/01/1997 WED, 04/02/1997
 THU, 05/01/1997 THU, 05/01/1997 FRI, 05/02/1997
 SUN, 06/01/1997 FRI, 05/30/1997 MON, 06/02/1997
 MON, 09/01/1997 MON, 09/01/1997 TUE, 09/02/1997
 WED, 10/01/1997 WED, 10/01/1997 THU, 10/02/1997

Example: Using a DEFINE FUNCTION to Move a Date to the Beginning of the Week

The following DEFINE FUNCTION named BOWK takes a date and the name of the day you want
to consider the beginning of the week and returns a date that corresponds to the beginning of
the week:

DEFINE FUNCTION BOWK(THEDATE/MDYY,WEEKSTART/A10)
DAYOFWEEK/W=THEDATE;
DAYNO/I1=IF DAYOFWEEK EQ 7 THEN 0 ELSE DAYOFWEEK;
FIRSTOFWK/I1=DECODE WEEKSTART('SUNDAY' 0 'MONDAY' 1 'TUESDAY' 2
'WEDNESDAY' 3 'THURSDAY' 4 'FRIDAY' 5 'SATURDAY' 6
'SUN' 0 'MON' 1 'TUE' 2 'WED' 3 'THU' 4 'FRI' 5 'SAT' 6);
BOWK/MDYY=IF DAYNO GE FIRSTOFWK THEN THEDATE-DAYNO+FIRSTOFWK
ELSE THEDATE-7-DAYNO+FIRSTOFWK;
END

DATEMOV: Moving a Date to a Significant Point

186 Information Builders

The following request uses the BOWK function to use return a date (DT2) that corresponds to
the beginning of the week for each value of the DT1 field:

DEFINE FILE GGSALES
DT1/WMDYY=DATE;
DT2/WMDYY = BOWK(DT1 ,'SUN');
 END

TABLE FILE GGSALES
SUM DT1
DT2
BY DT1 NOPRINT
WHERE RECORDLIMIT EQ 10
ON TABLE SET PAGE NOLEAD
END

The output is shown in the following image:

DATETRAN: Formatting Dates in International Formats

The DATETRAN function formats dates in international formats.

9. Date Functions

Functions Reference 187

Syntax: How to Format Dates in International Formats

DATETRAN (indate, '(intype)', '([formatops])', 'lang', outlen, output)

where:

indate

Is the input date (in date format) to be formatted. Note that the date format cannot be an
alphanumeric or numeric format with date display options (legacy date format).

intype

Is one of the following character strings indicating the input date components and the
order in which you want them to display, enclosed in parentheses and single quotation
marks.

The following table shows the single component input types:

Single Component Input Type Description

'(W)' Day of week component only (original format
must have only W component).

'(M)' Month component only (original format must
have only M component).

The following table shows the two-component input types:

Two-Component Input Type Description

'(YYM)' Four-digit year followed by month.

'(YM)' Two-digit year followed by month.

'(MYY)' Month component followed by four-digit year.

'(MY)' Month component followed by two-digit year.

DATETRAN: Formatting Dates in International Formats

188 Information Builders

The following table shows the three-component input types:

Three-Component Input Type Description

'(YYMD)' Four-digit year followed by month followed by
day.

'(YMD)' Two-digit year followed by month followed by
day.

'(DMYY)' Day component followed by month followed by
four-digit year.

'(DMY)' Day component followed by month followed by
two-digit year.

'(MDYY)' Month component followed by day followed by
four-digit year.

'(MDY)' Month component followed by day followed by
two-digit year.

'(MD)' Month component followed by day (derived from
three-component date by ignoring year
component).

'(DM)' Day component followed by month (derived from
three-component date by ignoring year
component).

9. Date Functions

Functions Reference 189

formatops

Is a string of zero or more formatting options enclosed in parentheses and single quotation
marks. The parentheses and quotation marks are required even if you do not specify
formatting options. Formatting options fall into the following categories:

Options for suppressing initial zeros in month or day numbers.

Note: Zero suppression replaces initial zeros with blanks spaces.

Options for translating month or day components to full or abbreviated uppercase or
default case (mixed-case or lowercase depending on the language) names.

Date delimiter options and options for punctuating a date with commas.

Valid options for suppressing initial zeros in month or day numbers are listed in the
following table. Note that the initial zero is replaced by a blank space:

Format Option Description

m Zero-suppresses months (displays numeric
months before October as 1 through 9 rather
than 01 through 09).

d Displays days before the tenth of the month as 1
through 9 rather than 01 through 09.

dp Displays days before the tenth of the month as 1
through 9 rather than 01 through 09 with a
period after the number.

do Displays days before the tenth of the month as 1
through 9. For English (langcode EN) only,
displays an ordinal suffix (st, nd, rd, or th) after
the number.

The following table shows valid month and day name translation options:

Format Option Description

T Displays month as an abbreviated name, with no
punctuation, all uppercase.

DATETRAN: Formatting Dates in International Formats

190 Information Builders

Format Option Description

TR Displays month as a full name, all uppercase.

Tp Displays month as an abbreviated name,
followed by a period, all uppercase.

t Displays month as an abbreviated name with no
punctuation. The name is all lowercase or initial
uppercase, depending on language code.

tr Displays month as a full name. The name is all
lowercase or initial uppercase, depending on
language code.

tp Displays month as an abbreviated name,
followed by a period. The name displays in the
default case of the specified language (for
example, all lowercase for French and Spanish,
initial uppercase for English and German).

W Includes an abbreviated day-of-the-week name at
the start of the displayed date, all uppercase
with no punctuation.

WR Includes a full day-of-the-week name at the start
of the displayed date, all uppercase.

Wp Includes an abbreviated day-of-the-week name at
the start of the displayed date, all uppercase,
followed by a period.

w Includes an abbreviated day-of-the-week name at
the start of the displayed date with no
punctuation. The name displays in the default
case of the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

9. Date Functions

Functions Reference 191

Format Option Description

wr Includes a full day-of-the-week name at the start
of the displayed date. The name displays in the
default case of the specified language (for
example, all lowercase for French and Spanish,
initial uppercase for English and German).

wp Includes an abbreviated day-of-the-week name at
the start of the displayed date followed by a
period. The name displays in the default case of
the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

X Includes an abbreviated day-of-the-week name at
the end of the displayed date, all uppercase with
no punctuation.

XR Includes a full day-of-the-week name at the end
of the displayed date, all uppercase.

Xp Includes an abbreviated day-of-the-week name at
the end of the displayed date, all uppercase,
followed by a period.

x Includes an abbreviated day-of-the-week name at
the end of the displayed date with no
punctuation. The name displays in the default
case of the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

xr Includes a full day-of-the-week name at the end
of the displayed date. The name displays in the
default case of the specified language (for
example, all lowercase for French and Spanish,
initial uppercase for English and German).

DATETRAN: Formatting Dates in International Formats

192 Information Builders

Format Option Description

xp Includes an abbreviated day-of-the-week name at
the end of the displayed date followed by a
period. The name displays in the default case of
the specified language (for example, all
lowercase for French and Spanish, initial
uppercase for English and German).

The following table shows valid date delimiter options:

Format Option Description

B Uses a blank as the component delimiter. This is
the default if the month or day of week is
translated or if comma is used.

. Uses a period (.) as the component delimiter.

- Uses a minus sign (-) as the component
delimiter. This is the default when the conditions
for a blank default delimiter are not satisfied.

/ Uses a slash (/) as the component delimiter.

| Omits component delimiters.

K Uses appropriate Asian characters as component
delimiters.

c Places a comma (,) after the month name
(following T, Tp, TR, t, tp, or tr).

Places a comma and blank after the day name
(following W, Wp, WR, w, wp, or wr).

Places a comma and blank before the day name
(following X, XR, x, or xr).

9. Date Functions

Functions Reference 193

Format Option Description

e Displays the Spanish or Portuguese word de or
DE between the day and month, and between the
month and year. The case of the word de is
determined by the case of the month name. If the
month is displayed in uppercase, DE is displayed.
Otherwise, de is displayed. Useful for formats
DMY, DMYY, MY, and MYY.

D Inserts a comma (,) after the day number and
before the general delimiter character specified.

Y Inserts a comma (,) after the year and before the
general delimiter character specified.

lang

Is the two-character standard ISO code for the language into which the date should be
translated, enclosed in single quotation marks ('). Valid language codes are:

'AR' Arabic

'CS' Czech

'DA' Danish

'DE' German

'EN' English

'ES' Spanish

'FI' Finnish

'FR' French

'EL' Greek

'IW' Hebrew

'IT' Italian

'JA' Japanese

DATETRAN: Formatting Dates in International Formats

194 Information Builders

'KO' Korean

'LT' Lithuanian

'NL' Dutch

'NO' Norwegian

'PO' Polish

'PT' Portuguese

'RU' Russian

'SV' Swedish

'TH' Thai

'TR' Turkish

'TW' Chinese (Traditional)

'ZH' Chinese (Simplified)

outlen

Numeric

Is the length of the output field in bytes. If the length is insufficient, an all blank result is
returned. If the length is greater than required, the field is padded with blanks on the right.

output

Alphanumeric

Reference: Usage Notes for the DATETRAN Function

The output field, though it must be type A, and not AnV, may in fact contain variable length
information, since the lengths of month names and day names can vary, and also month
and day numbers may be either one or two bytes long if a zero-suppression option is
selected. Unused bytes are filled with blanks.

All invalid and inconsistent inputs result in all blank output strings. Missing data also
results in blank output.

The base dates (1900-12-31 and 1900-12 or 1901-01) are treated as though the
DATEDISPLAY setting were ON (that is, not automatically shown as blanks). To suppress
the printing of base dates, which have an internal integer value of 0, test for 0 before
calling DATETRAN. For example:

9. Date Functions

Functions Reference 195

RESULT/A40 = IF DATE EQ 0 THEN ' ' ELSE
 DATETRAN (DATE, '(YYMD)', '(.t)', 'FR', 40, 'A40');

Valid translated date components are contained in files named DTLNGlng where lng is a
three-character code that specifies the language. These files must be accessible for each
language into which you want to translate dates.

The DATETRAN function is not supported in Dialogue Manager.

Example: Using the DATETRAN Function

The following request prints the day of the week in the default case of the specific language:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20051003;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT1A/A8=DATETRAN(DATEW, '(W)', '(wr)', 'EN', 8 , 'A8') ;
OUT1B/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'EN', 8 , 'A8') ;
OUT1C/A8=DATETRAN(DATEW, '(W)', '(wr)', 'ES', 8 , 'A8') ;
OUT1D/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'ES', 8 , 'A8') ;
OUT1E/A8=DATETRAN(DATEW, '(W)', '(wr)', 'FR', 8 , 'A8') ;
OUT1F/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'FR', 8 , 'A8') ;
OUT1G/A8=DATETRAN(DATEW, '(W)', '(wr)', 'DE', 8 , 'A8') ;
OUT1H/A8=DATETRAN(DATEW2, '(W)', '(wr)', 'DE', 8 , 'A8') ;
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT wr"
""
"Full day of week name at beginning of date, default case (wr)"
"English / Spanish / French / German"
""
SUM OUT1A AS '' OUT1B AS '' TRANSDATE NOPRINT
OVER OUT1C AS '' OUT1D AS ''
OVER OUT1E AS '' OUT1F AS ''
OVER OUT1G AS '' OUT1H AS ''
ON TABLE SET PAGE-NUM OFF
ON TABLE SET STYLE *
GRID=OFF, $
END

DATETRAN: Formatting Dates in International Formats

196 Information Builders

The output is:

The following request prints a blank delimited date with an abbreviated month name in English.
Initial zeros in the day number are suppressed, and a suffix is added to the end of the number:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT2A/A15=DATETRAN(DATEYYMD, '(MDYY)', '(Btdo)', 'EN', 15, 'A15') ;
OUT2B/A15=DATETRAN(DATEYYMD2, '(MDYY)', '(Btdo)', 'EN', 15, 'A15') ;
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Btdo"
""
"Blank-delimited (B)"
"Abbreviated month name, default case (t)"
"Zero-suppress day number, end with suffix (do)"
"English"
""
SUM OUT2A AS '' OUT2B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

9. Date Functions

Functions Reference 197

The output is:

The following request prints a blank delimited date, with an abbreviated month name in
German. Initial zeros in the day number are suppressed, and a period is added to the end of
the number:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT3A/A12=DATETRAN(DATEYYMD, '(DMYY)', '(Btdp)', 'DE', 12, 'A12');
OUT3B/A12=DATETRAN(DATEYYMD2, '(DMYY)', '(Btdp)', 'DE', 12, 'A12');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Btdp"
""
"Blank-delimited (B)"
"Abbreviated month name, default case (t)"
"Zero-suppress day number, end with period (dp)"
"German"
""
SUM OUT3A AS '' OUT3B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

DATETRAN: Formatting Dates in International Formats

198 Information Builders

The output is:

The following request prints a blank delimited date in French, with a full day name at the
beginning and a full month name, in lowercase (the default for French):

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT4A/A30 = DATETRAN(DATEYYMD, '(DMYY)', '(Bwrtr)', 'FR', 30, 'A30');
OUT4B/A30 = DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrtr)', 'FR', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrtr"
""
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Full month name, default case (tr)"
"English"
""
SUM OUT4A AS '' OUT4B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

9. Date Functions

Functions Reference 199

The output is:

The following request prints a blank delimited date in Spanish with a full day name at the
beginning in lowercase (the default for Spanish), followed by a comma, and with the word “de”
between the day number and month and between the month and year:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT5A/A30=DATETRAN(DATEYYMD, '(DMYY)', '(Bwrctrde)', 'ES', 30, 'A30');
OUT5B/A30=DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrctrde)', 'ES', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrctrde"
""
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Comma after day name (c)"
"Full month name, default case (tr)"
"Zero-suppress day number (d)"
"de between day and month and between month and year (e)"
"Spanish"
""
SUM OUT5A AS '' OUT5B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

DATETRAN: Formatting Dates in International Formats

200 Information Builders

The output is:

The following request prints a date in Japanese characters with a full month name at the
beginning, in the default case and with zero suppression:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT6A/A30=DATETRAN(DATEYYMD , '(YYMD)', '(Ktrd)', 'JA', 30, 'A30');
OUT6B/A30=DATETRAN(DATEYYMD2, '(YYMD)', '(Ktrd)', 'JA', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Ktrd"
""
"Japanese characters (K in conjunction with the language code JA)"
"Full month name at beginning of date, default case (tr)"
"Zero-suppress day number (d)"
"Japanese"
""
SUM OUT6A AS '' OUT6B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

9. Date Functions

Functions Reference 201

The output is:

The following request prints a blank delimited date in Greek with a full day name at the
beginning in the default case, followed by a comma, and with a full month name in the default
case:

DEFINE FILE VIDEOTRK
TRANS1/YYMD=20050104;
TRANS2/YYMD=20050302;

DATEW/W=TRANS1 ;
DATEW2/W=TRANS2 ;
DATEYYMD/YYMDW=TRANS1 ;
DATEYYMD2/YYMDW=TRANS2 ;

OUT7A/A30=DATETRAN(DATEYYMD , '(DMYY)', '(Bwrctr)', 'GR', 30, 'A30');
OUT7B/A30=DATETRAN(DATEYYMD2, '(DMYY)', '(Bwrctr)', 'GR', 30, 'A30');
END

TABLE FILE VIDEOTRK
HEADING
"FORMAT Bwrctrde"
""
"Blank-delimited (B)"
"Full day of week name at beginning of date, default case (wr)"
"Comma after day name (c)"
"Full month name, default case (tr)"
"Greek"
""
SUM OUT7A AS '' OUT7B AS '' TRANSDATE NOPRINT
ON TABLE SET PAGE-NUM OFF
END

DATETRAN: Formatting Dates in International Formats

202 Information Builders

The output is:

FIYR: Obtaining the Financial Year

The FIYR function returns the financial year, also known as the fiscal year, corresponding to a
given calendar date based on the financial year starting date and the financial year numbering
convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIYR requires a
standard date stored as an offset from the base date, do not use FIYR with Dialogue Manager
unless you first convert the variable used as the input date to an offset from the base date.

Syntax: How to Obtain the Financial Year

FIYR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

9. Date Functions

Functions Reference 203

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

output

I, Y, or YY

The result will be in integer format, or Y or YY. This function returns a year value. In case
of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

FIYR: Obtaining the Financial Year

204 Information Builders

Example: Obtaining the Financial Year

FIYR obtains the financial year for PERIOD, which has format YYM :

FIYR(PERIOD,'M', 4,1,'FYE','YY');

For PERIOD 2002/03, the result is 2002

For PERIOD 2002/04, the result is 2003.

FIQTR: Obtaining the Financial Quarter

The FIQTR function returns the financial quarter corresponding to a given calendar date based
on the financial year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIQTR requires a
standard date stored as an offset from the base date, do not use FIQTR with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the base
date.

Syntax: How to Obtain the Financial Quarter

FIQTR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

9. Date Functions

Functions Reference 205

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

output

I or Q

The result will be in integer format, or Q. This function will return a value of 1 through 4. In
case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Example: Obtaining the Financial Quarter

FIQTR obtains the financial quarter for START_DATE (format YYMD) and returns a column with
format Q;

FIQTR(START_DATE,'D',10,1,'FYE','Q');

For 1997/10/01, the result is Q1.

For 1996/07/30, the result is Q4.

FIQTR: Obtaining the Financial Quarter

206 Information Builders

FIYYQ: Converting a Calendar Date to a Financial Date

The FIYYQ function returns a financial date containing both the financial year and quarter that
corresponds to a given calendar date. The returned financial date is based on the financial
year starting date and the financial year numbering convention.

Since Dialogue Manager interprets a date as alphanumeric or numeric, and FIYYQ requires a
standard date stored as an offset from the base date, do not use FIYYQ with Dialogue
Manager unless you first convert the variable used as the input date to an offset from the base
date.

Syntax: How to Convert a Calendar Date to a Financial Date

FIYYQ(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

9. Date Functions

Functions Reference 207

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

output

Y[Y]Q or QY[Y]

In case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Example: Converting a Calendar Date to a Financial Date

FIYYQ returns the financial date in format YQ that corresponds to START_DATE (format YYMD);

FIYYQ(START_DATE,'D',10,1,'FYE','YQ');

For 1997/10/01, the result is 98 Q1.

For 1996/07/30, the result is 96 Q4.

TODAY: Returning the Current Date

The TODAY function retrieves the current date from the operating system in the format
MM/DD/YY or MM/DD/YYYY. It always returns a date that is current. Therefore, if you are
running an application late at night, use TODAY. You can remove the default embedded
slashes with the EDIT function.

TODAY: Returning the Current Date

208 Information Builders

You can also retrieve the date in the same format (separated by slashes) using the Dialogue
Manager system variable &DATE. You can retrieve the date without the slashes using the
system variables &YMD, &MDY, and &DMY. The system variable &DATEfmt retrieves the date
in a specified format.

Syntax: How to Retrieve the Current Date

TODAY(output)

where:

output

Alphanumeric, at least A8

The following apply:

If the format is A8 or A9, TODAY returns the 2-digit year.

If the format is A10 or greater, TODAY returns the 4-digit year.

Example: Retrieving the Current Date

TODAY retrieves the current date and stores it in a column with the format A10.

TODAY('A10')

Using Legacy Date Functions

The legacy date functions were created for use with dates in integer, packed decimal, or
alphanumeric format.

For detailed information on each legacy date function, see:

AYM: Adding or Subtracting Months

AYMD: Adding or Subtracting Days on page 210

CHGDAT: Changing How a Date String Displays on page 211

DA Functions: Converting a Legacy Date to an Integer on page 214

DMY, MDY, YMD: Calculating the Difference Between Two Dates on page 215

DOWK and DOWKL: Finding the Day of the Week on page 215

DT Functions: Converting an Integer to a Date on page 216

GREGDT: Converting From Julian to Gregorian Format on page 217

9. Date Functions

Functions Reference 209

JULDAT: Converting From Gregorian to Julian Format on page 218

YM: Calculating Elapsed Months on page 219

Using Old Versions of Legacy Date Functions

The functions described in this section are legacy date functions. They were created for use
with dates in integer or alphanumeric format. They are no longer recommended for date
manipulation. Standard date and date-time functions are preferred.

All legacy date functions support dates for the year 2000 and later.

AYMD: Adding or Subtracting Days

The AYMD function adds days to or subtracts days from a date in year-month-day format. You
can convert a date to this format using the CHGDAT or EDIT function.

Syntax: How to Add or Subtract Days to or From a Date

AYMD(indate, days, output)

where:

indate

I6, I6YMD, I8, I8YYMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns the
value 0 (zero).

days

Integer

Is the number of days you are adding to or subtracting from indate. To subtract days, use a
negative number.

output

I6, I6YMD, I8, or I8YYMD

Is the same format as indate.

If the addition or subtraction of days crosses forward or backward into another century, the
century digits of the output year are adjusted.

AYMD: Adding or Subtracting Days

210 Information Builders

Example: Adding Days to a Date

AYMD adds 35 days to each value in the HIRE_DATE field, and stores the result in a column
with the format I6YMD.

AYMD(HIRE_DATE, 35, 'I6YMD')

For 99/08/01, the result is 99/09/05.

For 99/01/04, the result is 99/02/08.

CHGDAT: Changing How a Date String Displays

The CHGDAT function rearranges the year, month, and day portions of an input character string
representing a date. It may also convert the input string from long to short or short to long date
representation. Long representation contains all three date components: year, month, and day;
short representation omits one or two of the date components, such as year, month, or day.
The input and output date strings are described by display options that specify both the order
of date components (year, month, day) in the date string and whether two or four digits are
used for the year (for example, 04 or 2004). CHGDAT reads an input date character string and
creates an output date character string that represents the same date in a different way.

Note: CHGDAT requires a date character string as input, not a date itself. Whether the input is
a standard or legacy date, convert it to a date character string (using the EDIT or DATECVT
functions, for example) before applying CHGDAT.

The order of date components in the date character string is described by display options
comprised of the following characters in your chosen order:

Character Description

D Day of the month (01 through 31).

M Month of the year (01 through 12).

Y[Y] Year. Y indicates a two-digit year (such as 94); YY indicates
a four-digit year (such as 1994).

9. Date Functions

Functions Reference 211

To spell out the month rather than use a number in the resulting string, append one of the
following characters to the display options for the resulting string:

Character Description

T Displays the month as a three-letter abbreviation.

X Displays the full name of the month.

Display options can consist of up to five display characters. Characters other than those
display options are ignored.

For example: The display options 'DMYY' specify that the date string starts with a two digit
day, then two digit month, then four digit year.

Note: Display options are not date formats.

Reference: Short to Long Conversion

If you are converting a date from short to long representation (for example, from year-month to
year-month-day), the function supplies the portion of the date missing in the short
representation, as shown in the following table:

Portion of Date Missing Portion Supplied by Function

Day (for example, from YM to YMD) Last day of the month.

Month (for example, from Y to YM) Last month of the year (December).

Year (for example, from MD to YMD) The year 99.

Converting year from two-digit to four-digit
(for example, from YMD to YYMD)

The century will be determined by the 100-year
window defined by DEFCENT and YRTHRESH.

CHGDAT: Changing How a Date String Displays

212 Information Builders

Syntax: How to Change the Date Display String

CHGDAT('in_display_options','out_display_options',date_string,output)

where:

'in_display_options'

A1 to A5

Is a series of up to five display options that describe the layout of date_string. These
options can be stored in an alphanumeric field or supplied as a literal enclosed in single
quotation marks.

'out_display_options'

A1 to A5

Is a series of up to five display options that describe the layout of the converted date
string. These options can be stored in an alphanumeric field or supplied as a literal
enclosed in single quotation marks.

date_string

A2 to A8

Is the input date character string with date components in the order specified by
in_display_options.

Note that if the original date is in numeric format, you must convert it to a date character
string. If date_string does not correctly represent the date (the date is invalid), the function
returns blank spaces.

output

Axx, where xx is a number of characters large enough to fit the date string specified by
out_display_options. A17 is long enough to fit the longest date string.

Note: Since CHGDAT uses a date string (as opposed to a date) and returns a date string with
up to 17 characters, use the EDIT or DATECVT functions or any other means to convert the
date to or from a date character string.

Example: Converting the Date Display From YMD to MDYYX

ALPHA_HIRE is HIRE_DATE converted from numeric to alphanumeric format. CHGDAT converts
each value in ALPHA_HIRE from displaying the components as YMD to MDYYX and stores the
result in a column with the format A17. The option X in the output value displays the full name
of the month.

9. Date Functions

Functions Reference 213

CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17')

DA Functions: Converting a Legacy Date to an Integer

The DA functions convert a legacy date to the number of days between it and a base date. By
converting a date to the number of days, you can add and subtract dates and calculate the
intervals between them, or you can add to or subtract numbers from the dates to get new
dates.

You can convert the result back to a date using the DT functions discussed in DT Functions:
Converting an Integer to a Date on page 216.

There are six DA functions; each one accepts a date in a different format.

Syntax: How to Convert a Date to an Integer

function(indate, output)

where:

function

Is one of the following:

DADMY converts a date in day-month-year format.

DADYM converts a date in day-year-month format.

DAMDY converts a date in month-day-year format.

DAMYD converts a date in month-year-day format.

DAYDM converts a date in year-day-month format.

DAYMD converts a date in year-month-day format.

indate

I6xxx or P6xxx, where xxx corresponds to the function DAxxx you are using.

Is the legacy date to be converted. If indate is a numeric literal, enter only the last two
digits of the year; the function assumes the century component. If the date is invalid, the
function returns a 0.

output

Integer

DA Functions: Converting a Legacy Date to an Integer

214 Information Builders

Example: Converting Dates and Calculating the Difference Between Them

DAYMD converts DAT_INC and HIRE_DATE to the number of days since December 31, 1899
and the smaller number is then subtracted from the larger number:

DAYMD(DAT_INC, 'I8') - DAYMD(HIRE_DATE, 'I8')

DMY, MDY, YMD: Calculating the Difference Between Two Dates

The DMY, MDY, and YMD functions calculate the difference between two legacy dates in
integer, alphanumeric, or packed format.

Syntax: How to Calculate the Difference Between Two Dates

function(from_date, to_date)

where:

function

Is one of the following:

DMY calculates the difference between two dates in day-month-year format.

MDY calculates the difference between two dates in month-day-year format.

YMD calculates the difference between two dates in year-month-day format.

from_date
I, P, or A format with date display options.

Is the beginning legacy date.

to_date
I, P, or A format with date display options.I6xxx or I8xxx where xxx corresponds to the
specified function (DMY, YMD, or MDY).

Is the end date.

Example: Calculating the Number of Days Between Two Dates

YMD calculates the number of days between the dates in HIRE_DATE and DAT_INC.

YMD(HIRE_DATE, DAT_INC)

DOWK and DOWKL: Finding the Day of the Week

The DOWK and DOWKL functions find the day of the week that corresponds to a date. DOWK
returns the day as a three letter abbreviation; DOWKL displays the full name of the day.

9. Date Functions

Functions Reference 215

Syntax: How to Find the Day of the Week

{DOWK|DOWKL}(indate, output)

where:

indate

I6YMD or I8YYMD

Is the legacy date in year-month-day format. If the date is not valid, the function returns
spaces. If the date specifies a two digit year and DEFCENT and YRTHRESH values have not
been set, the function assumes the 20th century.

output

DOWK: A4. DOWKL: A12

Example: Finding the Day of the Week

DOWK determines the day of the week that corresponds to the value in the HIRE_DATE field
and stores the result in a column with the format A4.

DOWK(HIRE_DATE, 'A4')

For 80/06/02, the result is MON.

For 82/08/01, the result is SUN.

DT Functions: Converting an Integer to a Date

There are six DT functions; each one converts a number into a date of a different format.

DT Functions: Converting an Integer to a Date

216 Information Builders

Syntax: How to Convert an Integer to a Date

function(number, output)

where:

function

Is one of the following:

DTDMY converts a number to a day-month-year date.

DTDYM converts a number to a day-year-month date.

DTMDY converts a number to a month-day-year date.

DTMYD converts a number to a month-year-day date.

DTYDM converts a number to a year-day-month date.

DTYMD converts a number to a year-month-day date.

number

Integer

Is the number of days since the base date, possibly received from the functions DAxxx.

output

I8xxx, where xxx corresponds to the function DTxxx in the above list.

Example: Converting an Integer to a Date

DTMDY converts NEWF (which was converted to the number of days by DAYMD) to the
corresponding date and stores the result in a column with the format I8MDYY.

DTMDY(NEWF, 'I8MDYY')

For 81/11/02, the result is 11/02/1981.

For 82/05/01, the result is 05/01/1982.

GREGDT: Converting From Julian to Gregorian Format

The GREGDT function converts a date in Julian format (year-day) to Gregorian format (year-
month-day).

9. Date Functions

Functions Reference 217

A date in Julian format is a five- or seven-digit number. The first two or four digits are the year;
the last three digits are the number of the day, counting from January 1. For example, January
1, 1999 in Julian format is either 99001 or 1999001; June21, 2004 in Julian format is
2004173.

Syntax: How to Convert From Julian to Gregorian Format

GREGDT(indate, output)

where:

indate

I5 or I7

Is the Julian date. If the date is invalid, the function returns a 0 (zero).

output

I6, I8, I6YMD, or I8YYMD

Example: Converting From Julian to Gregorian Format

DTMDY converts NEWF (which was converted to the number of days by DAYMD) to the
corresponding date and stores the result in a column with the format I8MDYY.

DTMDY(NEWF, 'I8MDYY')

For 81/11/02, the result is 11/02/1981.

For 82/05/01, the result is 05/01/1982.

JULDAT: Converting From Gregorian to Julian Format

The JULDAT function converts a date from Gregorian format (year-month-day) to Julian format
(year-day). A date in Julian format is a five- or seven-digit number. The first two or four digits
are the year; the last three digits are the number of the day, counting from January 1. For
example, January 1, 1999 in Julian format is either 99001 or 1999001.

JULDAT: Converting From Gregorian to Julian Format

218 Information Builders

Syntax: How to Convert From Gregorian to Julian Format

JULDAT(indate, output)

where:

indate

I6, I8, I6YMD, I8YYMD

Is the legacy date to convert.

output

I5 or I7

Example: Converting From Gregorian to Julian Format

GREGDT converts JULIAN to YYMD (Gregorian) format. It determines the century using the
default DEFCENT and YRTHRESH parameter settings. The result is stored in a column with the
format I8.

GREGDT(JULIAN, 'I8')

For 82213, the result is 19820801.

For 82004, the result is 19820104.

YM: Calculating Elapsed Months

The YM function calculates the number of months between two dates. The dates must be in
year-month format. You can convert a date to this format by using the CHGDAT or EDIT
function.

Syntax: How to Calculate Elapsed Months

YM(fromdate, todate, output)

where:

fromdate

I4YM or I6YYM

Is the start date in year-month format (for example, I4YM). If the date is not valid, the
function returns the value 0 (zero).

9. Date Functions

Functions Reference 219

todate

I4YM or I6YYM

Is the end date in year-month format. If the date is not valid, the function returns the value
0 (zero).

output

Integer

Tip: If fromdate or todate is in integer year-month-day format (I6YMD or I8YYMD), simply
divide by 100 to convert to year-month format and set the result to an integer. This drops
the day portion of the date, which is now after the decimal point.

Example: Calculating Elapsed Months

YM calculates the difference between HIRE_MONTH and MONTH_INC and stores the results in
a column with the format I3.

YM(HIRE_MONTH, MONTH_INC, 'I3')

YM: Calculating Elapsed Months

220 Information Builders

Chapter10
Date-Time Functions

Date-Time functions are for use with timestamps in date-time formats, also known as H
formats. A timestamp value refers to internally stored data capable of holding both date
and time components with an accuracy of up to a nanosecond.

In this chapter:

Using Date-Time Functions

HADD: Incrementing a Date-Time Value

HCNVRT: Converting a Date-Time Value
to Alphanumeric Format

HDATE: Converting the Date Portion of a
Date-Time Value to a Date Format

HDIFF: Finding the Number of Units
Between Two Date-Time Values

HDTTM: Converting a Date Value to a
Date-Time Value

HGETC: Storing the Current Local Date
and Time in a Date-Time Field

HGETZ: Storing the Current Coordinated
Universal Time in a Date-Time Field

HHMMSS: Retrieving the Current Time

HHMS: Converting a Date-Time Value to
a Time Value

HINPUT: Converting an Alphanumeric
String to a Date-Time Value

HMIDNT: Setting the Time Portion of a
Date-Time Value to Midnight

HNAME: Retrieving a Date-Time
Component in Alphanumeric Format

HPART: Retrieving a Date-Time
Component as a Numeric Value

HSETPT: Inserting a Component Into a
Date-Time Value

HTIME: Converting the Time Portion of a
Date-Time Value to a Number

HTMTOTS: Converting a Time to a
Timestamp

HYYWD: Returning the Year and Week
Number From a Date-Time Value

Functions Reference 221

Using Date-Time Functions

The functions described in this section operate on fields in date-time format (sometimes called
H format).

However, you can also provide a date as a character string using the macro DT, followed by a
character string in parentheses, presenting date and time. Date components are separated by
slashes '/'; time components by colons ':'.

Alternatively, the day can be given as a natural day, like 2004 March 31, in parentheses.
Either the date or time component can be omitted. For example, the date-time format
argument can be expressed as DT(2004/03/11 13:24:25.99) or DT(March 11 2004).

The following is another example that creates a timestamp representing the current date and
time. The system variables &YYMD and &TOD are used to obtain the current date and time,
respectively:

-SET &MYSTAMP = &YYMD | ' ' | EDIT(&TOD,'99:$99:$99') ;

Today's date (&YYMD) is concatenated with the time of day (&TOD). The EDIT function is used
to change the dots (.) in the time of day variable to colons (:).

The following request uses the DT macro on the alphanumeric date and time variable
&MYSTAMP:

TABLE FILE CAR
 PRINT CAR NOPRINT
 COMPUTE DTCUR/HYYMDS = DT(&MYSTAMP);
 IF RECORDLIMIT IS 1;
END

Date-Time Parameters

The DATEFORMAT parameter specifies the order of the date components for certain types of
date-time values. The WEEKFIRST parameter specifies the first day of the week. The DTSTRICT
parameter determines the extent to which date-time values are checked for validity.

Specifying the Order of Date Components

The DATEFORMAT parameter specifies the order of the date components (month/day/year)
when date-time values are entered in the formatted string and translated string formats . It
makes the input format of a value independent of the format of the variable to which it is being
assigned.

Using Date-Time Functions

222 Information Builders

Syntax: How to Specify the Order of Date Components in a Date-Time Field

SET DATEFORMAT = option

where:

option

Can be one of the following: MDY, DMY, YMD, or MYD. MDY is the default value for the
U.S. English format.

Specifying the First Day of the Week for Use in Date-Time Functions

The WEEKFIRST parameter specifies a day of the week as the start of the week. This is used in
week computations by the HADD, HDIFF, HNAME, HPART, and HYYWD functions. It is also
used by the DTADD, DTDIFF, DTRUNC, and DTPART functions. The default values are different
for these functions, as described in How to Set a Day as the Start of the Week on page 223.
The WEEKFIRST parameter does not change the day of the month that corresponds to each
day of the week, but only specifies which day is considered the start of the week.

The HPART, DTPART, HYYWD, and HNAME subroutines can extract a week number from a date-
time value. To determine a week number, they can use different definitions. For example, ISO
8601 standard week numbering defines the first week of the year as the first week in January
with four or more days. Any preceding days in January belong to week 52 or 53 of the
preceding year. The ISO standard also establishes Monday as the first day of the week.

You specify which type of week numbering to use by setting the WEEKFIRST parameter, as
described in How to Set a Day as the Start of the Week on page 223.

Since the week number returned by HNAME, DTPART, and HPART functions can be in the
current year or the year preceding or following, the week number by itself may not be useful.
The function HYYWD returns both the year and the week for a given date-time value.

Syntax: How to Set a Day as the Start of the Week

SET WEEKFIRST = value

where:

value

Can be:

1 through 7, representing Sunday through Saturday with non-standard week numbering.

10. Date-Time Functions

Functions Reference 223

Week numbering using these values establishes the first week in January with seven
days as week number 1. Preceding days in January belong to the last week of the
previous year. All weeks have seven days.

ISO1 through ISO7, representing Sunday through Saturday with ISO standard week
numbering.

Note: ISO is a synonym for ISO2.

Week numbering using these values establishes the first week in January with at least
four days as week number 1. Preceding days in January belong to the last week of the
previous year. All weeks have seven days.

STD1 through STD7, in which the digit 1 (Sunday) through 7 (Saturday) indicates the
starting day of the week.

Note: STD without a digit is equivalent to STD1.

Week numbering using these values is as follows. Week number 1 begins on January 1
and ends on the day preceding the first day of the week. For example, for STD1, the
first week ends on the first Saturday of the year. The first and last week may have
fewer than seven days.

SIMPLE, which establishes January 1 as the start of week 1, January 8 is the start of
week 2, and so on. The first day of the week is, thus, the same as the first day of the
year. The last week (week 53) is either one or two days long.

0 (zero), is the value of the WEEKFIRST setting before the user issues an explicit
WEEKFIRST setting. The date-time functions HPART, HNAME, HYYWD, HADD, and HDIFF
use Saturday as the start of the week, when the WEEKFIRST setting is 0. The simplified
functions DTADD, DTDIFF, DTRUNC, and DTPART, as well as printing of dates truncated
to weeks, and recognition of date constant strings that contain week numbers, use
Sunday as the default value, when the WEEKFIRST setting is 0. If the user explicitly
sets WEEKFIRST to another value, that value is used by all of the functions.

Example: Setting Sunday as the Start of the Week

The following designates Sunday as the start of the week, using non-standard week
numbering:

SET WEEKFIRST = 1

Using Date-Time Functions

224 Information Builders

Syntax: How to View the Current Setting of WEEKFIRST

? SET WEEKFIRST

This returns the value that indicates the week numbering algorithm and the first day of the
week. For example, the integer 1 represents Sunday with non-standard week numbering.

Controlling Processing of Date-Time Values

Strict processing checks date-time values when they are input by an end user, read from a
transaction file, displayed, or returned by a subroutine to ensure that they represent a valid
date and time. For example, a numeric month must be between 1 and 12, and the day must
be within the number of days for the specified month.

Syntax: How to Enable Strict Processing of Date-Time Values

SET DTSTRICT = {ON|OFF}

where:

ON

Invokes strict processing. ON is the default value.

Strict processing checks date-time values when they are input by an end user, read from a
transaction file, displayed, or returned by a subroutine to ensure that they represent a
valid date and time. For example, a numeric month must be between 1 and 12, and the
day must be within the number of days for the specified month.

If DTSTRICT is ON and the result would be an invalid date-time value, the function returns
the value zero (0).

OFF

Does not invoke strict processing. Date-time components can have any value within the
constraint of the number of decimal digits allowed in the field. For example, if the field is a
two-digit month, the value can be 12 or 99, but not 115.

Supplying Arguments for Date-Time Functions

Date-time functions may operate on a component of a date-time value. This topic lists the valid
component names and abbreviations for use with these functions.

10. Date-Time Functions

Functions Reference 225

Reference: Arguments for Use With Date and Time Functions

The following component names, valid abbreviations, and values are supported as arguments
for the date-time functions that require them:

Component Name Abbreviation Valid Values

year yy 0001-9999

quarter qq 1-4

month mm 1-12 or a month name, depending on the
function.

day-of-year dy 1-366

day or day-of-month dd 1-31 (The two component names are
equivalent.)

week wk 1-53

weekday dw 1-7 (Sunday-Saturday)

hour hh 0-23

minute mi 0-59

second ss 0-59

millisecond ms 0-999

microsecond mc 0-999999

nanosecond ns 0-999999999

Note:

For an argument that specifies a length of eight, ten, or 12 characters, use eight to include
milliseconds, ten to include microseconds, and 12 to include nanoseconds in the returned
value.

Using Date-Time Functions

226 Information Builders

The last argument is always a USAGE format that indicates the data type returned by the
function. The type may be A (alphanumeric), I (integer), D (floating-point double precision),
H (date-time), or a date format (for example, YYMD).

HADD: Incrementing a Date-Time Value

The HADD function increments a date-time value by a given number of units.

Syntax: How to Increment a Date-Time Value

HADD(datetime, 'component', increment, length, output)

where:

datetime

Date-time

Is the date-time value to be incremented.

component

Alphanumeric

Is the name of the component to be incremented enclosed in single quotation marks. For a
list of valid components, see Arguments for Use With Date and Time Functions on page
226.

Note: WEEKDAY is not a valid component for HADD.

increment

Integer

Is the number of units (positive or negative) by which to increment the component.

length

Integer

Is the number of characters returned. Valid values are:

8 indicates a date-time value that includes one to three decimal digits (milliseconds).

10 indicates a date-time value that includes four to six decimal digits (microseconds).

12 indicates a date-time value that includes seven to nine decimal digits
(nanoseconds).

10. Date-Time Functions

Functions Reference 227

output

Date-time

Example: Incrementing a Date-Time Value

The following example increments thirty months to some specific date-time in the past

HADD(DT(2001/09/11 08:54:34), 'MONTH', 30, 8, 'HYYMDS')

and returns the timestamp 2004/03/11 08:54:34.00.

Example: Converting Unix (Epoch) Time to a Date-Time Value

Unix time (also known as Epoch time) defines an instant in time as the number of seconds
that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January
1970, not counting leap seconds.

The following DEFINE FUNCTION takes a number representing epoch time and converts it to a
date-time value by using the HADD function to add the number of seconds represented by the
input value in epoch time to the epoch base date:

DEFINE FUNCTION UNIX2GMT(INPUT/I9)
 UNIX2GMT/HYYMDS = HADD(DT(1970 JAN 1),'SECONDS',INPUT,8,'HYYMDS');
END

The following request uses this DEFINE FUNCTION to convert the epoch time 1449068652 to
a date-time value:

DEFINE FILE GGSALES
INPUT/I9=1449068652;
OUTDATE/HMTDYYSb = UNIX2GMT(INPUT);
END
TABLE FILE GGSALES
PRINT DATE NOPRINT INPUT OUTDATE
WHERE RECORDLIMIT EQ 1
ON TABLE SET PAGE NOLEAD
END

The output is shown in the following image:

HADD: Incrementing a Date-Time Value

228 Information Builders

HCNVRT: Converting a Date-Time Value to Alphanumeric Format

The HCNVRT function converts a date-time value to alphanumeric format for use with operators
such as EDIT, CONTAINS, and LIKE.

Syntax: How to Convert a Date-Time Value to Alphanumeric Format

HCNVRT(datetime, '(format)', length, output)

where:

datetime

Date-time

Is the date-time value to be converted.

format

Alphanumeric

Is the format of the date-time field enclosed in parentheses and single quotation marks. It
must be a date-time format (data type H, up to H23).

length

Integer

Is the number of characters in the alphanumeric field that is returned. If length is smaller
than the number of characters needed to display the alphanumeric field, the function
returns a blank.

output

Alphanumeric

Example: Converting a Date-Time Value to Alphanumeric Format

Assume that you have a date-time field DTCUR in H format. To convert this timestamp to an
alphanumeric string, use the following syntax:

HCNVRT(DTCUR, '(HMDYYS)', 20, 'A20')

The function returns the string '03/26/2004 14:25:58' that is assignable to an alphanumeric
variable.

10. Date-Time Functions

Functions Reference 229

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

The HDATE function converts the date portion of a date-time value to the date format YYMD.
You can then convert the result to other date formats.

Syntax: How to Convert the Date Portion of a Date-Time Value to a Date Format

HDATE(datetime, output)

where:

datetime

Date-time

Is the date-time value to be converted.

output

Date

Example: Converting the Date Portion of a Timestamp Value to a Date Format

This example converts the DTCUR field, which is the current date/time timestamp, into a date
field using the format DMY:

MYDATE/DMY = HDATE(DTCUR, 'YYMD');

The function returns the date in format YYMD, then assigns it to MYDATE after conversion to
its format MY as 03/04. Note that the output_format of HDATE is presented as a full
component date format MDYY, as required.

HDIFF: Finding the Number of Units Between Two Date-Time Values

The HDIFF function calculates the number of date or time component units between two date-
time values.

Reference: Usage Notes for HDIFF

HDIFF does its subtraction differently from DATEDIF, which subtracts date components stored
in date fields. The DATEDIF calculation looks for full years or full months. Therefore,
subtracting the following two dates and requesting the number of months or years, results in
0:

DATE1 12/25/2014, DATE2 1/5/2015

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

230 Information Builders

Performing the same calculation using HDIFF on date-time fields results in a value of 1 month
or 1 year as, in this case, the month or year is first extracted from each date-time value, and
then the subtraction occurs.

Syntax: How to Find the Number of Units Between Two Date-Time Values

HDIFF(end_dt, start_dt, 'component', output)

where:

end_dt

Date-time

Is the date-time value to subtract from.

start_dt

Date-time

Is the date-time value to subtract.

component

Alphanumeric

Is the name of the component to be used in the calculation, enclosed in single quotation
marks. If the component is a week, the WEEKFIRST parameter setting is used in the
calculation.

output

Floating-point double-precision

Example: Finding the Number of Units Between Two Date-Time Values

Assume that we have a date-time field DTCUR in H format, which is has a current date and
time timestamp. To find the number of days from President's Day 2004 to today use the
expression:

DIFDAY/I6 = HDIF(DTCUR, DT(2004/02/16), 'DAY', 'D6.0')

The function returns the number of days in double precision floating point format, then assigns
it to DIFDAY as integer value. If today is March 31, 2004, the DIFDAY is assigned to 46.

10. Date-Time Functions

Functions Reference 231

If you wish to obtain results in seconds, use the expression

DIFSEC/I9 = HDIF(DTCUR, DT(2004 February 16), 'SECOND', 'D9.0')

which assigns 3801600 to DIFSEC. Note that the format 'D9.0' is used with HDIF. Using 'I9'
for an output_format in HDIF is invalid.

HDTTM: Converting a Date Value to a Date-Time Value

The HDTTM function converts a date value to a date-time value. The time portion is set to
midnight.

Syntax: How to Convert a Date Value to a Date-Time Value

HDTTM(date, length, output)

where:

date

Date

Is the date to be converted. It must be a full component format date. For example, it can
be MDYY or YYJUL.

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

output

Date-time

Is the generated date-time value. The value must have a date-time format (data type H).

HDTTM: Converting a Date Value to a Date-Time Value

232 Information Builders

Example: Converting a Date to a Timestamp

This example converts the President's Day date into a timestamp:

TS/HYYMDS = HDTTM('February 16 2004', 8, TS)

the function returns 2004/02/16 00:00:00 and assigns this timestamp to field TS. Note the
zero values of time components in the timestamp. Also note the use of natural date constants
in single quotation marks for the date in the first function parameter.

HGETC: Storing the Current Local Date and Time in a Date-Time Field

The HGETC function returns the current local date and time in the desired date-time format. If
millisecond or microsecond values are not available in your operating environment, the
function retrieves the value zero for these components.

Syntax: How to Store the Current Local Date and Time in a Date-Time Field

HGETC(length, output)

where:

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

output

Date-time

Is the returned date-time value.

Example: Storing the Current Date and Time as a Timestamp

This example,

HGETC(8, 'HYYMDS')

creates a timestamp representing the current date and time.

10. Date-Time Functions

Functions Reference 233

HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field

HGETZ provides the current Coordinated Universal Time (UTC/GMT time, often called Zulu
time). UTC is the primary civil time standard by which the world regulates clocks and time.

The value is returned in the desired date-time format. If millisecond or microsecond values are
not available in your operating environment, the function retrieves the value zero for these
components.

Syntax: How to Store the Current Universal Date and Time in a Date-Time Field

HGETZ(length, output)

where:

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

output

Date-time

Is the returned date-time value.

Example: Storing the Current Universal Date and Time as a Timestamp

This example,

HGETZ(8, 'HYYMDS')

creates a timestamp representing the current date and time.

HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field

234 Information Builders

Example: Calculating the Time Zone

The time zone can be calculated as a positive or negative hourly offset from GMT. Locations to
the west of the prime meridian have a negative offset. The following request uses the HGETC
function to retrieve the local time, and the HGETZ function to retrieve the GMT time. The HDIFF
function calculates the number of boundaries between them in minutes. The zone is found by
dividing the minutes by 60:

DEFINE FILE EMPLOYEE
LOCALTIME/HYYMDS = HGETC(8, LOCALTIME);
UTCTIME/HYYMDS = HGETZ(8, UTCTIME);
MINUTES/D4= HDIFF(LOCALTIME, UTCTIME, 'MINUTES', 'D4');
ZONE/P3 = MINUTES/60;
END
TABLE FILE EMPLOYEE
PRINT EMP_ID NOPRINT OVER
LOCALTIME OVER
UTCTIME OVER
MINUTES OVER
ZONE
IF RECORDLIMIT IS 1
END

The output is:

 LOCALTIME 2015/05/12 12:47:04
 UTCTIME 2015/05/12 16:47:04
 MINUTES -240
 ZONE -4

HHMMSS: Retrieving the Current Time

The HHMMSS function retrieves the current time from the operating system as an eight
character string, separating the hours, minutes, and seconds with periods.

Syntax: How to Retrieve the Current Time

HHMMSS(output)

where:

output

Alphanumeric, at least A8

10. Date-Time Functions

Functions Reference 235

Example: Retrieving the Current Time

This example,

HMMSS('A10')

creates a character string representing current time, like 12.09.47. Note that shorter
output_format format will cause truncation of output.

HHMS: Converting a Date-Time Value to a Time Value

The HHMS function converts a date-time value to a time value.

Syntax: How to Convert a Date-Time Value to a Time Value

HHMS(datetime, length, output)

where:

datetime

Date-time

Is the date-time value to be converted.

length

Numeric

Is the length of the returned time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

output

Time

Example: Converting a Date-Time Value to a Time value

HHMS converts the date-time field TRANSDATE to a time value with format HHIS:

HHMS(TRANSDATE, 8, 'HHIS')

For 2000/06/26 05:45, the output is 05:45:00

HHMS: Converting a Date-Time Value to a Time Value

236 Information Builders

HINPUT: Converting an Alphanumeric String to a Date-Time Value

The HINPUT function converts an alphanumeric string to a date-time value.

Syntax: How to Convert an Alphanumeric String to a Date-Time Value

HINPUT(source_length, 'source_string', output_length, output)

where:

source_length

Integer

Is the number of characters in the source string to be converted.

source_string

Alphanumeric

Is the string to be converted.

output_length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes one to three decimal digits (milliseconds).

10 indicates a time value that includes four to six decimal digits (microseconds).

12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Is the returned date-time value.

Example: Converting an Alphanumeric String to a Timestamp

This example,

DTM/HYYMDS = HINPUT(14, '20040229 13:34:00', 8, DTM);

converts the character string (20040229 13:34:00) into a timestamp, which is then assigned
to the date-time field DTM. DTM is displayed as 2004/02/29 13:34:00.

10. Date-Time Functions

Functions Reference 237

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight

The HMIDNT function changes the time portion of a date-time value to midnight (all zeros by
default). This allows you to compare a date field with a date-time field.

Syntax: How to Set the Time Portion of a Date-Time Value to Midnight

HMIDNT(datetime, length, output)

where:

datetime

Date-time

Is the date-time value whose time is to be set to midnight.

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

12 indicates a time value that includes nanoseconds.

output

Date-time

Is the date-time return value whose time is set to midnight and whose date is copied from
timestamp.

Example: Setting the Time Portion of a Timestamp to Midnight

This example converts the character string (20040229 13:34:00) to a timestamp, which is
assigned to DTM:

DTM/HYYMDS = HINPUT(14, '20040229 13:34:00', 8, DTM);

This example resets the time portion of DTM to midnight and assigned the timestamp
(02/29/2004 00:00:00) to DTMIDNT:

DTMIDNT/HMDYYS = HMIDNT(DTM, 8, DTMIDNT);

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight

238 Information Builders

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

The HNAME function extracts a specified component from a date-time value and returns it in
alphanumeric format.

Syntax: How to Retrieve a Date-Time Component in Alphanumeric Format

HNAME(datetime, 'component', output)

where:

datetime

Date-time

Is the date-time value from which a component value is to be extracted.

component

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. For a list
of valid components, see Arguments for Use With Date and Time Functions on page 226.

output

Alphanumeric, at least A2

The function converts a month argument to an abbreviation of the month name and
converts and all other components to strings of digits only. The year is always four digits,
and the hour assumes the 24-hour system.

Example: Retrieving a Timestamp Date or Time Component as an Alphanumeric Value

Assuming that the current time obtained by the function HGETC in the first parameter is
13:22:11, this example returns the string '13' and assigns it to AHOUR:

AHOUR/A2 = HNAME(HGETC(8,'HYYMDS'),'HOUR', AHOUR);

Example: Retrieving a Timestamp Date or Time Component as an Alphanumeric Value

Assuming that the current time obtained by the function HGETC in the first parameter is
13:22:11, this example returns the string '13' and assigns it to AHOUR:

AHOUR/A2 = HNAME(HGETC(8,'HYYMDS'),'HOUR', AHOUR);

HPART: Retrieving a Date-Time Component as a Numeric Value

The HPART function extracts a specified component from a date-time value and returns it in
numeric format.

10. Date-Time Functions

Functions Reference 239

Syntax: How to Retrieve a Date-Time Component in Numeric Format

HPART(datetime, 'component', output)

where:

datetime

Date-time

Is the date-time value from which the component is to be extracted.

component

Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks. For a list
of valid components, see Arguments for Use With Date and Time Functions on page 226.

output

Integer

Example: Retrieving a Timestamp Date or Time Component as Numeric Value

Assuming that the current time obtained by HGETC in the first parameter is 14:01:39, this
example returns a whole number, 14, and assigns it to IHOUR:

IHOUR/I2 = HPART(HGETC(8,'HYYMDS'),'HOUR', IHOUR);

HSETPT: Inserting a Component Into a Date-Time Value

The HSETPT function inserts the numeric value of a specified component into a date-time
value.

Syntax: How to Insert a Component Into a Date-Time Value

HSETPT(datetime, 'component', value, length, output)

where:

datetime

Date-time

Is the date-time value in which to insert the component.

HSETPT: Inserting a Component Into a Date-Time Value

240 Information Builders

component

Alphanumeric

Is the name of the component to be inserted enclosed in single quotation marks. See
Arguments for Use With Date and Time Functions on page 226 for a list of valid
components.

value

Integer

Is the numeric value to be inserted for the requested component.

length

Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes one to three decimal digits (milliseconds).

10 indicates a time value that includes four to six decimal digits (microseconds).

12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

output

Date-time

Is the returned date-time value whose chosen component is updated. All other
components are copied from the source date-time value.

Example: Inserting a Component Into a Date-Time Value

Assuming that the current date and time obtained by HGETC in the first parameter are
03/31/2004 and 13:34:36, this example,

UHOUR/HMDYYS = HSETPT(HGETC(8,'HYYMDS'),'HOUR', 7, 8, UHOUR);

returns 03/31/2004 07:34:36.

HTIME: Converting the Time Portion of a Date-Time Value to a Number

The HTIME function converts the time portion of a date-time value to the number of
milliseconds if the length argument is eight, microseconds if the length argument is ten, or
nanoseconds if the length argument is 12.

10. Date-Time Functions

Functions Reference 241

Syntax: How to Convert the Time Portion of a Date-Time Value to a Number

HTIME(length, datetime, output)

where:

length

Integer

Is the length of the input date-time value. Valid values are:

8 indicates a time value that includes one to three decimal digits (milliseconds).

10 indicates a time value that includes four to six decimal digits (microseconds).

12 indicates a time value that includes seven to nine decimal digits (nanoseconds).

datetime

Date-time

Is the date-time value from which to convert the time.

output

Floating-point double-precision

Example: Converting the Time Portion of a Date-Time Value to a Number

Assuming that the current date and time obtained by HGETC in the second parameter are
03/31/2004 and 13:48:14, this example returns and assigns to NMILLI, 49,694,395. (Note
that this example uses milliseconds rather than microseconds.)

NMILLI/D12.0 = HTIME(8, HGETC(10,'HYYMDS'), NMICRO);

Assuming that the first parameter is equal to 10 and the timestamp format is HYYMDSS, this
example returns and assigns to NMICRO, 50,686,123,024.

NMICRO/D12.0 = HTIME(10, HGETC(10,'HYYMDSS'), NMICRO);

HTMTOTS: Converting a Time to a Timestamp

The HTMTOTS function returns a timestamp using the current date to supply the date
components of its value, and copies the time components from its input date-time value.

Syntax: How to Convert a Time to a Timestamp

HTMTOTS(time, length, output)

HTMTOTS: Converting a Time to a Timestamp

242 Information Builders

where:

time

Date-Time

Is the date-time value whose time will be used. The date portion will be ignored.

length

Integer

Is the length of the result. This can be one of the following:

8 for input time values including milliseconds.

10 for input time values including microseconds.

12 for input time values including nanoseconds.

output_format

Date-Time

Is the timestamp whose date is set to current date, and whose time is copied from time.

Example: Converting a Time to a Timestamp

This example produces a timestamp, whose date and time are current, and stores the result in
a column with the format in the field HMDYYS:

HMDYYS = HTMTOTS(DT(&MYTOD), 8, 'HMDYYS');

The result is 03/26/2004 13:48:14.

HYYWD: Returning the Year and Week Number From a Date-Time Value

The week number returned by HNAME and HPART can actually be in the year preceding or
following the input date.

The HYYWD function returns both the year and the week number from a given date-time value.

The output is edited to conform to the ISO standard format for dates with week numbers, yyyy-
Www-d.

10. Date-Time Functions

Functions Reference 243

Syntax: How to Return the Year and Week Number From a Date-Time Value

HYYWD(dtvalue, output)

where:

dtvalue

Date-time

Is the date-time value to be edited.

output

Alphanumeric

The output format must be at least 10 characters long. The output is in the following
format:

yyyy-Www-d

where:

yyyy

Is the four-digit year.

ww

Is the two-digit week number (01 to 53).

d

Is the single-digit day of the week (1 to 7). The d value is relative to the current
WEEKFIRST setting. If WEEKFIRST is 2 or ISO2 (Monday), then Monday is represented
in the output as 1, Tuesday as 2.

Using the EDIT function, you can extract the individual subfields from this output.

Example: Returning the Year and Week Number From a Date-time Value

The following converts the TRANSDATE date-time value to the ISO standard format for dates
with week numbers. WEEKFIRST is set to ISO2, which produces ISO standard week numbering:

 ISODATE/A10 = HYYWD(TRANSDATE, 'A10');

For date component 1999/01/30 04:16, the value is 1999-W04-6.

For date component 1999/12/15, the value is 1999-W50-3.

HYYWD: Returning the Year and Week Number From a Date-Time Value

244 Information Builders

Chapter11
Simplified Conversion Functions

Simplified conversion functions have streamlined parameter lists, similar to those used
by SQL functions. In some cases, these simplified functions provide slightly different
functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

In this chapter:

CHAR: Returning a Character Based on a Numeric Code

COMPACTFORMAT: Displaying Numbers in an Abbreviated Format

CTRLCHAR: Returning a Non-Printable Control Character

FPRINT: Displaying a Value in a Specified Format

HEXTYPE: Returning the Hexadecimal View of an Input Value

PHONETIC: Returning a Phonetic Key for a String

TO_INTEGER: Converting a Character String to an Integer Value

TO_NUMBER: Converting a Character String to a Numeric Value

CHAR: Returning a Character Based on a Numeric Code

The CHAR function accepts a decimal integer and returns the character identified by that
number converted to ASCII or EBCDIC, depending on the operating environment. The output is
returned as variable length alphanumeric. If the number is above the range of valid characters,
a null value is returned.

Syntax: How to Return a Character Based on a Numeric Code

CHAR(number_code)

Functions Reference 245

where:

number_code

Integer

Is a field, number, or numeric expression whose whole absolute value will be used as a
number code to retrieve an output character.

For example, a TAB character is returned by CHAR(9) in ASCII environments, or by CHAR(5)
in EBCDIC environments.

Example: Using the CHAR Function to Insert Control Characters Into a String

CHAR returns a carriage control character in an ASCII environment.

CHAR(13)

COMPACTFORMAT: Displaying Numbers in an Abbreviated Format

COMPACTFORMAT displays numbers in a compact format where:

K is an abbreviation for thousands.

M is an abbreviation for millions.

B is an abbreviation for billions.

T is an abbreviation for trillions.

COMPACTFORMAT computes which abbreviation to use, based on the order of magnitude of
the largest value in the column. The returned value is an alphanumeric string. Attempting to
output this value to a numeric format will result in a format error, and the value zero (0) will be
displayed.

Syntax: How to Display Numbers in an Abbreviated Format

COMPACTFORMAT(input)

where:

input

Is the name of a numeric field.

Example: Displaying Numbers in an Abbreviated Format

COMPACTFORMAT abbreviates the display of COGS_US.

COMPACTFORMAT(COGS_US)

COMPACTFORMAT: Displaying Numbers in an Abbreviated Format

246 Information Builders

For $2,950,358.00, the result is $3M.

CTRLCHAR: Returning a Non-Printable Control Character

The CTRLCHAR function returns a nonprintable control character specific to the running
operating environment, based on a supported list of keywords. The output is returned as
variable length alphanumeric.

Syntax: How to Return a Non-Printable Control Character

CTRLCHAR(ctrl_char)

where:

ctrl_char

Is one of the following keywords.

NUL returns a null character.

SOH returns a start of heading character.

STX returns a start of text character.

ETX returns an end of text character.

EOT returns an end of transmission character.

ENQ returns an enquiry character.

ACK returns an acknowledge character.

BEL returns a bell or beep character.

BS returns a backspace character.

TAB or HT returns a horizontal tab character.

LF returns a line feed character.

VT returns a vertical tab character.

FF returns a form feed (top of page) character.

CR returns a carriage control character.

SO returns a shift out character.

SI returns a shift in character.

11. Simplified Conversion Functions

Functions Reference 247

DLE returns a data link escape character.

DC1 or XON returns a device control 1 character.

DC2 returns a device control 2 character.

DC3 or XOFF returns a device control 3 character.

DC4 returns a device control 4 character.

NAK returns a negative acknowledge character.

SYN returns a synchronous idle character.

ETB returns an end of transmission block character.

CAN returns a cancel character.

EM returns an end of medium character.

SUB returns a substitute character.

ESC returns an escape, prefix, or altmode character.

FS returns a file separator character.

GS returns a group separator character.

RS returns a record separator character.

US returns a unit separator character.

DEL returns a delete, rubout, or interrupt character.

Example: Using the CTRLCHAR Function to Insert Control Characters Into a String

CTRLCHAR returns a carriage control character in an ASCII environment.

CTRLCHAR(CR)

FPRINT: Displaying a Value in a Specified Format

Given an output format, the simplified conversion function FPRINT converts a value to
alphanumeric format for display.

Note: A legacy FPRINT function also exists and is still supported. For information, see FPRINT:
Converting Fields to Alphanumeric Format on page 255. The legacy function has an additional
argument for the name or format of the returned value.

FPRINT: Displaying a Value in a Specified Format

248 Information Builders

Syntax: How to Display a Value in a Specified Format

FPRINT(value, 'out_format')

where:

value

Any data type

Is the value to be converted.

'out_format'

Fixed length alphanumeric

Is the display format. For information about valid display formats, see the Describing Data
With WebFOCUS Language manual.

Example: Displaying a Value in a Specified Format

FPRINT converts a date to alphanumeric format.

FPRINT(TIME_DATE, 'YYMtrD')

For 01/03/2009, the result is 2009, January 3.

HEXTYPE: Returning the Hexadecimal View of an Input Value

The HEXTYPE function returns the hexadecimal view of an input value of any data type. The
result is returned as variable length alphanumeric. The alphanumeric field to which the
hexidecimal value is returned must be large enough to hold two characters for each input
character. The value returned depends on the running operating environment.

Syntax: How to Returning the Hexadecimal View of an Input Value

HEXTYPE(in_value)

where:

in_value

Is an alphanumeric or integer field, constant, or expression.

Example: Returning a Hexadecimal View

HEXTYPE returns a hexidecimal view of COUNTRY_NAME.

HEXTYPE(COUNTRY_NAME)

11. Simplified Conversion Functions

Functions Reference 249

For Argentina, the result is 417267656E74696E61.

PHONETIC: Returning a Phonetic Key for a String

PHONETIC calculates a phonetic key for a string, or a null value on failure. Phonetic keys are
useful for grouping alphanumeric values, such as names, that may have spelling variations.
This is done by generating an index number that will be the same for the variations of the
same name based on pronunciation. One of two phonetic algorithms can be used for indexing,
Metaphone and Soundex. Metaphone is the default algorithm, except on z/OS where the
default is Soundex.

You can set the algorithm to use with the following command.

SET PHONETIC_ALGORITHM = {METAPHONE|SOUNDEX}

Most phonetic algorithms were developed for use with the English language. Therefore,
applying the rules to words in other languages may not give a meaningful result.

Metaphone is suitable for use with most English words, not just names. Metaphone algorithms
are the basis for many popular spell checkers.

Note: Metaphone is not optimized in generated SQL. Therefore, if you need to optimize the
request for an SQL DBMS, the SOUNDEX setting should be used.

Soundex is a legacy phonetic algorithm for indexing names by sound, as pronounced in
English.

Syntax: How to Return a Phonetic Key

PHONETIC(string)

where:

string

Alphanumeric

Is a string for which to create the key. A null value will be returned on failure.

Example: Generating a Phonetic Key

PHONETIC generates a phonetic key for LAST_NAME:

PHONETIC(LAST_NAME)

For last names SMITH and SMYTHE, the same phonetic key, S530, is generated.

PHONETIC: Returning a Phonetic Key for a String

250 Information Builders

TO_INTEGER: Converting a Character String to an Integer Value

TO_INTEGER converts a character string that contains a valid number consisting of digits and
an optional decimal point to an integer value. If the value contains a decimal point, the value
after the decimal point is truncated. If the value does not represent a valid number, zero (0) is
returned.

Syntax: How to Convert a Character String to an Integer

TO_INTEGER(string)

where:

string
Is a character string enclosed in single quotation marks or a character field that
represents a number containing digits and an optional decimal point.

Example: Converting a Character String to an Integer Value

TO_INTEGER converts the character string '56.78' to an integer.

TO_INTEGER('56.78')

The result is 56.

TO_NUMBER: Converting a Character String to a Numeric Value

TO_NUMBER converts a character string that contains a valid number consisting of digits and
an optional decimal point to the numeric format most appropriate to the context. If the value
does not represent a valid number, zero (0) is returned.

Syntax: How to Convert a Character String to a Number

TO_NUMBER(string)

where:

string
Is a character string enclosed in single quotation marks or a character field that
represents a number containing digits and an optional decimal point. This string will
be converted to a double-precision floating point number.

Example: Converting a Character String to a Number

TO_NUMBER converts the string '56.78' to a number with one decimal place.

TO_NUMBER('56.78')

11. Simplified Conversion Functions

Functions Reference 251

The result is 56.8.

TO_NUMBER: Converting a Character String to a Numeric Value

252 Information Builders

Chapter12
Format Conversion Functions

Format conversion functions convert fields from one format to another.

In this chapter:

ATODBL: Converting an Alphanumeric
String to Double-Precision Format

EDIT: Converting the Format of a Field

FPRINT: Converting Fields to
Alphanumeric Format

FTOA: Converting a Number to
Alphanumeric Format

HEXBYT: Converting a Decimal Integer to
a Character

ITONUM: Converting a Large Number to
Double-Precision Format

ITOPACK: Converting a Large Binary
Integer to Packed-Decimal Format

ITOZ: Converting a Number to Zoned
Format

PCKOUT: Writing a Packed Number of
Variable Length

PTOA: Converting a Packed-Decimal
Number to Alphanumeric Format

TSTOPACK: Converting an MSSQL or
Sybase Timestamp Column to Packed
Decimal

UFMT: Converting an Alphanumeric
String to Hexadecimal

XTPACK: Writing a Packed Number With
Up to 31 Significant Digits to an Output
File

ATODBL: Converting an Alphanumeric String to Double-Precision Format

The ATODBL function converts a number in alphanumeric format to decimal (double-precision)
format.

Syntax: How to Convert an Alphanumeric String to Double-Precision Format

ATODBL(source_string, length, output)

where:

source_string
Alphanumeric

Functions Reference 253

Is the string consisting of digits and, optionally, one sign and one decimal point to be
converted.

length
Alphanumeric

Is the length of the source string in bytes. This can be a numeric constant, or a field or
variable that contains the value. If you specify a numeric constant, enclose it in single
quotation marks, for example '12'.

output
Double precision floating-point

Example: Converting an Alphanumeric Field to Double-Precision Format

ATODBL converts EMP_ID into double-precision format.

ATODBL(EMP_ID, '09', 'D12.2')

For 112847612, the result is 112,847,612.00.

For 117593129, the result is 117,593,129.00.

EDIT: Converting the Format of a Field

The EDIT function converts an alphanumeric field that contains numeric characters to numeric
format or converts a numeric field to alphanumeric format.

This function is useful for manipulating a field in an expression that performs an operation that
requires operands in a particular format.

When EDIT assigns a converted value to a new field, the format of the new field must
correspond to the format of the returned value. For example, if EDIT converts a numeric field to
alphanumeric format, you must give the new field an alphanumeric format:

DEFINE ALPHAPRICE/A6 = EDIT(PRICE);

EDIT deals with a symbol in the following way:

When an alphanumeric field is converted to numeric format, a sign or decimal point in the
field is stored as part of the numeric value.

Any other non-numeric characters are invalid, and EDIT returns the value zero.

When converting a floating-point or packed-decimal field to alphanumeric format, EDIT
removes the sign, the decimal point, and any number to the right of the decimal point. It
then right-justifies the remaining digits and adds leading zeros to achieve the specified field
length. Converting a number with more than nine significant digits in floating-point or
packed-decimal format may produce an incorrect result.

EDIT: Converting the Format of a Field

254 Information Builders

EDIT also extracts characters from or add characters to an alphanumeric string. For more
information, see EDIT: Extracting or Adding Characters on page 94.

Syntax: How to Convert the Format of a Field

EDIT(fieldname);

where:

fieldname
Alphanumeric or Numeric

Is the field name.

Example: Converting From Numeric to Alphanumeric Format

EDIT converts HIRE_DATE (a legacy date format) to alphanumeric format.

EDIT(HIRE_DATE)

For 82/04/01, the result is 820401.

For 81/11/02, the result is 811102.

FPRINT: Converting Fields to Alphanumeric Format

The FPRINT function converts any type of field except for a text field to its alphanumeric
equivalent for display. The alphanumeric representation will include any display options that
are specified in the format of the original field.

Syntax: How to Convert Fields Using FPRINT

FPRINT(in_value, 'usageformat', output)

where:

in_value

Any format except TX

Is the value to be converted.

usageformat

Alphanumeric

Is the usage format of the value to be converted, including display options. The format
must be enclosed in single quotation marks.

12. Format Conversion Functions

Functions Reference 255

output

Alphanumeric

The output format must be long enough to hold the converted number itself, with a sign
and decimal point, plus any additional characters generated by display options, such as
commas, a currency symbol, or a percent sign.

For example, D12.2 format is converted to A14 because it outputs two decimal digits, a
decimal point, a possible minus sign, up to eight integer digits, and two commas. If the
output format is not large enough, excess right-hand characters may be truncated.

Reference: Usage Notes for the FPRINT Function

The USAGE format must match the actual data in the field.

The output of FPRINT for numeric values is right-justified within the area required for the
maximum number of characters corresponding to the supplied format. This ensures that all
possible values are aligned vertically along the decimal point or units digit.

Example: Converting a Numeric Field to Alphanumeric Format

FPRINT converts CURR_SAL (format D12.2)M to a column with format A15:

FPRINT(CURR_SAL, 'D12.2M', 'A15')

FTOA: Converting a Number to Alphanumeric Format

The FTOA function converts a number up to 16 digits long from numeric format to alphanumeric
format. It retains the decimal positions of the number and right-justifies it with leading spaces.
You can also add edit options to a number converted by FTOA.

When using FTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a D12.2 format is converted to A14. If the output format
is not large enough, decimals are truncated.

Syntax: How to Convert a Number to Alphanumeric Format

FTOA(number, '(format)', output)

where:

number

Numeric F or D (single and double precision floating-point)

Is the number to be converted.

FTOA: Converting a Number to Alphanumeric Format

256 Information Builders

format

Alphanumeric

Is the format of the number to be converted enclosed in parentheses. Only floating point
single-precision and double-precision formats are supported. Include any edit options that
you want to appear in the output. The D (floating-point double-precision) format
automatically supplies commas.

output

Alphanumeric

The length of this argument must be greater than the length of number and must account
for edit options and a possible negative sign.

Example: Converting From Numeric to Alphanumeric Format

FTOA converts GROSS from floating point double-precision to alphanumeric format.

FTOA(GROSS, '(D12.2)', 'A15')

For $1,815.00, the result is 1,815.00.

For $2,255.00, the result is 2,255.00.

HEXBYT: Converting a Decimal Integer to a Character

The HEXBYT function obtains the ASCII, EBCDIC, or Unicode character equivalent of a decimal
integer, depending on your configuration and operating environment. The decimal value you
specify must be the value associated with the character on the configured code page. HEXBYT
returns a single alphanumeric character in the ASCII, EBCDIC, or Unicode character set. You
can use this function to produce characters that are not on your keyboard, similar to the
CTRAN function.

In Unicode configurations, this function uses values in the range:

0 to 255 for 1-byte characters.

256 to 65535 for 2-byte characters.

65536 to 16777215 for 3-byte characters.

16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

The display of special characters depends on your software and hardware; not all special
characters may appear.

12. Format Conversion Functions

Functions Reference 257

Syntax: How to Convert a Decimal Integer to a Character

HEXBYT(decimal_value, output)

where:

decimal_value

Integer

Is the decimal integer to be converted to a single character. In non-Unicode environments,
a value greater than 255 is treated as the remainder of decimal_value divided by 256. The
decimal value you specify must be the value associated with the character on the
configured code page.

output

Alphanumeric

Example: Converting a Decimal Integer to a Character in ASCII and Unicode

The following request uses HEXBYT to convert the decimal integer value 130 to the comma
character on ASCII code page 1252. The comma is then concatenated between LAST_NAME
and FIRST_NAME to create the NAME field:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE COMMA1/A1 = HEXBYT(130, COMMA1); NOPRINT
COMPUTE NAME/A40 = LAST_NAME || COMMA1| ' '| FIRST_NAME;
BY LAST_NAME NOPRINT
BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

The output is shown in the following image.

HEXBYT: Converting a Decimal Integer to a Character

258 Information Builders

To produce the same output in a Unicode environment configured for code page 65001,
replace the COMPUTE command for the field COMMA1 with the following syntax, in which the
call to HEXBYT converts the integer value 14844058 to the comma character:

COMPUTE COMMA1/A1 = HEXBYT(14844058, COMMA1); NOPRINT

Example: Converting a Decimal Integer to a Character

HEXBYT converts LAST_INIT_CODE to its character equivalent and stores the result in a column
with the format A1.

HEXBYT(LAST_INIT_CODE, 'A1')

On an ASCII platform, for 83, the result is S.

On ASCII platform, for 74, the result is J.

ITONUM: Converting a Large Number to Double-Precision Format

The ITONUM function converts a large number in a non-FOCUS data source from special long
integer to double-precision format.

This is useful for some programming languages and some non-FOCUS data storage systems
that use special long integers, which do not fit the regular integer format (four bytes in length)
supported in the synonym, and, therefore, require conversion to double-precision format.

You must specify how many of the right-most bytes in the input field are significant. The result
is an 8-byte double-precision field.

Syntax: How to Convert a Large Binary Integer to Double-Precision Format

ITONUM(maxbytes, infield, output)

where:

maxbytes

Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes.

6 ignores the left-most 2 bytes.

7 ignores the left-most byte.

12. Format Conversion Functions

Functions Reference 259

infield

A8

Is the field that contains the number. Both the USAGE and ACTUAL formats of the field
must be A8.

output

Double precision floating-point (Dn)

Example: Converting a Large Binary Integer to Double-Precision Format

ITONUM converts BINARYFLD to double-precision format.

ITONUM(6, BINARYFLD, 'D14')

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

The ITOPACK function converts a large binary integer in a non-FOCUS data source to packed-
decimal format.

This is useful for some programming languages and some non-FOCUS data storage systems
that use special long integers, which do not fit the regular integer format (four bytes in length)
supported in the synonym, and, therefore, require conversion to packed-decimal format.

You must specify how many of the right-most bytes in the input field are significant. The result
is an 8-byte packed-decimal field of up to 15 significant numeric positions (for example, P15 or
P16.2).

Limit: For a field defined as 'PIC 9(15) COMP' or the equivalent (15 significant digits), the
maximum number that can be converted is 167,744,242,712,576.

Syntax: How to Convert a Large Binary Integer to Packed-Decimal Format

ITOPACK(maxbytes, infield, output)

where:

maxbytes

Numeric

Is the maximum number of bytes in the 8-byte input field that have significant numeric
data, including the binary sign.

Valid values are:

5 ignores the left-most 3 bytes (up to 11 significant positions).

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

260 Information Builders

6 ignores the left-most 2 bytes (up to 14 significant positions).

7 ignores the left-most byte (up to 15 significant positions).

infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of the
field must be A8.

output

Numeric

The format must be Pn or Pn.d.

Example: Converting a Large Binary Integer to Packed-Decimal Format

ITOPACK converts BINARYFLD to packed-decimal format.

ITOPACK(6, BINARYFLD, 'P14.4')

ITOZ: Converting a Number to Zoned Format

The ITOZ function converts a number in numeric format to zoned-decimal format. Although a
request cannot process zoned numbers, it can write zoned fields to an extract file for use by
an external program.

Syntax: How to Convert a Number to Zoned Format

ITOZ(length, in_value, output)

where:

length

Integer

Is the length of in_value in bytes. The maximum number of bytes is 15. The last byte
includes the sign.

in_value

Numeric

Is the number to be converted. The number is truncated to an integer before it is
converted.

12. Format Conversion Functions

Functions Reference 261

output

Alphanumeric

Example: Converting a Number to Zoned Format

ITOZ converts CURR_SAL to zoned format.

ITOZ(8, CURR_SAL, 'A8')

PCKOUT: Writing a Packed Number of Variable Length

The PCKOUT function writes a packed-decimal number of variable length to an extract file.
When a request saves a packed number to an extract file, it typically writes it as an 8- or 16-
byte field regardless of its format specification. With PCKOUT, you can vary the field's length
between 1 to 16 bytes.

Syntax: How to Write a Packed Number of Variable Length

PCKOUT(in_value, length, output)

where:

in_value

Numeric

Is the input value. It can be in packed, integer, single- or double-precision floating point
format. If it is not in integer format, it is rounded to the nearest whole number.

length

Numeric

Is the length of the output value, from 1 to 16 bytes.

output

Alphanumeric

The function returns the field as alphanumeric although it contains packed data.

Example: Writing a Packed Number of Variable Length

PCKOUT converts CURR_SAL to a five-byte packed format.

PCKOUT(CURR_SAL, 5, 'A5')

PCKOUT: Writing a Packed Number of Variable Length

262 Information Builders

PTOA: Converting a Packed-Decimal Number to Alphanumeric Format

The PTOA function converts a number from numeric format to alphanumeric format. It retains
the decimal positions of the number and right-justifies it with leading spaces. You can also add
edit options to a number converted by PTOA.

When using PTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a P12.2C format is converted to A14. If the output
format is not large enough, the right-most characters are truncated.

Syntax: How to Convert a Packed-Decimal Number to Alphanumeric Format

PTOA(number, '(format)', output)

where:

number

Numeric P (packed-decimal) or F or D (single and double precision floating-point)

Is the number to be converted.

format

Alphanumeric

Is the format of the number enclosed in parentheses.

output

Alphanumeric

The length of this argument must be greater than the length of number and must account
for edit options and a possible negative sign.

Example: Converting From Packed to Alphanumeric Format

PTOA converts PGROSS from packed-decimal to alphanumeric format.

PTOA(PGROSS, FMT, 'A17')

TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal

This function applies to the Microsoft SQL Server and Sybase adapters only.

12. Format Conversion Functions

Functions Reference 263

Microsoft SQL Server and Sybase have a data type called TIMESTAMP. Rather than containing
an actual timestamp, columns with this data type contain a number that is incremented for
each record inserted or updated in the data source. This timestamp comes from a common
area, so no two tables in the database have the same timestamp column value. The value is
stored in Binary(8) or Varbinary(8) format in the table, but is returned as a double wide
alphanumeric column (A16). You can use the TSTOPACK function to convert the timestamp
value to packed decimal.

Syntax: How to Convert an MSSQL or Sybase Timestamp Column to Packed Decimal

TSTOPACK(tscol, output);

where:

tscol

A16

Is the timestamp column to be converted.

output

P21

Example: Converting a Microsoft SQL Server Timestamp Column to Packed Decimal

The Master File for the TSTEST data source follows. The field TS represents the TIMESTAMP
column:

FILENAME=TSTEST, SUFFIX=SQLMSS , $
 SEGMENT=TSTEST, SEGTYPE=S0, $
 FIELDNAME=I, ALIAS=I, USAGE=I11, ACTUAL=I4,
 MISSING=ON, $
 FIELDNAME=TS, ALIAS=TS, USAGE=A16, ACTUAL=A16, FIELDTYPE=R, $

Note: When you generate a synonym for a table with a TIMESTAMP column, the TIMESTAMP
column is created as read-only (FIELDTYPE=R).

TSTOPACK converts the timestamp column TS to packed decimal:

TSNUM/P21=TSTOPACK(TS,'P21');

For 0000000000007815, the result is 30741.

For 0000000000007816, the result is 30742.

TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal

264 Information Builders

UFMT: Converting an Alphanumeric String to Hexadecimal

The UFMT function converts characters in an alphanumeric source string to their hexadecimal
representation. This function is useful for examining data of unknown format. As long as you
know the length of the data, you can examine its content.

Syntax: How to Convert an Alphanumeric String to Hexadecimal

UFMT(source_string, length, output)

where:

source_string

Alphanumeric

Is the alphanumeric string to convert.

length

Integer

Is the number of characters in source_string.

output

Alphanumeric

The format of output must be alphanumeric and its length must be twice that of length.

Example: Converting an Alphanumeric String to Hexadecimal

UFMT converts each value in JOBCODE to its hexadecimal representation and stores it in a
column with the format A6.

UFMT(JOBCODE, 3, 'A6')

For A01, the result is C1F0F1.

For A02, the result is C1F0F2.

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

The XTPACK function stores packed numbers with up to 31 significant digits in an
alphanumeric field, retaining decimal data. This permits writing a short or long packed field of
any length, 1 to 16 bytes, to an output file.

12. Format Conversion Functions

Functions Reference 265

Syntax: How to Store Packed Values in an Alphanumeric Field

XTPACK(in_value, outlength, outdec, output)

where:

infield

Numeric

Is the packed value.

outlength

Numeric

Is the length of the alphanumeric field that will hold the converted packed field. Can be
from 1 to 16.

outdec

Numeric

Is the number of decimal positions for output.

output

Alphanumeric

Example: Writing a Long Packed Number to an Output File

XTPACK converts LONGPCK to alphanumeric so that it can be saved in an output file:

XTPACK(LONGPCK,13,2,'A13');

XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File

266 Information Builders

Chapter13
Simplified Numeric Functions

Numeric functions have been developed that make it easier to understand and enter the
required arguments. These functions have streamlined parameter lists, similar to those
used by SQL functions. In some cases, these simplified functions provide slightly
different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

Note:

The simplified numeric functions are supported in Dialogue Manager.

The simplified numeric functions are not supported in Maintain Data.

In this chapter:

CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value

EXPONENT: Raising e to a Power

FLOOR: Returning the Largest Integer Less Than or Equal to a Value

MOD: Calculating the Remainder From a Division

POWER: Raising a Value to a Power

CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value

CEILING returns the smallest integer value that is greater than or equal to a number.

Syntax: How to Return the Smallest Integer Greater Than or Equal to a Number

CEILING(number)

Functions Reference 267

where:

number

Numeric

Is the number whose ceiling will be returned. The output data type is the same as the
input data type.

Example: Returning the Ceiling of a Number

CEILING returns the smallest integer larger than the value in GROSS_PROFIT_US:

CEILING(GROSS_PROFIT_US)

For 225.98, the output is 226.00.

For -30.01, the output is -30.00.

EXPONENT: Raising e to a Power

EXPONENT raises the constant e to a power.

Syntax: How to Raise the Constant e to a Power

EXPONENT(power)

where:

power

Numeric

Is the power to which to raise e. The output data type is numeric.

Example: Raising e to a Power

For EXPONENT(1), the value is 2.71828

For EXPONENT(5), the value is 148.41316

FLOOR: Returning the Largest Integer Less Than or Equal to a Value

FLOOR returns the largest integer value that is less than or equal to a number.

Syntax: How to Return the Largest Integer Less Than or Equal to a Number

FLOOR(number)

EXPONENT: Raising e to a Power

268 Information Builders

where:

number

Numeric

Is the number whose floor will be returned. The output data type is the same as the input
data type.

Example: Returning the Floor of a Number

FLOOR returns the smallest integer larger than the value in GROSS_PROFIT_US:

FLOOR(GROSS_PROFIT_US)

For 225.98, the output is 225.00.

For -30.01, the output is -31.00.

MOD: Calculating the Remainder From a Division

MOD calculates the remainder from a division. The output data type is the same as the input
data type.

Syntax: How to Calculate the Remainder From a Division

MOD(dividend, divisor)

where:

dividend

Numeric

Is the value to divide.

Note: The sign of the returned value will be the same as the sign of the dividend.

divisor

Numeric

Is the value to divide by.

If the divisor is zero (0), the dividend is returned.

Example: Calculating the Remainder From a Division

MOD returns the remainder of PRICE_DOLLARS divided by DAYSDELAYED

MOD(PRICE_DOLLARS, DAYSDELAYED)

For 399.00/3, the value is zero (0).

13. Simplified Numeric Functions

Functions Reference 269

for 489.00/3, the value is .99.

POWER: Raising a Value to a Power

POWER raises a base value to a power.

Syntax: How to Raise a Value to a Power

POWER(base, power)

where:

base

Numeric

Is the value to raise to a power. The output value has the same data type as the base
value. If the base value is integer, negative power values will result in truncation.

power

Numeric

Is the power to which to raise the base value.

Example: Raising a Base Value to a Power

Power returns the value COGS_US/20.00 raised to the power stored in DAYSDELAYED.

POWER1= POWER(COGS_US/20.00,DAYSDELAYED)

For base 12.15 and power 3, the value is 1,793.61

POWER: Raising a Value to a Power

270 Information Builders

Chapter14
Numeric Functions

Numeric functions perform calculations on numeric constants and fields.

Note: With CDN ON, numeric arguments must be delimited by a comma followed by a
space.

In this chapter:

ABS: Calculating Absolute Value

CHKPCK: Validating a Packed Field

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

EXP: Raising e to the Nth Power

EXPN: Evaluating a Number in Scientific Notation

INT: Finding the Greatest Integer

LOG: Calculating the Natural Logarithm

MAX and MIN: Finding the Maximum or Minimum Value

NORMSDST and NORMSINV: Calculating Normal Distributions

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

RDNORM and RDUNIF: Generating Random Numbers

SQRT: Calculating the Square Root

ABS: Calculating Absolute Value

The ABS function returns the absolute value of a number.

Functions Reference 271

Syntax: How to Calculate Absolute Value

ABS(in_value)

where:

in_value

Numeric

Is the value for which the absolute value is returned. If you use an expression, use
parentheses as needed to ensure the correct order of evaluation.

Example: Calculating Absolute Value

ABS calculates the absolute value of DIFF.

ABS(DIFF);

For 15, the result is 15.

For -2, the result is 2.

CHKPCK: Validating a Packed Field

The CHKPCK function validates the data in a field described as packed format (if available on
your platform). The function prevents a data exception from occurring when a request reads a
field that is expected to contain a valid packed number but does not.

To use CHKPCK:

1. Ensure that the Master File (USAGE and ACTUAL attributes) defines the field as
alphanumeric, not packed. This does not change the field data, which remains packed, but
it enables the request to read the data without a data exception.

2. Call CHKPCK to examine the field. The function returns the output to a field defined as
packed. If the value it examines is a valid packed number, the function returns the value; if
the value is not packed, the function returns an error code.

Syntax: How to Validate a Packed Field

CHKPCK(length, in_value, error, output)

where:

length

Numeric

Is the number of bytes in the packed field. It can be between 1 and 16 bytes.

CHKPCK: Validating a Packed Field

272 Information Builders

infield

Alphanumeric

Is the value to be verified as packed decimal. The value must be described as
alphanumeric, not packed.

error

Numeric

Is the error code that the function returns if a value is not packed. Choose an error code
outside the range of data. The error code is first truncated to an integer, then converted to
packed format. However, it may appear on a report with a decimal point depending on the
output format.

output

Packed-decimal

Example: Validating Packed Data

CHKPCK validates the values in PACK_SAL, and store the result in a column with the format
P8CM. Values not in packed format return the error code -999. Values in packed format appear
accurately.

CHKPCK(8, PACK_SAL, -999, 'P8CM')

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

The MOD functions calculate the remainder from a division. Each function returns the
remainder in a different format.

The functions use the following formula.

remainder = dividend - INT(dividend/divisor) * divisor

DMOD returns the remainder as a decimal number.

FMOD returns the remainder as a floating-point number.

IMOD returns the remainder as an integer.

For information on the INT function, see INT: Finding the Greatest Integer on page 276.

14. Numeric Functions

Functions Reference 273

Syntax: How to Calculate the Remainder From a Division

function(dividend, divisor, output)

where:

function

Is one of the following:

DMOD returns the remainder as a decimal number.

FMOD returns the remainder as a floating-point number.

IMOD returns the remainder as an integer.

dividend

Numeric

Is the number being divided.

divisor

Numeric

Is the number dividing the dividend.

output

Numeric

Is the result whose format is determined by the function used.

If the divisor is zero (0), the dividend is returned.

Example: Calculating the Remainder From a Division

IMOD divides ACCTNUMBER by 1000 and stores the remainder in a column with the format
I3L.

IMOD(ACCTNUMBER, 1000, 'I3L')

For 122850108, the result is 108.

For 163800144, the result is 144.

EXP: Raising e to the Nth Power

The EXP function raises the value "e" (approximately 2.72) to a specified power. This function
is the inverse of the LOG function, which returns the logarithm of the argument.

EXP: Raising e to the Nth Power

274 Information Builders

EXP calculates the result by adding terms of an infinite series. If a term adds less than .
000001 percent to the sum, the function ends the calculation and returns the result as a
double-precision number.

Syntax: How to Raise e to the Nth Power

EXP(power, output)

where:

power

Numeric

Is the power to which "e" is raised.

output

Double-precision floating-point

Example: Raising e to the Nth Power

EXP raises "e" to the power designated by the &POW variable, specified here as 3. The result
is then rounded to the nearest integer with the .5 rounding constant. The result has the format
D15.3.

EXP(&POW, 'D15.3') + 0.5;

For 3, the result is APPROXIMATELY 20.

EXPN: Evaluating a Number in Scientific Notation

The EXPN function evaluates a numeric literal or Dialogue Manager variable expressed in
scientific notation.

Syntax: How to Evaluate a Number in Scientific Notation

EXPN(n.nn {E|D} {+|-} p)

where:

n.nn

Numeric

Is a numeric literal that consists of a whole number component, followed by a decimal
point, followed by a fractional component.

E, D

14. Numeric Functions

Functions Reference 275

Denotes scientific notation. E and D are interchangeable.

+, -

Indicates if p is positive or negative.

p

Integer

Is the power of 10 to which to raise n.nn.

Note: EXPN does not use an output argument. The format of the result is floating-point double
precision.

Example: Evaluating a Number in Scientific Notation

EXPN evaluates 1.03E+2.

EXPN(1.03E+2)

The result is 103.

INT: Finding the Greatest Integer

The INT function returns the integer component of a number.

Syntax: How to Find the Greatest Integer

INT(in_value)

where:

in_value

Numeric

Is the value for which the integer component is returned. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation.

Note: INT does not use an output argument. The format of the result is floating-point double
precision.

INT: Finding the Greatest Integer

276 Information Builders

Example: Finding the Greatest Integer

INT finds the greatest integer in DED_AMT.

INT(DED_AMT)

For $1,261.40, the result is 1261.

For $1,668.69, the result is 1668.

LOG: Calculating the Natural Logarithm

The LOG function returns the natural logarithm of a number.

Syntax: How to Calculate the Natural Logarithm

LOG(in_value)

where:

in_value

Numeric

Is the value for which the natural logarithm is calculated. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If in_value is less than or
equal to 0, LOG returns 0.

Note: LOG does not use an output argument. The format of the result is floating-point double
precision.

Example: Calculating the Natural Logarithm

LOG calculates the logarithm of CURR_SAL.

LOG(CURR_SAL)

For $29,700.00, the result is 10.30.

For $26,862.00, the result is 10.20.

MAX and MIN: Finding the Maximum or Minimum Value

The MAX and MIN functions return the maximum or minimum value, respectively, from a list of
values.

14. Numeric Functions

Functions Reference 277

Syntax: How to Find the Maximum or Minimum Value

{MAX|MIN}(value1, value2, ...)

where:

MAX

Returns the maximum value.

MIN

Returns the minimum value.

value1, value2

Numeric

Are the values for which the maximum or minimum value is returned. If you supply an
expression, use parentheses as needed to ensure the correct order of evaluation.

Note: MAX and MIN do not use an output argument. The format of the result is floating-point
double precision.

Example: Determining the Minimum Value

MIN returns either the value of ED_HRS or the constant 30, whichever is lower.

MIN(ED_HRS, 30)

For 45.00, the result is 30.00.

For 25.00, the result is 25.00.

NORMSDST and NORMSINV: Calculating Normal Distributions

The NORMSDST and NORMSINV functions perform calculations on a standard normal
distribution curve. NORMSDST calculates the percentage of data values that are less than or
equal to a normalized value; NORMSINV is the inverse of NORMSDST, calculates the
normalized value that forms the upper boundary of a percentile in a standard normal
distribution curve.

NORMSDST: Calculating Standard Cumulative Normal Distribution

The NORMSDST function performs calculations on a standard normal distribution curve,
calculating the percentage of data values that are less than or equal to a normalized value. A
normalized value is a point on the X-axis of a standard normal distribution curve in standard
deviations from the mean. This is useful for determining percentiles in normally distributed
data.

NORMSDST and NORMSINV: Calculating Normal Distributions

278 Information Builders

The NORMSINV function is the inverse of NORMSDST. For information about NORMSINV, see
NORMSINV: Calculating Inverse Cumulative Normal Distribution on page 281.

The results of NORMSDST are returned as double-precision and are accurate to 6 significant
digits.

A standard normal distribution curve is a normal distribution that has a mean of 0 and a
standard deviation of 1. The total area under this curve is 1. A point on the X-axis of the
standard normal distribution is called a normalized value. Assuming that your data is normally
distributed, you can convert a data point to a normalized value to find the percentage of scores
that are less than or equal to the raw score.

You can convert a value (raw score) from your normally distributed data to the equivalent
normalized value (z-score) as follows:

z = (raw_score - mean)/standard_deviation

To convert from a z-score back to a raw score, use the following formula:

raw_score = z * standard_deviation + mean

The mean of data points xi, where i is from 1 to n is:

The standard deviation of data points xi, where i is from 1 to n is:

14. Numeric Functions

Functions Reference 279

The following diagram illustrates the results of the NORMSDST and NORMSINV functions.

Reference: Characteristics of the Normal Distribution

Many common measurements are normally distributed. A plot of normally distributed data
values approximates a bell-shaped curve. The two measures required to describe any normal
distribution are the mean and the standard deviation:

The mean is the point at the center of the curve.

The standard deviation describes the spread of the curve. It is the distance from the mean
to the point of inflection (where the curve changes direction).

Syntax: How to Calculate the Cumulative Standard Normal Distribution Function

NORMSDST(value, 'D8');

where:

value

Is a normalized value.

NORMSDST and NORMSINV: Calculating Normal Distributions

280 Information Builders

D8

Is the required format for the result. The value returned by the function is double-precision.
You can assign it to a field with any valid numeric format.

Example: Using the NORMSDST Function

NORMSDST finds the percentile for Z and stores the result in a column with the format D8.

NORMSDST(Z, 'D8')

For -.07298, the result is .47091.

For -.80273 the result is .21106.

NORMSINV: Calculating Inverse Cumulative Normal Distribution

The NORMSINV function performs calculations on a standard normal distribution curve, finding
the normalized value that forms the upper boundary of a percentile in a standard normal
distribution curve. This is the inverse of NORMSDST. For information about NORMSDST, see
NORMSDST: Calculating Standard Cumulative Normal Distribution on page 278.

The results of NORMSINV are returned as double-precision and are accurate to 6 significant
digits.

Syntax: How to Calculate the Inverse Cumulative Standard Normal Distribution Function

NORMSINV(value, 'D8');

where:

value

Is a number between 0 and 1 (which represents a percentile in a standard normal
distribution).

D8

Is the required format for the result. The value returned by the function is double-precision.
You can assign it to a field with any valid numeric format.

14. Numeric Functions

Functions Reference 281

Example: Using the NORMSINV Function

NORMSINV returns a normalized value from a percentile found using NORMSDST.

NORMSINV(NORMSD, 'D8')

For .21106, the result is -.80273.

For .47091, the result is -.07298

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

The PRDNOR and PRDUNI functions generate reproducible random numbers:

PRDNOR generates reproducible double-precision random numbers normally distributed
with an arithmetic mean of 0 and a standard deviation of 1.

PRDUNI generates reproducible double-precision random numbers uniformly distributed
between 0 and 1 (that is, any random number it generates has an equal probability of being
anywhere between 0 and 1).

Syntax: How to Generate Reproducible Random Numbers

{PRDNOR|PRDUNI}(seed, output)

where:

PRDNOR

Generates reproducible double-precision random numbers normally distributed with an
arithmetic mean of 0 and a standard deviation of 1.

PRDUNI

Generates reproducible double-precision random numbers uniformly distributed between 0
and 1.

seed

Numeric

Is the seed or the field that contains the seed, up to 9 digits. The seed is truncated to an
integer.

output

Double-precision

Example: Generating Reproducible Random Numbers

PRDNOR assigns random numbers and stores them in a column with the format D12.2.

PRDNOR and PRDUNI: Generating Reproducible Random Numbers

282 Information Builders

PRDNOR(40, 'D12.2')

RDNORM and RDUNIF: Generating Random Numbers

The RDNORM and RDUNIF functions generate random numbers:

RDNORM generates double-precision random numbers normally distributed with an
arithmetic mean of 0 and a standard deviation of 1.

RDUNIF generates double-precision random numbers uniformly distributed between 0 and 1
(that is, any random number it generates has an equal probability of being anywhere
between 0 and 1).

Syntax: How to Generate Random Numbers

{RDNORM|RDUNIF}(output)

where:

RDNORM

Generates double-precision random numbers normally distributed with an arithmetic mean
of 0 and a standard deviation of 1.

RDUNIF

Generates double-precision random numbers uniformly distributed between 0 and 1.

output

Double-precision

Example: Generating Random Numbers

RDNORM assigns random numbers and stores them in a column with the format D12.2.

RDNORM('D12.2')

SQRT: Calculating the Square Root

The SQRT function calculates the square root of a number.

14. Numeric Functions

Functions Reference 283

Syntax: How to Calculate the Square Root

SQRT(in_value)

where:

in_value

Numeric

Is the value for which the square root is calculated. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If you supply a negative
number, the result is zero.

Note: SQRT does not use an output argument. The result of the function is floating-point
double precision.

Example: Calculating the Square Root

SQRT calculates the square root of LISTPR.

SQRT(LISTPR)

For 19.98, the result is 4.47.

For 14.98, the result is 3.87.

SQRT: Calculating the Square Root

284 Information Builders

Chapter15
Simplified Statistical Functions

Simplified statistical functions can be called in a COMPUTE command to perform
statistical calculations on the internal matrix that is generated during TABLE request
processing. The STDDEV and CORRELATION functions can also be called as a verb object
in a display command. Prior to calling a statistical function, you need to establish the
size of the partition on which these functions will operate, if the request contains sort
fields.

Note: It is recommended that all numbers and fields used as parameters to these
functions be double-precision.

In this chapter:

Specify the Partition Size for Simplified Statistical Functions

CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data

KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean
Value

MULTIREGRESS: Creating a Multivariate Linear Regression Column

RSERVE: Running an R Script

STDDEV: Calculating the Standard Deviation for a Set of Data Values

Specify the Partition Size for Simplified Statistical Functions

SET PARTITION_ON = {FIRST|PENULTIMATE|TABLE}

where:

FIRST

Uses the first (also called the major) sort field in the request to partition the values.

PENULTIMATE

Uses the next to last sort field where the COMPUTE is evaluated to partition the values.
This is the default value.

TABLE

Uses the entire internal matrix to calculate the statistical function.

Functions Reference 285

CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data

The CORRELATION function calculates the correlation coefficient between two numeric fields.
The function returns a numeric value between zero (-1.0) and 1.0.

Syntax: How to Calculate the Correlation Coefficient Between Two Fields

CORRELATION(field1, field2)

where:

field1

Numeric

Is the first set of data for the correlation.

field2

Numeric

Is the second set of data for the correlation.

Note: Arguments for CORRELATION cannot be prefixed fields. If you need to work with fields
that have a prefix operator applied, apply the prefix operators to the fields in COMPUTE
commands and save the results in a HOLD file. Then, run the correlation against the HOLD file.

Example: Calculating a Correlation

CORRELATION calculates the correlation between DOLLARS and BUDDOLLARS.

CORRELATION(DOLLARS, BUDDOLLARS)

For DOLLARS=46,156,290.00 and BUDDOLLARS=46,220,778.00, the result is
0.895691073.

KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean
Value

The KMEANS_CLUSTER function partitions observations into a specified number of clusters
based on the nearest mean value. The function returns the cluster number assigned to the
field value passed as a parameter.

Note: If there are not enough points to create the number of clusters requested, the value -10
is returned for any cluster that cannot be created.

Syntax: How to Partition Observations Into Clusters Based on the Nearest Mean Value

KMEANS_CLUSTER(number, percent, iterations, tolerance,
 [prefix1.]field1[, [prefix1.]field2 ...])

CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data

286 Information Builders

where:

number

Integer

Is number of clusters to extract.

percent

Numeric

Is the percent of training set size (the percent of the total data to use in the calculations).
The default value is AUTO, which uses the internal default percent.

iterations

Integer

Is the maximum number of times to recalculate using the means previously generated. The
default value is AUTO, which uses the internal default number of iterations.

tolerance

Numeric

Is a weight value between zero (0) and 1.0. The value AUTO uses the internal default
tolerance.

prefix1, prefix2

Defines an optional aggregation operator to apply to the field before using it in the
calculation. Valid operators are:

SUM. which calculates the sum of the field values. SUM is the default value.

CNT. which calculates a count of the field values.

AVE. which calculates the average of the field values.

MIN. which calculates the minimum of the field values.

MAX. which calculates the maximum of the field values.

FST. which retrieves the first value of the field.

LST. which retrieves the last value of the field.

Note: The operators PCT., RPCT., TOT., MDN., MDE., RNK., and DST. are not supported.

field1

Numeric

Is the set of data to be analyzed.

15. Simplified Statistical Functions

Functions Reference 287

field2

Numeric

Is an optional set of data to be analyzed.

Example: Partitioning Data Values Into Clusters

The following request partitions the DOLLARS field values into four clusters and displays the
result as a scatter chart in which the color represents the cluster. The request uses the
default values for the percent, iterations, and tolerance parameters by passing them as the
value 0 (zero).

SET PARTITION_ON = PENULTIMATE
GRAPH FILE GGSALES
PRINT UNITS DOLLARS
COMPUTE KMEAN1/D20.2 TITLE 'K-MEANS'= KMEANS_CLUSTER(4, AUTO, AUTO, AUTO,
DOLLARS);
ON GRAPH SET LOOKGRAPH SCATTER
ON GRAPH PCHOLD FORMAT JSCHART
ON GRAPH SET STYLE *
INCLUDE=IBFS:/FILE/IBI_HTML_DIR/ibi_themes/Warm.sty,$
type = data, column = N2, bucket=y-axis,$
type=data, column= N1, bucket=x-axis,$
type=data, column=N3, bucket=color,$
GRID=OFF,$
*GRAPH_JS_FINAL
colorScale: {
 colorMode: 'discrete',
 colorBands: [{start: 1, stop: 1.99, color: 'red'}, {start: 2, stop:
2.99, color: 'green'},
 {start: 3, stop: 3.99, color: 'yellow'}, {start: 3.99, stop:
4, color: 'blue'}]
 }
*END
ENDSTYLE
END

KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean Value

288 Information Builders

The output is shown in the following image.

MULTIREGRESS: Creating a Multivariate Linear Regression Column

MULTIREGRESS derives a linear equation that best fits a set of numeric data points, and uses
this equation to create a new column in the report output. The equation can be based on one
or more independent variables.

The equation generated is of the following form, where y is the dependent variable and x1, x2,
and x3 are the independent variables.

y = a1*x1 [+ a2*x2 [+ a3*x3] ...] + b

When there is one independent variable, the equation represents a straight line. When there
are two independent variables, the equation represents a plane, and with three independent
variables, it represents a hyperplane. You should use this technique when you have reason to
believe that the dependent variable can be approximated by a linear combination of the
independent variables.

Syntax: How to Create a Multivariate Linear Regression Column

MULTIREGRESS(input_field1, [input_field2, ...])

15. Simplified Statistical Functions

Functions Reference 289

where:

input_field1, input_field2 ...

Are any number of field names to be used as the independent variables. They should be
independent of each other. If an input field is non-numeric, it will be categorized to
transform it to numeric values that can be used in the linear regression calculation.

Example: Creating a Multivariate Linear Regression Column

The following request uses the DOLLARS and BUDDOLLARS fields to generate a regression
column named Estimated_Dollars.

GRAPH FILE GGSALES
SUM BUDUNITS UNITS BUDDOLLARS DOLLARS
COMPUTE Estimated_Dollars/F8 = MULTIREGRESS(DOLLARS, BUDDOLLARS);
BY DATE
ON GRAPH SET LOOKGRAPH LINE
ON GRAPH PCHOLD FORMAT JSCHART
ON GRAPH SET STYLE *
INCLUDE=IBFS:/FILE/IBI_HTML_DIR/ibi_themes/Warm.sty,$
type=data, column = n1, bucket = x-axis,$
type=data, column= dollars, bucket=y-axis,$
type=data, column= buddollars, bucket=y-axis,$
type=data, column= Estimated_Dollars, bucket=y-axis,$
*GRAPH_JS
"series":[
{"series":2, "color":"orange"}]
*END
ENDSTYLE
END

MULTIREGRESS: Creating a Multivariate Linear Regression Column

290 Information Builders

The output is shown in the following image. The orange line represents the regression
equation.

RSERVE: Running an R Script

You can use the RSERVE function in a COMPUTE command to run an R script that returns
vector output. This requires that you have a configured Adapter for Rserve.

Syntax: How to Run an R Script

RSERVE(rserve_mf, input_field1, ...input_fieldn, output)

where:

rserve_mf

Is the synonym for the R script.

input_field1, ...input_fieldn

Are the independent variables used by the R script.

output

Is the dependent variable returned by the R script. It must be a single column (vector) of
output.

15. Simplified Statistical Functions

Functions Reference 291

Example: Using RSERVE to Run an R Script

The R script named wine_run_model.R predicts Bordeaux wine prices based on the average
growing season temperature, the amount of rain during the harvest season, the amount of rain
during the winter, and the age of the wine.

Using a configured connection (named MyRserve) for the Adapter for Rserve, and a sample
data file named wine_input_sample.csv, you create the following synonym for the R script, as
described in the Adapter Administration manual.

Master File

FILENAME=WINE_RUN_MODEL, SUFFIX=RSERVE , $
 SEGMENT=INPUT_DATA, SEGTYPE=S0, $
 FIELDNAME=AGST, ALIAS=AGST, USAGE=D9.4, ACTUAL=STRING,
 MISSING=ON,
 TITLE='AGST', $
 FIELDNAME=HARVESTRAIN, ALIAS=HarvestRain, USAGE=I11, ACTUAL=STRING,
 MISSING=ON,
 TITLE='HarvestRain', $
 FIELDNAME=WINTERRAIN, ALIAS=WinterRain, USAGE=I11, ACTUAL=STRING,
 MISSING=ON,
 TITLE='WinterRain', $
 FIELDNAME=AGE, ALIAS=Age, USAGE=I11, ACTUAL=STRING,
 MISSING=ON,
 TITLE='Age', $
 SEGMENT=OUTPUT_DATA, SEGTYPE=U, PARENT=INPUT_DATA, $
 FIELDNAME=PRICE, ALIAS=Price, USAGE=D18.14, ACTUAL=STRING,
 MISSING=ON,
 TITLE='Price', $

Access File

SEGNAME=INPUT_DATA,
 CONNECTION=MyRserve,
 R_SCRIPT=/prediction/wine_run_model.r,
 R_SCRIPT_LOCATION=WFRS,
 R_INPUT_SAMPLE_DAT=prediction/wine_input_sample.csv, $

RSERVE: Running an R Script

292 Information Builders

Now that the synonym has been created for the model, the model will be used to run against
the following data file named wine_forecast.csv.

Year,Price,WinterRain,AGST,HarvestRain,Age,FrancePop
1952,7.495,600,17.1167,160,31,43183.569
1953,8.0393,690,16.7333,80,30,43495.03
1955,7.6858,502,17.15,130,28,44217.857
1957,6.9845,420,16.1333,110,26,45152.252
1958,6.7772,582,16.4167,187,25,45653.805
1959,8.0757,485,17.4833,187,24,46128.638
1960,6.5188,763,16.4167,290,23,46583.995
1961,8.4937,830,17.3333,38,22,47128.005
1962,7.388,697,16.3,52,21,48088.673
1963,6.7127,608,15.7167,155,20,48798.99
1964,7.3094,402,17.2667,96,19,49356.943
1965,6.2518,602,15.3667,267,18,49801.821
1966,7.7443,819,16.5333,86,17,50254.966
1967,6.8398,714,16.2333,118,16,50650.406
1968,6.2435,610,16.2,292,15,51034.413
1969,6.3459,575,16.55,244,14,51470.276
1970,7.5883,622,16.6667,89,13,51918.389
1971,7.1934,551,16.7667,112,12,52431.647
1972,6.2049,536,14.9833,158,11,52894.183
1973,6.6367,376,17.0667,123,10,53332.805
1974,6.2941,574,16.3,184,9,53689.61
1975,7.292,572,16.95,171,8,53955.042
1976,7.1211,418,17.65,247,7,54159.049
1977,6.2587,821,15.5833,87,6,54378.362
1978,7.186,763,15.8167,51,5,54602.193

The data file can be any type of file that R can read. In this case it is another .csv file. This file
needs a synonym in order to be used in a report request. You create the synonym for this file
using the Adapter for Delimited Files.

The following is the generated Master File, wine_forecast.mas.

FILENAME=WINE_FORECAST, SUFFIX=DFIX , CODEPAGE=1252,
 DATASET=prediction/wine_forecast.csv, $
SEGMENT=WINE_FORECAST, SEGTYPE=S0, $
 FIELDNAME=YEAR1, ALIAS=Year, USAGE=I6, ACTUAL=A5V,
 MISSING=ON, TITLE='Year', $
 FIELDNAME=PRICE, ALIAS=Price, USAGE=D8.4, ACTUAL=A7V,
 MISSING=ON, TITLE='Price', $
 FIELDNAME=WINTERRAIN, ALIAS=WinterRain, USAGE=I5, ACTUAL=A3V,
 MISSING=ON, TITLE='WinterRain', $
 FIELDNAME=AGST, ALIAS=AGST, USAGE=D9.4, ACTUAL=A8V,
 MISSING=ON, TITLE='AGST', $
 FIELDNAME=HARVESTRAIN, ALIAS=HarvestRain, USAGE=I5, ACTUAL=A3V,
 MISSING=ON, TITLE='HarvestRain', $
 FIELDNAME=AGE, ALIAS=Age, USAGE=I4, ACTUAL=A2V, MISSING=ON,
TITLE='Age', $
 FIELDNAME=FRANCEPOP, ALIAS=FrancePop, USAGE=D11.3, ACTUAL=A11V,
 MISSING=ON, TITLE='FrancePop', $

15. Simplified Statistical Functions

Functions Reference 293

The following is the generated Access File, wine_forecast.acx.

SEGNAME=WINE_FORECAST, DELIMITER=',', ENCLOSURE=", HEADER=YES,
CDN=COMMAS_DOT, CONNECTION=<local>, $

The following request, wine_forecast_price_report.fex, uses the RSERVE bulit-in function to run
the script and return a report.

-*wine_forecast_price_report.fex
TABLE FILE PREDICTION/WINE_FORECAST
PRINT
 YEAR
 WINTERRAIN
 AGST
 HARVESTRAIN
 AGE

 COMPUTE PREDICTED_PRICE/D18.2 MISSING ON ALL=
 RSERVE(prediction/wine_run_model, AGST, HARVESTRAIN, WINTERRAIN, AGE, Price); AS
'Predicted,Price'

ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
GRID=OFF,$
ENDSTYLE
END

RSERVE: Running an R Script

294 Information Builders

The output is shown in the following image.

15. Simplified Statistical Functions

Functions Reference 295

STDDEV: Calculating the Standard Deviation for a Set of Data Values

The STDDEV function returns a numeric value that represents the amount of dispersion in the
data. The set of data can be specified as the entire population or a sample. The standard
deviation is the square root of the variance, which is a measure of how observations deviate
from their expected value (mean). If specified as a population, the divisor in the standard
deviation calculation (also called degrees of freedom) will be the total number of data points,
N. If specified as a sample, the divisor will be N-1.

If x¡ is an observation, N is the number of observations, and µ is the mean of all of the
observations, the formula for calculating the standard deviation for a population is:

To calculate the standard deviation for a sample, the mean is calculated using the sample
observations, and the divisor is N-1 instead of N.

Reference: Calculate the Standard Deviation in a Set of Data

STDDEV(field, sampling)

where:

field

Numeric

Is the set of observations for the standard deviation calculation.

sampling

Keyword

Indicates the origin of the data set. Can be one of the following values.

P Entire population.

S Sample of population.

Note: Arguments for STDDEV cannot be prefixed fields. If you need to work with fields that
have a prefix operator applied, apply the prefix operators to the fields in COMPUTE commands
and save the results in a HOLD file. Then, run the standard deviation against the HOLD file.

STDDEV: Calculating the Standard Deviation for a Set of Data Values

296 Information Builders

Example: Calculating a Standard Deviation

STDDEV calculates the standard deviation of DOLLARS.

STDDEV(DOLLARS,S)

The result is 6,157.711080272.

15. Simplified Statistical Functions

Functions Reference 297

STDDEV: Calculating the Standard Deviation for a Set of Data Values

298 Information Builders

Chapter16
Simplified System Functions

Simplified system functions have streamlined parameter lists, similar to those used by
SQL functions. In some cases, these simplified functions provide slightly different
functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

In this chapter:

EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File

ENCRYPT: Encrypting a Password

GETENV: Retrieving the Value of an Environment Variable

PUTENV: Assigning a Value to an Environment Variable

EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File

The EDAPRINT function enables you to add a text message into the EDAPRINT log file and
assign it a message type. The returned value of the function is zero (0).

Syntax: How to Insert a Message in the EDAPRINT Log File

EDAPRINT(message_type, 'message')

where:

message_type

Keyword

Can be one of the following message types.

I. Informational message.

W. Warning message.

E. Error message.

Functions Reference 299

'message'

Is the message to insert, enclosed in single quotation marks.

Example: Inserting a Custom Message in the EDAPRINT Log File

The following procedure inserts three messages in the EDAPRINT log file.

-SET &I = EDAPRINT(I, 'This is a test informational message');
-SET &W = EDAPRINT(W, 'This is a test warning message');
-SET &E = EDAPRINT(E, 'This is a test error message');

The output is shown in the following image.

ENCRYPT: Encrypting a Password

The ENCRYPT function encrypts an alphanumeric input value using the encryption algorithm
configured in the server. The result is returned as variable length alphanumeric.

Syntax: How to Encrypt a Password

ENCRYPT(password)

where:

password

Fixed length alphanumeric

Is the value to be encrypted.

Example: Encrypting a Password

ENCRYPT encrypts the password guestpassword.

ENCRYPT('guestpassword')

The returned encrypted value is {AES}963AFA754E1763ABE697E8C5E764115E.

ENCRYPT: Encrypting a Password

300 Information Builders

GETENV: Retrieving the Value of an Environment Variable

The GETENV function takes the name of an environment variable and returns its value as a
variable length alphanumeric value.

Syntax: How to Retrieve the Value of an Environment Variable

GETENV(var_name)

where:

var_name

fixed length alphanumeric

Is the name of the environment variable whose value is being retrieved.

Example: Retrieving the Value of an Environment Variable

GETENV retrieves the value of the server variable EDAEXTSEC.

GETENV('EDAEXTSEC')

The value returned is ON if the server was started with security on or OFF if the server was
started with security off.

PUTENV: Assigning a Value to an Environment Variable

The PUTENV function assigns a value to an environment variable. The function returns an
integer return code whose value is 1 (one) if the assignment is not successful or 0 (zero) if it is
successful.

Syntax: How to Assign a Value to an Environment Variable

PUTENV(var_name, var_value)

where:

var_name

Fixed length alphanumeric

Is the name of the environment variable to be set.

var_value

Alphanumeric

Is the value you want to assign to the variable.

16. Simplified System Functions

Functions Reference 301

Example: Assigning a Value to the UNIX PS1 Variable

PUTENV assigns the value FOCUS/Shell: to the UNIX PS1 variable.

PUTENV('PS1','FOCUS/Shell:')

This causes UNIX to display the following prompt when the user issues the UNIX shell
command SH:

FOCUS/Shell:

PUTENV: Assigning a Value to an Environment Variable

302 Information Builders

Chapter17
System Functions

System functions call the operating system to obtain information about the operating
environment or to use a system service.

In this chapter:

CLSDDREC: Closing All Files Opened by the PUTDDREC Function

FEXERR: Retrieving an Error Message

FGETENV: Retrieving the Value of an Environment Variable

FPUTENV: Assigning a Value to an Environment Variable

GETUSER: Retrieving a User ID

JOBNAME: Retrieving the Current Process Identification String

PUTDDREC: Writing a Character String as a Record in a Sequential File

SLEEP: Suspending Execution for a Given Number of Seconds

SYSVAR: Retrieving the Value of a z/OS System Variable

CLSDDREC: Closing All Files Opened by the PUTDDREC Function

The CLSDDREC function closes all files opened by the PUTDDREC function. If PUTDDREC is
called in a Dialogue Manager -SET command, the files opened by PUTDDREC are not closed
automatically until the end of a request or connection. In this case, you can close the files and
free the memory used to store information about open file by calling the CLSDDREC function.

Syntax: How to Close All Files Opened by the PUTDDREC Function

CLSDDREC(output)

where:

output

Integer

Functions Reference 303

Is the return code, which can be one of the following values:

0, which indicates that the files are closed.

1, which indicates an error while closing the files.

Example: Closing Files Opened by the PUTDDREC Function

This example closes files opened by the PUTDDREC function:

CLSDDREC('I1')

FEXERR: Retrieving an Error Message

The FEXERR function retrieves an Information Builders error message. It is especially useful in
a procedure using a command that suppresses the display of output messages.

An error message consists of up to four lines of text. The first line contains the message and
the remaining three contain a detailed explanation, if one exists. FEXERR retrieves the first line
of the error message.

Syntax: How to Retrieve an Error Message

FEXERR(error, 'A72')

where:

error

Numeric

Is the error number, up to 5 digits long.

'A72'

Is the format of the output value. The format is A72, the maximum length of an Information
Builders error message.

Example: Retrieving an Error Message

FEXERR retrieves the error message whose number is contained in the &ERR variable, in this
case 650. The result has the format A72.

FEXERR(&ERR, 'A72')

The result is (FOC650) THE DISK IS NOT ACCESSED.

FEXERR: Retrieving an Error Message

304 Information Builders

FGETENV: Retrieving the Value of an Environment Variable

The FGETENV function retrieves the value of an environment variable and returns it as an
alphanumeric string.

Syntax: How to Retrieve the Value of an Environment Variable

FGETENV(length, 'varname', outlen, output)

where:

length

Integer

Is the number of characters in the environment variable name.

varname

Alphanumeric

Is the name of the environment variable whose value is being retrieved.

outlen

Integer

Is the length of the environment variable value returned.

output

Alphanumeric

Is the format of the field in which the environment variable's value is stored.

FPUTENV: Assigning a Value to an Environment Variable

Available Operating Systems: IBM i (formerly referred to as i5/OS), Tandem, UNIX, Windows

The FPUTENV function assigns a character string to an environment variable.

Limit: You cannot use FPUTENV to set or change FOCPRINT, FOCPATH, or USERPATH. Once
started, these variables are held in memory and not reread from the environment.

17. System Functions

Functions Reference 305

Syntax: How to Assign a Value to an Environment Variable

FPUTENV (varname_length,'varname',value_length, 'value', output)

where:

varname_length

Integer

Is the maximum number of characters in the name of the environment variable.

varname

Alphanumeric

Is the name of the environment variable. The name must be right-justified and padded with
blanks to the maximum length specified by varname_length.

value_length

Is the maximum length of the environment variable value.

Note: The sum of varname_length and value_length cannot exceed 64.

value

Alphanumeric

Is the value you wish to assign to the environment variable. The string must be right-
justified and contain no embedded blanks. Strings that contain embedded blanks are
truncated at the first blank.

output

Integer

Is the return code. If the variable is set successfully, the return code is 0. Any other value
indicates a failure occurred.

Example: Assigning a Value to an Environment Variable

FPUTENV assigns the value FOCUS/Shell to the PS1 variable and stores it in a field with the
format A12:

-SET &RC = FPUTENV(3,'PS1', 12, 'FOCUS/Shell:', 'I4');

The request displays the following prompt when the user issues the UNIX shell command SH:

FOCUS/Shell:

FPUTENV: Assigning a Value to an Environment Variable

306 Information Builders

GETUSER: Retrieving a User ID

The GETUSER function retrieves the ID of the connected user.

Syntax: How to Retrieve a User ID

GETUSER(output)

where:

output

Alphanumeric, at least A8

Is the result field, whose length depends on the platform on which the function is issued.
Provide a length as long as required for your platform; otherwise the output will be
truncated.

Example: Retrieving a User ID

GETUSER retrieves the user ID of the person running the flow.

GETUSER(USERID)

JOBNAME: Retrieving the Current Process Identification String

The JOBNAME function retrieves the raw identification string of the current process from the
operating system. This is also commonly known as a process PID at the operating system
level. The function is valid in all environments, but is typically used in Dialogue Manager and
returns the value as an alphanumeric string (even though a PID is pure numeric on some
operating systems).

Note: JOBNAME strings differ between some operating systems in terms of look and length.
For example, Windows, UNIX, and z/OS job names are pure numeric (typically a maximum of 8
characters long), while an OpenVMS job name is a hex number (always 8 characters long), and
an IBM i job name is a three-part string that has a 26 character maximum length. Since an
application may eventually be run in another (unexpected) environment in the future, it is good
practice to use the maximum length of 26 to avoid accidental length truncation in the future.
Applications using this function for anything more than simple identification may also need to
account for the difference in the application code.

17. System Functions

Functions Reference 307

Syntax: How to Retrieve the Current Process Identification String

JOBNAME(length, output)

where:

length

Integer

Is the maximum number of characters to return from the PID system call.

output

Alphanumeric

Is the returned process identification string, whose length depends on the platform on
which the function is issued. Provide a length as long as required for your platform.
Otherwise, the output will be truncated.

Example: Retrieving a Process Identification String

The following example uses the JOBNAME function to retrieve the current process identification
string to an A26 string and then truncate it for use in a -TYPE statement:

-SET &JOBNAME = JOBNAME(26, 'A26');
-SET &JOBNAME = TRUNCATE(&JOBNAME);
-TYPE The Current system PID &JOBNAME is processing.

For example, on Windows, the output is similar to the following:

The Current system PID 2536 is processing.

JOBNAME: Retrieving the Current Process Identification String

308 Information Builders

PUTDDREC: Writing a Character String as a Record in a Sequential File

The PUTDDREC function writes a character string as a record in a sequential file. The file must
be identified with a FILEDEF (DYNAM on z/OS) command. If the file is defined as an existing
file (with the APPEND option), the new record is appended. If the file is defined as NEW and it
already exists, the new record overwrites the existing file.

PUTDDREC opens the file if it is not already open. Each call to PUTDDREC can use the same
file or a new one. All of the files opened by PUTDDREC remain open until the end of a request
or connection. At the end of the request or connection, all files opened by PUTDDREC are
automatically closed.

If PUTDDREC is called in a Dialogue Manager -SET command, the files opened by PUTDDREC
are not closed automatically until the end of a request or connection. In this case, you can
close the files and free the memory used to store information about open file by calling the
CLSDDREC function.

Syntax: How to Write a Character String as a Record in a Sequential File

PUTDDREC(ddname, dd_len, record_string, record_len, output)

where:

ddname

Alphanumeric

Is the logical name assigned to the sequential file in a FILEDEF command.

dd_len

Numeric

Is the number of characters in the logical name.

record_string

Alphanumeric

Is the character string to be added as the new record in the sequential file.

record_len

Numeric

Is the number of characters to add as the new record.

17. System Functions

Functions Reference 309

It cannot be larger than the number of characters in record_string. To write all of
record_string to the file, record_len should equal the number of characters in record_string
and should not exceed the record length declared in the command. If record_len is shorter
than the declared length declared, the resulting file may contain extraneous characters at
the end of each record. If record_string is longer than the declared length, record_string
may be truncated in the resulting file.

output

Integer

Is the return code, which can have one of the following values:

 0 - Record is added.
-1 - FILEDEF statement is not found.
-2 - Error while opening the file.
-3 - Error while adding the record to the file.

Example: Writing a Character String as a Record in a Sequential File

Using the CAR synonym as input,

FILEDEF LOGGING DISK baseapp/logging.dat

PUTDDREC('LOGGING', 7, 'Country:' | COUNTRY, 20, 'I5')

would return the value 0, and would write the following lines to logging.dat:

Country: ENGLAND

Country: JAPAN

Country: ITALY

Country: W GERMANY

Country: FRANCE

SLEEP: Suspending Execution for a Given Number of Seconds

The SLEEP function suspends execution for the number of seconds you specify as its input
argument.

This function is only supported in Dialogue Manager. It is useful when you need to wait to start
a specific procedure or application.

SLEEP: Suspending Execution for a Given Number of Seconds

310 Information Builders

Syntax: How to Suspend Execution for a Specified Number of Seconds

SLEEP(delay, output);

where:

delay

Numeric

Is the number of seconds to delay execution. The number can be specified down to the
millisecond.

output

Numeric

The value returned is the same value you specify for delay.

Example: Suspending Execution for Four Seconds

SLEEP suspends execution for four seconds:

-SET &DELAY = SLEEP(4.0, 'I2');

SYSVAR: Retrieving the Value of a z/OS System Variable

Available Operating Systems: z/OS

The SYSVAR function populates a Dialogue Manager amper variable with the contents of any
z/OS system variable. System variables are in the format [&]name[.], where the dot is
optional. They can be provided by the operating system or can be user defined. The function
can be called in a -SET command.

Syntax: How to Retrieve the Value of a z/OS System Variable

-SET &dmvar = SYSVAR('length','[&]sysvar[.]','outfmt');

where:

&dmvar

Alphanumeric

Is the name of the Dialogue Manager variable to be populated with the value of the z/OS
system variable.

17. System Functions

Functions Reference 311

length

Alphanumeric

Is the length of the next parameter in the call. Do not include the escape character in the
length, if one is present in the sysvar argument.

[&|]sysvar[.]

Alphanumeric

Is the name of the system variable to be retrieved. Note that the ampersand (&) and the
dot (.) are optional. If the ampersand is included, it must be followed by the escape
character (|).

outfmt

Alphanumeric

Is the format of the returned value enclosed in single quotation marks.

Example: Retrieving the Value of the z/OS SYSNAME Variable

The following example populates the Dialogue Manager variable named &MYSNAME2 with the
value of the z/OS SYSNAME variable:

-SET &MYSNAME2=SYSVAR('7','SYSNAME','A8');
-TYPE SYSNAME:&MYSNAME2

The output is similar to the following:

SYSNAME:IBI1

SYSVAR: Retrieving the Value of a z/OS System Variable

312 Information Builders

Chapter18
Simplified Geography Functions

The simplified geography functions perform location-based calculations and retrieve
geocoded points for various types of location data. They are used by the WebFOCUS
location intelligence products that produce maps and charts. Some of the geography
functions use GIS services and require valid credentials for accessing Esri ArcGIS
proprietary data.

In this chapter:

Sample Geography Files

GIS_DISTANCE: Calculating the Distance
Between Geometry Points

GIS_DRIVE_ROUTE: Calculating the
Driving Directions Between Geometry
Points

GIS_GEOCODE_ADDR: Geocoding a
Complete Address

GIS_GEOCODE_ADDR_CITY: Geocoding
an Address Line, City, and State

GIS_GEOCODE_ADDR_POSTAL:
Geocoding an Address Line and Postal
Code

GIS_GEOMETRY: Building a JSON
Geometry Object

GIS_IN_POLYGON: Determining if a Point
is in a Complex Polygon

GIS_LINE: Building a JSON Line

GIS_POINT: Building a Geometry Point

GIS_REVERSE_COORDINATE: Returning a
Geographic Component

GIS_SERVICE_AREA: Calculating a
Geometry Area Around a Given Point

GIS_SERV_AREA_XY: Calculating a
Service Area Around a Given Coordinate

Functions Reference 313

Sample Geography Files

Some of the examples for the geography functions use geography sample files. One file, esri-
citibke.csv has station names, latitudes and longitudes, and trip start times and end times.
The other file, esri-geo10036.ftm has geometry data. To run the examples that use these files,
create an application named esri, and place the following files into the application folder.

esri-citibike.mas

FILENAME=ESRI-CITIBIKE, SUFFIX=DFIX ,
 DATASET=esri/esri-citibike.csv, $
 SEGMENT=CITIBIKE_TRIPDATA, SEGTYPE=S0, $
 FIELDNAME=TRIPDURATION, ALIAS=tripduration, USAGE=I7, ACTUAL=A5V,
 TITLE='tripduration', $
 FIELDNAME=STARTTIME, ALIAS=starttime, USAGE=HMDYYS, ACTUAL=A18,
 TITLE='starttime', $
 FIELDNAME=STOPTIME, ALIAS=stoptime, USAGE=HMDYYS, ACTUAL=A18,
 TITLE='stoptime', $
 FIELDNAME=START_STATION_ID, ALIAS='start station id', USAGE=I6, ACTUAL=A4V,
 TITLE='start station id', $
 FIELDNAME=START_STATION_NAME, ALIAS='start station name', USAGE=A79V,
 ACTUAL=A79BV, TITLE='start station name', $
 FIELDNAME=START_STATION_LATITUDE, ALIAS='start station latitude', USAGE=P20.15,
 ACTUAL=A18V, TITLE='start station latitude',
 GEOGRAPHIC_ROLE=LATITUDE, $
 FIELDNAME=START_STATION_LONGITUDE, ALIAS='start station longitude', USAGE=P20.14,
 ACTUAL=A18V, TITLE='start station longitude',
 GEOGRAPHIC_ROLE=LONGITUDE, $
 FIELDNAME=END_STATION_ID, ALIAS='end station id', USAGE=I6,
 ACTUAL=A4V, TITLE='end station id', $

 FIELDNAME=END_STATION_NAME, ALIAS='end station name', USAGE=A79V,
 ACTUAL=A79BV, TITLE='end station name', $
 FIELDNAME=END_STATION_LATITUDE, ALIAS='end station latitude', USAGE=P20.15,
 ACTUAL=A18V, TITLE='end station latitude',
 GEOGRAPHIC_ROLE=LATITUDE, $
 FIELDNAME=END_STATION_LONGITUDE, ALIAS='end station longitude', USAGE=P20.14,
 ACTUAL=A18V, TITLE='end station longitude',
 GEOGRAPHIC_ROLE=LONGITUDE, $
 FIELDNAME=BIKEID, ALIAS=bikeid, USAGE=I7, ACTUAL=A5,
 TITLE='bikeid', $
 FIELDNAME=USERTYPE, ALIAS=usertype, USAGE=A10V, ACTUAL=A10BV,
 TITLE='usertype', $
 FIELDNAME=BIRTH_YEAR, ALIAS='birth year', USAGE=I6, ACTUAL=A4,
 TITLE='birth year', $
 FIELDNAME=GENDER, ALIAS=gender, USAGE=I3, ACTUAL=A1,
 TITLE='gender', $
 SEGMENT=ESRIGEO, SEGTYPE=KU, SEGSUF=FIX, PARENT=CITIBIKE_TRIPDATA,
 DATASET=esri/esri-geo10036.ftm (LRECL 80 RECFM V, CRFILE=ESRI-GEO10036, $

Sample Geography Files

314 Information Builders

esri-citibike.acx

SEGNAME=CITIBIKE_TRIPDATA,
 DELIMITER=',',
 ENCLOSURE=",
 HEADER=NO,
 CDN=OFF, $

esri-citibike.csv

Note: Each complete record must be on a single line. Therefore, you must remove any line
breaks that may have been inserted due to the page width in this document.

1094,11/1/2015 0:00,11/1/2015 0:18,537,Lexington Ave & E 24 St,
40.74025878,-73.98409214,531,Forsyth St & Broome St,
40.71893904,-73.99266288,23959,Subscriber,1980,1

520,11/1/2015 0:00,11/1/2015 0:08,536,1 Ave & E 30 St,
40.74144387,-73.97536082,498,Broadway & W 32 St,
40.74854862,-73.98808416,22251,Subscriber,1988,1

753,11/1/2015 0:00,11/1/2015 0:12,229,Great Jones St,
40.72743423,-73.99379025,328,Watts St & Greenwich St,
40.72405549,-74.00965965,15869,Subscriber,1981,1

353,11/1/2015 0:00,11/1/2015 0:06,285,Broadway & E 14 St,
40.73454567,-73.99074142,151,Cleveland Pl & Spring St,
40.72210379,-73.99724901,21645,Subscriber,1987,1

1285,11/1/2015 0:00,11/1/2015 0:21,268,Howard St & Centre St,
40.71910537,-73.99973337,476,E 31 St & 3 Ave,40.74394314,-73.97966069,14788,Customer,,0

477,11/1/2015 0:00,11/1/2015 0:08,379,W 31 St & 7 Ave,40.749156,-73.9916,546,E 30 St &
Park Ave S,40.74444921,-73.98303529,21128,Subscriber,1962,2

362,11/1/2015 0:00,11/1/2015 0:06,407,Henry St & Poplar St,
40.700469,-73.991454,310,State St & Smith St,40.68926942,-73.98912867,21016,Subscriber,
1978,1

2316,11/1/2015 0:00,11/1/2015 0:39,147,Greenwich St & Warren St,
40.71542197,-74.01121978,441,E 52 St & 2 Ave,40.756014,-73.967416,24117,Subscriber,
1988,2

627,11/1/2015 0:00,11/1/2015 0:11,521,8 Ave & W 31 St,
40.75096735,-73.99444208,285,Broadway & E 14 St,
40.73454567,-73.99074142,17048,Subscriber,1986,2

1484,11/1/2015 0:01,11/1/2015 0:26,281,Grand Army Plaza & Central Park S,
40.7643971,-73.97371465,367,E 53 St & Lexington Ave,
40.75828065,-73.97069431,16779,Customer,,0

18. Simplified Geography Functions

Functions Reference 315

284,11/1/2015 0:01,11/1/2015 0:06,247,Perry St & Bleecker St,
40.73535398,-74.00483091,453,W 22 St & 8 Ave,40.74475148,-73.99915362,17272,Subscriber,
1976,1

886,11/1/2015 0:01,11/1/2015 0:16,492,W 33 St & 7 Ave,40.75019995,-73.99093085,377,6
Ave & Canal St,40.72243797,-74.00566443,23019,Subscriber,1982,1

1379,11/1/2015 0:01,11/1/2015 0:24,512,W 29 St & 9 Ave,40.7500727,-73.99839279,445,E
10 St & Avenue A,40.72740794,-73.98142006,23843,Subscriber,1962,2

179,11/1/2015 0:01,11/1/2015 0:04,319,Fulton St & Broadway,
40.711066,-74.009447,264,Maiden Ln & Pearl St,
40.70706456,-74.00731853,22538,Subscriber,1981,1

309,11/1/2015 0:01,11/1/2015 0:07,160,E 37 St & Lexington Ave,
40.748238,-73.978311,362,Broadway & W 37 St,40.75172632,-73.98753523,22042,Subscriber,
1988,1

616,11/1/2015 0:02,11/1/2015 0:12,479,9 Ave & W 45 St,40.76019252,-73.9912551,440,E 45
St & 3 Ave,40.75255434,-73.97282625,22699,Subscriber,1982,1

852,11/1/2015 0:02,11/1/2015 0:16,346,Bank St & Hudson St,
40.73652889,-74.00618026,375,Mercer St & Bleecker St,
40.72679454,-73.99695094,21011,Subscriber,1991,1

1854,11/1/2015 0:02,11/1/2015 0:33,409,DeKalb Ave & Skillman St,
40.6906495,-73.95643107,3103,N 11 St & Wythe Ave,
40.72153267,-73.95782357,22011,Subscriber,1992,1

1161,11/1/2015 0:02,11/1/2015 0:21,521,8 Ave & W 31 St,40.75096735,-73.99444208,461,E
20 St & 2 Ave,40.73587678,-73.98205027,19856,Subscriber,1957,1

917,11/1/2015 0:02,11/1/2015 0:17,532,S 5 Pl & S 4 St,40.710451,-73.960876,393,E 5 St
& Avenue C,40.72299208,-73.97995466,18598,Subscriber,1991,1

esri-geo10036.mas

FILENAME=ESRI-GEO10036, SUFFIX=FIX ,
 DATASET=esri/esri-geo10036.ftm (LRECL 80 RECFM V, IOTYPE=STREAM, $
 SEGMENT=ESRIGEO, SEGTYPE=S0, $
 FIELDNAME=GEOMETRY, ALIAS=GEOMETRY, USAGE=TX80L, ACTUAL=TX80,
 MISSING=ON, $

Sample Geography Files

316 Information Builders

esri-geo10036.ftm

{"rings":[[[-73.9803889998524,40.7541490002762],[-73.9808779999197,40.7534830001
404],[-73.9814419998484,40.7537140000011],[-73.9824040001445,40.7541199998382],[
-73.982461000075,40.7541434001978],[-73.9825620002361,40.7541850001377],[-73.983
2877000673,40.7544888999428],[-73.9833499997027,40.7545150000673],[-73.983644399
969,40.7546397998869],[-73.9836849998628,40.7546570003204],[-73.9841276003085,40
.7548161002829],[-73.984399700086,40.7544544999752],[-73.9846140004357,40.754165
0001147],[-73.984871999743,40.7542749997914],[-73.9866590003126,40.7550369998577
],[-73.9874449996869,40.7553720000178],[-73.9902640001834,40.756570999552],[-73.
9914340001789,40.7570449998269],[-73.9918260002697,40.7572149995726],[-73.992429
0001982,40.7574769999636],[-73.9927679996434,40.7576240004473],[-73.993069000034
3,40.7578009996165],[-73.9931059999419,40.7577600004237],[-73.9932120003335,40.7
576230004012],[-73.9933250001486,40.7576770001934],[-73.9935390001247,40.7577669

998472],[-73.993725999755,40.7578459998931],[-73.9939599997542,40.757937999639],
[-73.9940989998689,40.7579839999617],[-73.9941529996611,40.7579959996157],[-73.9
942220001452,40.7580159996387],[-73.9943040003293,40.7580300002843],[-73.9943650
004444,40.7580330004227],[-73.99446499966,40.7580369997078],[-73.9945560002591,4
0.7580300002843],[-73.9946130001898,40.7580209998693],[-73.9945689999594,40.7580
809999383],[-73.9945449997519,40.7581149997075],[-73.9944196999092,40.7582882001
404],[-73.9943810002829,40.7583400001909],[-73.9953849998179,40.7587409997973],[
-73.9959560000693,40.7589690004191],[-73.9960649996999,40.7590149998424],[-73.99
68730000888,40.7593419996336],[-73.996975000296,40.7593809996335],[-73.997314999
7874,40.7595379996789],[-73.9977009996014,40.7597030000935],[-73.998039999946,40
.7598479995856],[-73.998334000014,40.7599709998618],[-73.9987769997587,40.760157
0003453],[-73.9990089996656,40.7602540003219],[-74.0015059997021,40.761292999672

2],[-74.0016340002089,40.7613299995799],[-74.0015350001401,40.7614539999022],[-7
4.0014580001865,40.7615479997405],[-74.0013640003483,40.7616560002242],[-74.0013
050003255,40.7617199995784],[-74.0011890003721,40.7618369995779],[-74.0010579997
269,40.7619609999003],[-74.0009659999808,40.7620389999],[-74.0008649998198,40.76
21230001764],[-74.0008390004195,40.7621430001993],[-74.0006839995669,40.76226100
0245],[-74.000531999752,40.7623750001062],[-74.0003759997525,40.7624849997829],[
-74.0002840000066,40.7625510001286],[-73.9998659996161,40.762850999574],[-73.999
8279996624,40.7628779999198],[-73.9995749996864,40.7630590001727],[-73.999312000
1487,40.7632720001028],[-73.9991639996189,40.7633989996642],[-73.998941000127,40
.7636250001936],[-73.9987589998279,40.7638580001466],[-73.9986331999622,40.76402
77004181],[-73.9986084002574,40.7640632002565],[-73.9984819996445,40.76423400039
89],[-73.9983469997142,40.7644199999831],[-73.998171999738,40.7646669996823],[-7
3.9980319995771,40.7648580003964],[-73.9979881998955,40.7649204996813],[-73.9979
368000432,40.7649942000224],[-73.9978947999051,40.7650573998791],[-73.9977017001

18. Simplified Geography Functions

Functions Reference 317

733,40.7653310995507],[-73.9975810003629,40.765481000348],[-73.9975069996483,40.
7654519999099],[-73.9956019999323,40.7646519998899],[-73.9955379996789,40.764625
0004434],[-73.9954779996099,40.7646030003282],[-73.9949389999348,40.764369000329
1],[-73.9936289997785,40.7638200001929],[-73.9934620001711,40.7637539998473],[-7
3.9931520002646,40.7636270002859],[-73.992701000151,40.7634409998023],[-73.99244
19000736,40.7633312995998],[-73.9898629996777,40.7622390001298],[-73.98861200044
34,40.761714000201],[-73.988021000169,40.761460000179],[-73.987028000242,40.7610
439998808],[-73.9867690998141,40.7609346998765],[-73.9848240002274,40.7601130001
149],[-73.9841635003452,40.7598425002312],[-73.9813259998949,40.7586439998208],[
-73.9805479999902,40.7583159999834],[-73.9793569999256,40.757814000216],[-73.978
1150002071,40.7572939996184],[-73.9785670003668,40.7566709996669],[-73.979014000
2958,40.7560309998308],[-73.9794719998329,40.7554120000638],[-73.9799399998311,4
0.7547649999048],[-73.9802380000836,40.7543610001601],[-73.9803889998524,40.7541
490002762]]]}
%$

GIS_DISTANCE: Calculating the Distance Between Geometry Points

The GIS_DISTANCE function uses a GIS service to calculate the distance between two
geometry points.

Syntax: How to Calculate the Distance Between Geometry Points

GIS_DISTANCE(geo_point1,geo_point2)

where:

geo_point1,geo_point2

Fixed length alphanumeric, large enough to hold the JSON describing the point (for
example, A200).

Are the geometry points for which you want to calculate the distance.

Note: You can generate a geometry point using the GIS_POINT function.

GIS_DISTANCE: Calculating the Distance Between Geometry Points

318 Information Builders

Example: Calculating the Distance Between Two Geometry Points

The following uses a citibike .csv file that contains station names, latitudes and longitudes,
and trip start times and end times. It uses the GIS_POINT function to define geometry points
for start stations and end stations. It then uses GIS_DISTANCE to calculate the distance
between them.

DEFINE FILE esri/esri-citibike
STARTPOINT/A200 = GIS_POINT('4326', START_STATION_LONGITUDE,
START_STATION_LATITUDE);
ENDPOINT/A200 = GIS_POINT('4326', END_STATION_LONGITUDE,
END_STATION_LATITUDE);
Distance/P10.2 = GIS_DISTANCE(ENDPOINT, STARTPOINT);
END
TABLE FILE esri/esri-citibike
PRINT END_STATION_NAME AS End Distance
BY START_STATION_NAME AS Start
ON TABLE SET PAGE NOLEAD
END

18. Simplified Geography Functions

Functions Reference 319

The output is shown in the following image.

GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points

The GIS_DRIVE_ROUTE function uses a GIS service to calculate the driving route between two
geometry points.

Syntax: How to Calculate the Drive Route Between Geometry Points

GIS_DRIVE_ROUTE(geo_start_point,geo_end_point)

GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points

320 Information Builders

where:

geo_start_point,geo_point2

Fixed length alphanumeric, large enough to hold the JSON describing the point (for
example, A200).

Is the starting point for which you want to calculate the drive route.

Note: You can generate a geometry point using the GIS_POINT function.

geo_end_point,geo_point2

Fixed length alphanumeric, large enough to hold the JSON describing the point (for
example, A200).

Is the ending point for which you want to calculate the drive route.

Note: You can generate a geometry point using the GIS_POINT function.

The format of the field to which the drive route will be returned is TX.

Example: Calculating the Drive Route Between Two Geometry Points

The following uses a citibike .csv file that contains station names, latitudes and longitudes,
and trip start times and end times. It uses the GIS_POINT function to define geometry points
for start stations and end stations. It then uses GIS_DRIVE_ROUTE to calculate the route to
get from the end point to the start point.

DEFINE FILE esri/esri-citibike
STARTPOINT/A200 = GIS_POINT('4326', START_STATION_LONGITUDE,
START_STATION_LATITUDE);
ENDPOINT/A200 = GIS_POINT('4326', END_STATION_LONGITUDE,
END_STATION_LATITUDE);
Route/TX140 (GEOGRAPHIC_ROLE=GEOMETRY_LINE) =
 GIS_DRIVE_ROUTE(ENDPOINT, STARTPOINT);
END
TABLE FILE esri/esri-citibike
PRINT START_STATION_NAME AS Start END_STATION_NAME AS End Route
WHERE START_STATION_ID EQ 147
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,SIZE-11,$
ENDSTYLE
END

18. Simplified Geography Functions

Functions Reference 321

The output is shown in the following image.

GIS_GEOCODE_ADDR: Geocoding a Complete Address

GIS_GEOCODE_ADDR uses a GIS geocoding service to obtain the geometry point for a
complete address.

Syntax: How to Geocode a Complete Address

GIS_GEOCODE_ADDR(address[, country])

where:

address

Fixed length alphanumeric

Is the complete address to be geocoded.

GIS_GEOCODE_ADDR: Geocoding a Complete Address

322 Information Builders

country

Fixed length alphanumeric

Is a country name, which is optional if the country is the United States.

Example: Geocoding a Complete Address

The following request creates a complete address by concatenating the street address, city,
state, and ZIP code. It then uses GIS_GEOCODE_ADDR to create a GIS point for the address.

DEFINE FILE WF_RETAIL_LITE
GADDRESS/A200 =ADDRESS_LINE_1 || ' ' | CITY_NAME || ' ' | STATE_PROV_NAME
|| ' ' | POSTAL_CODE;
GEOCODE1/A200 = GIS_GEOCODE_ADDR(GADDRESS);
END
TABLE FILE WF_RETAIL_LITE
PRINT ADDRESS_LINE_1 AS Address GEOCODE1
BY POSTAL_CODE AS Zip
WHERE CITY_NAME EQ 'New York'
WHERE POSTAL_CODE FROM '10013' TO '10020'
ON TABLE SET PAGE NOPAGE
END

The output is shown in the following image.

GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State

GIS_GEOCODE_ADDR_CITY uses a GIS geocoding service to obtain the geometry point for an
address line, city, state, and optional country. The returned value is a fixed length
alphanumeric format, large enough to hold the JSON describing the geographic location (for
example, A200).

18. Simplified Geography Functions

Functions Reference 323

Syntax: How to Geocode an Address Line, City, and State

GIS_GEOCODE_ADDR_CITY(street_addr, city , state [, country])

where:

street_addr

Fixed length alphanumeric

Is the street address to be geocoded.

city

Fixed length alphanumeric

Is the city name associated with the street address.

state

Fixed length alphanumeric

Is the state name associated with the street address.

country

fixed length alphanumeric

Is a country name, which is optional if the country is the United States.

Example: Geocoding a Street Address, City, and State

The following request geocodes a street address using GIS_GEOCODE_ADDR_CITY.

DEFINE FILE WF_RETAIL_LITE
GEOCODE1/A200 = GIS_GEOCODE_ADDR_CITY(ADDRESS_LINE_1, CITY_NAME ,
STATE_PROV_NAME);
END
TABLE FILE WF_RETAIL_LITE
PRINT ADDRESS_LINE_1 AS Address GEOCODE1
BY POSTAL_CODE AS Zip
WHERE CITY_NAME EQ 'New York'
WHERE POSTAL_CODE FROM '10013' TO '10020'
ON TABLE SET PAGE NOPAGE
END

GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State

324 Information Builders

The output is shown in the following image.

GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code

GIS_GEOCODE_ADDR_POSTAL uses a GIS geocoding service to obtain the geometry point for
an address line, postal code and optional country. The returned value is a fixed length
alphanumeric format, large enough to hold the JSON describing the geographic location (for
example, A200).

Syntax: How to Geocode an Address Line and Postal Code

GIS_GEOCODE_ADDR_POSTAL(street_addr, postal_code [, country])

where:

street_addr

fixed length alphanumeric

Is the street address to be geocoded.

postal_code

fixed length alphanumeric

Is the postal code associated with the street address.

country

fixed length alphanumeric

Is a country name, which is optional if the country is the United States.

18. Simplified Geography Functions

Functions Reference 325

Example: Geocoding a Street Address and Postal Code

The following request geocodes a street address using GIS_GEOCODE_ADDR_POSTAL.

DEFINE FILE WF_RETAIL_LITE
GEOCODE1/A200 = GIS_GEOCODE_ADDR_POSTAL(ADDRESS_LINE_1, POSTAL_CODE);
END
TABLE FILE WF_RETAIL_LITE
PRINT ADDRESS_LINE_1 AS Address GEOCODE1
BY POSTAL_CODE AS Zip
WHERE CITY_NAME EQ 'New York'
WHERE POSTAL_CODE FROM '10013' TO '10020'
ON TABLE SET PAGE NOPAGE
END

The output is shown in the following image.

GIS_GEOMETRY: Building a JSON Geometry Object

The GIS_GEOMETRY function builds a JSON Geometry object given a geometry type, WKID, and
a geometry.

Syntax: How to Build a JSON Geometry Object

GIS_GEOMETRY(geotype, wkid, geometry)

where:

geotype

Alphanumeric

Is a geometry type, for example, 'esriGeometryPolygon' ,esriGeometryPolyline,
'esriGeometryMultipoint', 'EsriGeometryPoint', 'EsriGeometryExtent'..

GIS_GEOMETRY: Building a JSON Geometry Object

326 Information Builders

wkid

Alphanumeric

Is a valid spatial reference ID. WKID is an abbreviation for Well-Known ID, which identifies
a projected or geographic coordinate system.

geometry

TX

A geometry in JSON.

The output is returned as TX.

Example: Building a JSON Geometry Object

The following request builds a polygon geometry of the area encompassing ZIP code 10036 in
Manhattan. The input geometry object is stored in a text (.ftm) file that is cross-referenced in
the esri-citibike Master File. The field containing the geometry object is GEOMETRY.

DEFINE FILE esri/esri-citibike
WKID/A10 = '4326';
 MASTER_GEOMETRY/TX256 (GEOGRAPHIC_ROLE=GEOMETRY_AREA) =
 GIS_GEOMETRY('esriGeometryPolygon', WKID , GEOMETRY);
END
TABLE FILE esri/esri-citibike
 PRINT
 START_STATION_NAME AS Station
 START_STATION_LATITUDE AS Latitude
 START_STATION_LONGITUDE AS Longitude
 MASTER_GEOMETRY AS 'JSON Geometry Object'
 WHERE START_STATION_ID EQ 479
ON TABLE SET PAGE NOLEAD
 ON TABLE SET STYLE *
type=report, grid=off, size=10,$
 ENDSTYLE
END

18. Simplified Geography Functions

Functions Reference 327

The output is shown in the following image.

GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon

Given a point and a polygon definition, the GIS_IN_POLYGON function returns the value 1
(TRUE) if the point is in the polygon or 0 (FALSE) if the point is not in the polygon. The value is
returned in integer format.

Syntax: How to Determine if a Point is in a Complex Polygon

GIS_IN_POLYGON(point, polygon_definition)

where:

point

Alphanumeric or text

Is the geometry point.

polygon_definition

Text

Is the geometry area (polygon) definition.

GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon

328 Information Builders

Example: Determining if a Point is in a Polygon

The following example determines if a station is inside ZIP code 10036. GIS_IN_POLYGON
returns 1 for a point inside the polygon definition and 0 for a point outside. The polygon
definition being passed is the same one used in the example for the GIS_GEOMETRY function
described previously and defines the polygon for ZIP code 10036 in Manhattan in New York
City. The value 1 is translated to Yes and 0 to No for display on the output.

DEFINE FILE esri/esri-citibike
WKID/A10 = '4326';
MASTER_GEOMETRY/TX256 (GEOGRAPHIC_ROLE=GEOMETRY_AREA) =
 GIS_GEOMETRY('esriGeometryPolygon', WKID , GEOMETRY);
START_STATION_POINT/A200=GIS_POINT(WKID, START_STATION_LONGITUDE,
START_STATION_LATITUDE);
STATION_IN_POLYGON/I4=GIS_IN_POLYGON(START_STATION_POINT, MASTER_GEOMETRY);
IN_POLYGON/A5 = IF STATION_IN_POLYGON EQ 1 THEN 'Yes' ELSE 'No';
END
TABLE FILE esri/esri-citibike
 PRINT
 START_STATION_NAME AS Station
 IN_POLYGON AS 'Station in zip, code 10036?'
BY START_STATION_ID AS 'Station ID'
ON TABLE SET PAGE NOLEAD
 ON TABLE SET STYLE *
type=report, grid=off, size=10,$
type=data, column=in_polygon, style=bold, color=red, when = in_polygon eq
'Yes',$
 ENDSTYLE
END

18. Simplified Geography Functions

Functions Reference 329

The output is shown in the following image.

GIS_LINE: Building a JSON Line

Given two geometry points or lines, GIS_LINE builds a JSON line. The output is returned in text
format.

Syntax: How to Build a JSON Line

GIS_LINE(geometry1, geometry2)

where:

geometry1

Alphanumeric or text

Is the first point or line for defining the beginning of the new line.

GIS_LINE: Building a JSON Line

330 Information Builders

geometry2

Alphanumeric or text

Is the second point or line for the concatenation of the new line.

Example: Building a JSON Line

The following request prints start stations and end stations and builds a JSON line between
them.

DEFINE FILE ESRI/ESRI-CITIBIKE
STARTPOINT/A200 = GIS_POINT('4326', START_STATION_LONGITUDE,
START_STATION_LATITUDE);
ENDPOINT/A200 = GIS_POINT('4326', END_STATION_LONGITUDE,
END_STATION_LATITUDE);
CONNECTION_LINE/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_LINE) =
 GIS_LINE(STARTPOINT, ENDPOINT);
END
TABLE FILE ESRI/ESRI-CITIBIKE
PRINT END_STATION_NAME AS End CONNECTION_LINE AS 'Connecting Line'
BY START_STATION_NAME AS Start
WHERE START_STATION_NAME LE 'D'
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
ENDSTYLE
END

18. Simplified Geography Functions

Functions Reference 331

The output is shown in the following image.

GIS_POINT: Building a Geometry Point

Given a WKID (Well-Known ID) spatial reference, longitude, and latitude, the GIS_POINT
function builds a JSON point defining a Geometry object with the provided WKID, longitude, and
latitude. The function is optimized for those SQL engines that can build a JSON geometry
object.

The field to which the point is returned should have fixed length alphanumeric format, large
enough to hold the JSON describing the point (for example, A200).

Syntax: How to Build a Geometry Point

GIS_POINT(wkid, longitude, latitude)

where:

wkid

Fixed length alphanumeric

Is a spatial reference code (WKID). WKID is an abbreviation for Well-Known ID, which
identifies a projected or geographic coordinate system.

GIS_POINT: Building a Geometry Point

332 Information Builders

longitude

D20.8

Is the longitude for the point.

latitude

D20.8

Is the latitude for the point.

Example: Building a Geometry Point

The following request uses the spatial reference code 4326 (decimal degrees) and state
capital longitudes and latitudes to build a geometry point.

DEFINE FILE WF_RETAIL_LITE
GPOINT/A200 = GIS_POINT('4326', STATE_PROV_CAPITAL_LONGITUDE,
STATE_PROV_CAPITAL_LATITUDE);
END
TABLE FILE WF_RETAIL_LITE
SUM FST.STATE_PROV_CAPITAL_LONGITUDE AS Longitude
FST.STATE_PROV_CAPITAL_LATITUDE AS Latitude
FST.GPOINT AS Point
BY STATE_PROV_CAPITAL_NAME AS Capital
WHERE COUNTRY_NAME EQ 'United States'
WHERE STATE_PROV_CAPITAL_NAME LT 'C'
ON TABLE SET PAGE NOPAGE
END

The output is shown in the following image.

18. Simplified Geography Functions

Functions Reference 333

GIS_REVERSE_COORDINATE: Returning a Geographic Component

Given longitude and latitude values and the name of a geographic component,
GIS_REVERSE_COORDINATE returns the specified geographic component values associated
with those coordinates.

Syntax: How to Return a Geographic Component

GIS_REVERSE_COORDINATE(longitude, latitude, component)

where:

longitude

Numeric

Is the longitude of the component to return.

latitude

Numeric

Is the latitude of the component to return.

component

Keyword

Is one of the following components:

MATCH_ADDRESS, which returns the matching address.

METROAREA, which returns the metro area name.

REGION, which returns the region name.

SUBREGION, which returns the subregion name.

CITY, which returns the city name.

POSTAL, which returns the postal code.

The value is returned as text and can be assigned to a field with text or alphanumeric (fixed or
variable length) format.

Example: Returning Geographic Components Associated With Coordinates

GIS_REVERSE_COORDINATE returns the REGION, given a city longitude and city latitude.

GIS_REVERSE_COORDINATE(CITY_LONGITUDE, CITY_LATITUDE, REGION)

For Annapolis, the result is Maryland.

GIS_REVERSE_COORDINATE: Returning a Geographic Component

334 Information Builders

For Baton Rouge, the result is Louisiana.

GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point

The GIS_SERVICE_AREA function uses a GIS service to calculate the geometry area with
access boundaries within the given time or distance from the provided geometry point. The
output is returned in text format.

Syntax: How to Calculate a Geometry Area Around a Point

GIS_SERVICE_AREA(geo_point, distance, travel_mode)

where:

geo_point

Alphanumeric

Is the starting geometry point.

distance

Alphanumeric

Is the travel limitation in either time or distance units.

travel_mode

Alphanumeric

Is a valid travel mode as defined in gis_serv_area.mas in the Catalog directory under the
server installation directory. The accepted travel modes are;

'Miles'. This is the default value.

'TravelTime'.

'TruckTravelTime'.

'WalkTime'.

'Kilometers'.

18. Simplified Geography Functions

Functions Reference 335

Example: Calculating a Service Area Around a Geometry Point

The following request calculates the geometry area that is a five-minute walk around a station.

DEFINE FILE esri/esri-citibike
WKID/A10='4326';
START_STATION_POINT/A200=GIS_POINT(WKID, START_STATION_LONGITUDE,
START_STATION_LATITUDE);
DISTANCE/A10='5';
TRAVEL_MODE/A10='WalkTime';
STATION_SERVICE_AREA/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_AREA)=
 GIS_SERVICE_AREA(START_STATION_POINT, DISTANCE, TRAVEL_MODE);
END
TABLE FILE esri/esri-citibike
 PRINT
 START_STATION_ID AS 'Station ID'
 START_STATION_NAME AS 'Station Name'
 STATION_SERVICE_AREA AS '5-Minute Walk Service Area Around Station'
 WHERE START_STATION_ID EQ 479 OR 512;
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, SIZE=12,$
ENDSTYLE
END

GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point

336 Information Builders

The output is shown in the following image.

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

The GIS_SERV_AREA_XY function uses a GIS service to calculate the geometry area with
access boundaries within the given time or distance from the provided coordinate. The output
is returned in text format.

Syntax: How to Calculate a Geometry Area Around a Coordinate

GIS_SERV_AREA_XY(longitude, latitude, distance, travel_mode[, wkid])

where:

longitude

Alphanumeric

Is the longitude of the starting point.

18. Simplified Geography Functions

Functions Reference 337

latitude

Alphanumeric

Is the latitude of the starting point.

distance

Integer

Is the travel limitation in either time or distance units.

travel_mode

Alphanumeric

Is a valid travel mode as defined in gis_serv_area.mas in the Catalog directory under the
server installation directory. The accepted travel modes are;

'Miles'. This is the default value.

'TravelTime'.

'TruckTravelTime'.

'WalkTime'.

'Kilometers'.

wkid

Alphanmeric

Is the spatial reference ID for the coordinate. WKID is an abbreviation for Well-Known ID,
which identifies a projected or geographic coordinate system. The default value is '4326',
which represents decimal degrees.

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

338 Information Builders

Example: Calculating a Service Area Around a Coordinate

The following request calculates the geometry area that is a five-minute walk around a station,
using the longitude and latitude that specify the station location.

DEFINE FILE esri/esri-citibike
DISTANCE/I4=5;
WKID/A10='4326';
TRAVEL_MODE/A10='WalkTime';
STATION_SERVICE_AREA/TX80 (GEOGRAPHIC_ROLE=GEOMETRY_AREA)=
 GIS_SERV_AREA_XY(START_STATION_LONGITUDE, START_STATION_LATITUDE,
DISTANCE, TRAVEL_MODE, WKID);
END
TABLE FILE esri/esri-citibike
 PRINT
 START_STATION_ID AS 'Station ID'
 START_STATION_NAME AS 'Station Name'
 STATION_SERVICE_AREA
 AS '5-Minute Walk Service Area Around Station Coordinate'
 WHERE START_STATION_ID EQ 479 OR 512;
ON TABLE SET PAGE NOLEAD
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, SIZE=12,$
ENDSTYLE
END

The output is shown in the following image.

18. Simplified Geography Functions

Functions Reference 339

GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate

340 Information Builders

Chapter19
SQL Character Functions

SQL character functions manipulate alphanumeric fields and character strings.

In this chapter:

CHAR_LENGTH: Finding the Length of a Character String

CONCAT: Concatenating Two Character Strings

DIGITS: Converting a Numeric Value to a Character String

EDIT: Editing a Value According to a Format (SQL)

LCASE: Converting a Character String to Lowercase

LTRIM: Removing Leading Spaces

POSITION: Finding the Position of a Substring

RTRIM: Removing Trailing Spaces

SUBSTR: Extracting a Substring From a String Value (SQL)

TRIM: Removing Leading or Trailing Characters (SQL)

UCASE: Converting a Character String to Uppercase

VARGRAPHIC: Converting to Double-byte Character Data

CHAR_LENGTH: Finding the Length of a Character String

The CHAR_LENGTH function returns the length of a character string. CHARACTER_LENGTH is
identical to CHAR_LENGTH.

This function is most useful for columns described as VARCHAR (variable length character). For
example, if a column described as GLOSS VARCHAR(10) contains

'bryllig'
'slythy '
'toves '

then CHAR_LENGTH(GLOSS) would return

Functions Reference 341

7
6
5

If the column is described as CHAR (non-variable length character), the same number is
returned for all rows. In this case, CHAR_LENGTH(GLOSS) would return

10
10
10

To avoid counting trailing blanks use CHAR_LENGTH(TRIM (TRAILING FROM GLOSS)). See
TRIM: Removing Leading or Trailing Characters (SQL) on page 349 for details.

Syntax: How to Find the Length of a Character String

CHAR_LENGTH(arg)

where:

arg

Character string

Is the value whose length is to be determined.

This function returns an integer value.

Example: Finding the Length of a Character String

CHAR_LENGTH finds the length of the string. This example,

CHAR_LENGTH('abcdef')

returns 6.

This example,

CHAR_LENGTH('abcdef ')

returns 9, since trailing blanks are counted.

CONCAT: Concatenating Two Character Strings

The CONCAT function concatenates the values of two arguments. The result is a character
string consisting of the characters of the first argument followed by the characters of the
second argument.

CONCAT: Concatenating Two Character Strings

342 Information Builders

Syntax: How to Concatenate Two Character Strings

CONCAT(arg1, arg2)

where:

arg1, arg2

Character strings

Are the strings to be concatenated.

The length of the result is the sum of the lengths of the two arguments. If either argument is
variable-length, so is the result; otherwise, the result is fixed-length.

Example: Concatenating Two Character Strings

CONCAT concatenates two string. This example,

CONCAT('abc', 'def')

returns abcdef.

DIGITS: Converting a Numeric Value to a Character String

The DIGITS function extracts the digits of a decimal or integer value into a character string. The
sign and decimal point of the number (if present) are ignored.

Note: This function is available for DB2, ORACLE, and MS SQL Server. It does not work for flat
file sources.

Syntax: How to Convert a Numeric Value to a Character String

DIGITS(arg)

where:

arg

Numeric (decimal or integer, not floating-point)

Is the numeric value.

The length of the resulting string is determined by the precision of the argument.

19. SQL Character Functions

Functions Reference 343

Example: Converting a Numeric Value to a Character String

DIGITS converts a numeric value to a character string. This example,

DIGITS(-444.321)

returns 0000444321.

EDIT: Editing a Value According to a Format (SQL)

The EDIT function edits a numeric or character value according to a format specified by a
mask. (It works exactly like the EDIT function in FOCUS.)

A 9 in the mask indicates the corresponding character in the source value is copied into the
result. A $ in the mask indicates that the corresponding character is to be ignored. Any other
character is inserted into the result.

Syntax: How to Edit a Value According to a Format

EDIT(arg, mask)

where:

arg

Numeric or character string

Is the value to be edited.

mask

character string

Indicates how the editing is to proceed.

This function returns a character string whose length is determined by the mask.

Example: Editing a Value According to a Format

EDIT extracts a character from a string. This example,

EDIT('FRED' , '9$$$')

returns F.

This example,

EDIT('123456789', '999-99-9999')

returns 123-45-6789.

EDIT: Editing a Value According to a Format (SQL)

344 Information Builders

LCASE: Converting a Character String to Lowercase

The LCASE function converts a character string value to lowercase. That is, capital letters are
replaced by their corresponding lowercase values.

LOWER and LOWERCASE are identical to LCASE.

Syntax: How to Convert a Character String to Lowercase

LCASE(arg)

where:

arg

character string

Is the value to be converted to lowercase.

This function returns a varying character string. The length is the same as the input argument.

Example: Converting a Character String to Lowercase

LCASE converts a character string to lowercase. This example,

LCASE('XYZ')

returns xyz.

LTRIM: Removing Leading Spaces

The LTRIM function removes leading spaces from a character string.

Syntax: How to Remove Leading Spaces

LTRIM(arg)

where:

arg

character string

Is the value to be trimmed.

This function returns a varying character string. The data type of the result has a length equal
to that of the input argument (although the value may be shorter).

19. SQL Character Functions

Functions Reference 345

Example: Removing Leading Spaces

LTRIM removes leading spaces. This example,

LTRIM(' ABC ')

returns 'ABC '.

POSITION: Finding the Position of a Substring

The POSITION function returns the position within a character string of a specified substring. If
the substring does not appear in the character string, the result is 0. Otherwise, the value
returned is one greater than the number of characters in the string preceding the start of the
first occurrence of the substring.

Syntax: How to Find the Position of a Substring

POSITION(substring IN arg)

where:

substring

character string

Is the substring to search for.

arg

character string

Is the string to be searched for the substring.

This function returns an integer value.

Example: Finding the Position of a Substring

POSITION returns the position of a substring. This example,

POSITION ('A' IN 'AEIOU')

returns 1.

This example,

POSITION ('IOU' IN 'AEIOU')

returns 3.

This example,

POSITION: Finding the Position of a Substring

346 Information Builders

POSITION ('Y' IN 'AEIOU')

returns 0.

RTRIM: Removing Trailing Spaces

The RTRIM function removes trailing spaces from a character string.

Syntax: How to Remove Trailing Spaces

RTRIM(arg)

where:

arg

character string

Is the value to be trimmed.

This function returns a varying character string. The data type of the result has a length equal
to that of the input argument (although the value may be shorter).

Example: Removing Trailing Spaces

RTRIM removes trailing spaces. This example,

RTRIM(' ABC ')

returns ' ABC'.

SUBSTR: Extracting a Substring From a String Value (SQL)

The SUBSTR function returns a substring of a character value. You specify the start position of
the substring within the value. You can also specify the length of the substring (if omitted, the
substring extends from the start position to the end of the string value). If the specified length
value is longer than the input string, the result is the full input string.

SUBSTRING is identical to SUBSTR.

19. SQL Character Functions

Functions Reference 347

Syntax: How to Extract a Substring From a String Value

SUBSTR(arg FROM start-pos [FOR length])

or

SUBSTR(arg, start-pos [, length])

where:

arg

character string

Is the field containing the parent character string.

start-pos

Integer

Is the position within arg at which the substring begins.

length

Integer

If present, is the length of the substring. This function returns a varying character string.
The data type of the result has a length equal to that of the input argument (although the
value may be shorter).

Example: Extracting a Substring From a String Value

SUBSTR function returns a substring. This example,

SUBSTR('ABC' FROM 2)

Returns BC.

This example,

SUBSTRING('ABC' FROM 1 FOR 2)

returns AB.

This example,

SUBSTR('ABC', 10)

returns ABC.

SUBSTR: Extracting a Substring From a String Value (SQL)

348 Information Builders

TRIM: Removing Leading or Trailing Characters (SQL)

The TRIM function removes leading and/or trailing characters from a character string. The
character to be removed may be specified. If no character is specified, the space character is
assumed. Whether to remove leading and/or trailing characters may be specified. Without this
specification, both leading and trailing appearances of the specified character are removed.

Syntax: How to Remove Leading or Trailing Characters

TRIM(arg)
TRIM(trim-where [trim-char] FROM arg)
TRIM(trim-char FROM arg)

where:

arg

character string

Is the source string value to be trimmed.

trim-where

Value may be LEADING, TRAILING or BOTH. Indicates where characters will be removed. If
not specified, BOTH is assumed.

trim-char

character string

Is the character to be removed. If not specified, the space character is assumed.

This function returns a varying character string. The data type of the result has a length equal
to that of the input argument (although the value may be shorter).

Example: Removing Leading or Trailing Characters

TRIM removes leading and/or trailing characters. This example,

TRIM(' ABC ')

returns ABC.

This example,

TRIM(LEADING FROM ' ABC ')

returns 'ABC '.

19. SQL Character Functions

Functions Reference 349

This example,

TRIM(TRAILING FROM ' ABC ')
TRIM(BOTH 'X' FROM 'XXYYYXXX') = ('YYY')

returns ' ABC'

This example,

TRIM(BOTH 'X' FROM 'XXYYYXXX')

returns YYY.

UCASE: Converting a Character String to Uppercase

The UCASE function converts a character string value to uppercase. That is, lowercase letters
are replaced by their corresponding uppercase values. UPPER and UPPERCASE are identical to
UCASE.

Syntax: How to Convert a Character String to Uppercase

UCASE(arg)

where:

arg

character string

Is the value to be converted to uppercase.

This function returns a character string whose length is the same as that of the input
argument.

Example: Converting a Character String to Uppercase

UCASE converts a character string value to uppercase. This example,

UCASE('abc')

returns ABC.

VARGRAPHIC: Converting to Double-byte Character Data

The VARGRAPHIC function converts the input value to double-byte character data

Syntax: How to Convert to the Double-byte Character Format

VARGRAPHICarg

UCASE: Converting a Character String to Uppercase

350 Information Builders

where:

arg

character, graphic, or date

Is the input value.

Note: This function can only be used for DB2 and can only be used with Direct or Automatic
Passthru. This function returns the value in double-byte character format.

19. SQL Character Functions

Functions Reference 351

VARGRAPHIC: Converting to Double-byte Character Data

352 Information Builders

Chapter20
SQL Date and Time Functions

SQL date and time functions perform manipulations on date and time values.

In this chapter:

CURRENT_DATE: Obtaining the Date

CURRENT_TIME: Obtaining the Time

CURRENT_TIMESTAMP: Obtaining the
Timestamp (Date/Time)

DAY: Obtaining the Day of the Month
From a Date/Timestamp

DAYS: Obtaining the Number of Days
Since January 1, 0001

EXTRACT: Obtaining a Datetime Field
From Date/Time/Timestamp

HOUR: Obtaining the Hour From Time/
Timestamp

MICROSECOND: Obtaining Microseconds
From Time/Timestamp

MILLISECOND: Obtaining Milliseconds
From Time/Timestamp

MINUTE: Obtaining the Minute From
Time/Timestamp

MONTH: Obtaining the Month From
Date/Timestamp

SECOND: Obtaining the Second Field
From Time/Timestamp

QUARTER: Returning the Quarter of the
Year

WEEKDAY: Returning the Day of the
Week

YEAR: Obtaining the Year From a Date or
Timestamp

CURRENT_DATE: Obtaining the Date

The CURRENT_DATE function returns the current date of the operating system in the form
YYYYMMDD.

Syntax: How to Obtain the Current Date

CURRENT_DATE

This function returns the date in YYMD format.

Functions Reference 353

Example: Obtaining the Current Date

On August 18, 2005, CURRENT_DATE will return 20050818.

CURRENT_TIME: Obtaining the Time

The CURRENT_TIME function returns the current time of the operating system in the form
HHMMSS. You may specify the number of decimal places for fractions of a second--0, 3, or 6
places. Zero (0) places is the default.

Syntax: How to Obtain the Current Time

CURRENT_TIME[(precision)]

where:

precision

Integer constant

Is the number of decimal places for fractions of a second. Possible values are 0, 3, and 6.

This function returns the time (format: HHIS if no decimal places; HHISs if 3 decimal places;
HHISsm if 6 decimal places).

Example: Obtaining the Current Time

At exactly half past 11 AM:

CURRENT_TIME returns 113000.

CURRENT_TIME(3) returns 113000000.

CURRENT_TIME(6) returns 113000000000.

CURRENT_TIMESTAMP: Obtaining the Timestamp (Date/Time)

The CURRENT_TIMESTAMP function returns the current timestamp of the operating system
(date and time) in the form YYYYMMDDHHMMSS. You may specify the number of decimal
places for fractions of a second--0, 3, or 6 places. Six (6) places is the default.

Syntax: How to Obtain the Current Timestamp

CURRENT_TIMESTAMP[(precision)]

where:

precision

Integer constant

CURRENT_TIME: Obtaining the Time

354 Information Builders

Is the number of decimal places for fractions of a second. Possible values are 0, 3, and 6.

This function returns a timestamp (format: HYYMDS if no decimal places; HYYMDs if 3 decimal
places; HYYMDm if 6 decimal places).

Example: Obtaining the Current Timestamp

At 2:11:23 PM on October 9, 2005:

CURRENT_TIMESTAMP returns 20051009141123000000.

CURRENT_TIMESTAMP(0) returns 20051009141123.

CURRENT_TIMESTAMP(3) returns 20051009141123000.

CURRENT_TIMESTAMP(6) returns 20051009141123000000.

DAY: Obtaining the Day of the Month From a Date/Timestamp

The DAY function returns the day of the month from a date or timestamp value.

Syntax: How to Obtain the Day of the Month From a Date or Timestamp

DAY(arg)

where:

arg

Date or timestamp

Is the input value.

This function returns an integer value.

Example: Obtaining the Day of the Month From a Date or Timestamp

DAY returns the day of the month from a date or timestamp. This example,

DAY('1976-07-04')

returns 4.

This example,

DAY('2001-01-22 10:00:00')

returns 22.

20. SQL Date and Time Functions

Functions Reference 355

DAYS: Obtaining the Number of Days Since January 1, 0001

The DAYS function returns 1 more than the number of days from January 1, 0001 to the
provided date value.

Syntax: How to Obtain the Number of Days Since January 1, 1900

DAYS(arg)

where:

arg

Date or timestamp

Is the input argument.

This function returns an integer value.

Example: Obtaining the Number of Days Since January 1, 1900

DAYS returns one more than the number of days since January 1, 1900.

DAYS('2000-01-01')

returns 730120.

EXTRACT: Obtaining a Datetime Field From Date/Time/Timestamp

The EXTRACT function can be used to obtain the year, month, day of month, hour, minute,
second, millisecond, or microsecond component of a date, time, or timestamp value.

Syntax: How to Obtain a Datetime Field From a Date, Time, or Timestamp

EXTRACT(field FROM arg)

where:

arg

Date, time, or timestamp

Is the input argument.

field

Is the datetime field of interest. Possible values are YEAR, QUARTER, MONTH, DAY,
WEEKDAY, HOUR, MINUTE, SECOND, MILLISECOND and MICROSECOND.

This function returns an integer value.

DAYS: Obtaining the Number of Days Since January 1, 0001

356 Information Builders

Note:

YEAR, QUARTER, MONTH, DAY, and WEEKDAY can be used only if the argument is date or
timestamp.

HOUR, MINUTE, SECOND, MILLISECOND and MICROSECOND can be used only if the
argument is time or timestamp.

Example: Obtaining a Datetime Field From a Date, Time, or Timestamp

EXTRACT returns the components of a date, time, or timestamp. This example,

EXTRACT(YEAR FROM '2000-01-01')

returns 2000.

This example,

EXTRACT(HOUR FROM '11:22:33')

returns 11.

This example,

EXTRACT(MICROSECOND FROM '2000-01-01 11:22:33.456789')

returns 456,789.

HOUR: Obtaining the Hour From Time/Timestamp

The HOUR function returns the hour field from a time or timestamp value.

Syntax: How to Obtain the Hour From a Time or Timestamp

HOUR(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

20. SQL Date and Time Functions

Functions Reference 357

Example: Obtaining the Hour From a Time or Timestamp

HOUR returns the hour from a time or timestamp. This example,

HOUR('11:22:33')

returns 11.

This example,

HOUR('2001-01-22 10:00:00')

returns 10.

MICROSECOND: Obtaining Microseconds From Time/Timestamp

The MICROSECOND function returns the number of microseconds from a time or timestamp
value.

Syntax: How to Obtain the Number of Microseconds From a Time or Timestamp

MICROSECOND(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Example: Obtaining the Number of Microseconds From a Time or Timestamp

MICROSECOND returns the microseconds from a time or timestamp. This example,

MICROSECOND('11:22:33.456789')

returns 456,789.

This example,

MICROSECOND('2001-01-22 10:00:00')

returns 0.

MICROSECOND: Obtaining Microseconds From Time/Timestamp

358 Information Builders

MILLISECOND: Obtaining Milliseconds From Time/Timestamp

The MILLISECOND function returns the number of milliseconds from a time or timestamp
value.

Syntax: How to Obtain the Number of Milliseconds From a Time or Timestamp

MILLISECOND(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Example: Obtaining the Number of Milliseconds From a Time or Timestamp

MILLISECOND returns the number of milliseconds from a time or timestamp. This example,

MILLISECOND('11:22:33.456')

returns 456.

This example,

MILLISECOND('2001-01-22 10:11:12')

returns 0.

MINUTE: Obtaining the Minute From Time/Timestamp

The MINUTE function returns the number of minutes from a time or timestamp value.

Syntax: How to Obtain the Minute From a Time or Timestamp

MINUTE(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

20. SQL Date and Time Functions

Functions Reference 359

Example: Obtaining the Minute From a Time or Timestamp

MINUTE returns the minutes from a time or timestamp. This example,

MINUTE('11:22:33')

returns 22.

This example,

MINUTE('2001-01-22 10:11:12')

returns 11.

MONTH: Obtaining the Month From Date/Timestamp

The MONTH function returns the month field from a date or timestamp value.

Syntax: How to Obtain the Month From a Date or Timestamp

MONTH(arg)

where:

arg

Date or timestamp

Is the input value.

This function returns an integer value.

Example: Obtaining the Month From a Date or Timestamp

MONTH returns the month from a date or timestamp. This example,

MONTH('1976-07-04')

returns 7.

This example,

MONTH('2001-01-22 10:00:00')

returns 1.

SECOND: Obtaining the Second Field From Time/Timestamp

The SECOND function returns the second field from a time or timestamp value.

MONTH: Obtaining the Month From Date/Timestamp

360 Information Builders

Syntax: How to Obtain the Second Field From a Time or Timestamp

SECOND(arg)

where:

arg

Time or timestamp

Is the input value.

This function returns an integer value.

Example: Obtaining the Second Field From a Time or Timestamp

SECOND returns seconds from a time or timestamp. This example,

SECOND('11:22:33')

returns 33.

This example,

SECOND('2001-01-22 12:24:36')

returns 36.

QUARTER: Returning the Quarter of the Year

Given a date or date-time value, QUARTER returns an integer (from 1 to 4) that represents the
quarter within which that date falls.

Syntax: How to Return the Quarter of the Year

QUARTER(arg)

where:

arg

Date or date-time

Is the input date or date-time value.

Example: Returning the Quarter of the Year

QUARTER returns the quarter of the year for each date of birth:

QUARTER(DATE_OF_BIRTH)

20. SQL Date and Time Functions

Functions Reference 361

For 1993/03/27, the result is 1.

WEEKDAY: Returning the Day of the Week

Given a date or date-time value, WEEKDAY returns an integer from 1 (Monday) to 7 (Sunday)
representing the day of the week for that date.

Syntax: How to Return the Day of the Week

WEEKDAY(arg)

where:

arg

Date or date-time

Is the input date or date-time value.

Example: Returning the Day of the Week

WEEKDAY returns the day of the week for each birth date, where 1 represents Monday and 7
represents Sunday:

WEEKDAY(DATE_OF_BIRTH)

For 1993/03/27, the result is 6 (Saturday).

YEAR: Obtaining the Year From a Date or Timestamp

The YEAR function returns the year field from a date or timestamp value.

Syntax: How to Obtain the Year From a Date or Timestamp

YEAR(arg)

where:

arg

Date or timestamp

Is the input value.

This function returns an integer value.

WEEKDAY: Returning the Day of the Week

362 Information Builders

Example: Obtaining the Year From a Date or Timestamp

YEAR returns the year from a date or timestamp value. This example,

YEAR('1976-07-04')

returns 1976.

This example,

YEAR('2001-01-22 10:00:00')

returns 2001.

20. SQL Date and Time Functions

Functions Reference 363

YEAR: Obtaining the Year From a Date or Timestamp

364 Information Builders

Chapter21
SQL Data Type Conversion Functions

SQL data type conversion functions convert fields from one data type to another.

In this chapter:

CAST: Converting to a Specific Data Type

CHAR: Converting to a Character String

CHAR: Converting to a Standard Date-Time Format

DATE: Converting to a Date

DECIMAL: Converting to Decimal Format

FLOAT: Converting to Floating Point Format

INT: Converting to an Integer

SMALLINT: Converting to a Small Integer

TIME: Converting to a Time

TIMESTAMP: Converting to a Timestamp

CAST: Converting to a Specific Data Type

The CAST function converts the value of its argument to a specified data type.

Syntax: How to Convert to a Specific Data Type

CAST(expression AS data_type[(length)])

where:

arg

Any data type that can be converted to the result data type

Is the value to be converted.

data-type

Is the result data type: CHARACTER, CHARACTER VARYING, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE PRECISION, DATE, TIME or TIMESTAMP.

Functions Reference 365

length

Is an optional parameter of character data types.

This function returns the input value converted to the specified data type.

Example: Converting to a Specific Data Type

CAST converts a value to a specified data type. This example,

CAST(2.5 AS INTEGER)

returns 2.

This example,

CAST('3.333' AS FLOAT)

returns 3.333.

CHAR: Converting to a Character String

There are two versions of the CHAR function, one for converting an argument to a character
string, and one for converting a date, time, or timestamp value to a standard format. The
version that takes one argument converts its argument to a character string. For information
about using CHAR to convert a date, time, or timestamp value to a standard format, see CHAR:
Converting to a Standard Date-Time Format on page 367.

Syntax: How to Convert to a Character String

CHAR(arg)

where:

arg

Any type

Is the value to be converted.

This function returns a character string whose length is of sufficient size to hold the value.

Example: Converting to a Character String

CHAR converts a value to a character string. This example,

CHAR(566.23)

returns 566.23.

CHAR: Converting to a Character String

366 Information Builders

CHAR: Converting to a Standard Date-Time Format

There are two versions of the CHAR function, one for converting an argument to a character
string, and one for converting a date, time, or timestamp value to a standard format. The
version that takes two arguments converts a date, time, or timestamp value to one of the
standard date-time formats. For information about using CHAR to convert a single argument to
a character string, see CHAR: Converting to a Character String on page 366.

Syntax: How to Convert a Date, Time, or Timestamp Value to a Standard Format

CHAR(datetime, fmt)

where:

datetime

Date

Is the date, time, or timestamp value to be converted.

fmt

Can be one of the following formats:

Name of
Standard

Date Format Time Format Timestamp Format

ISO yyyy-mm-dd hh.mm.ss yyyy-mm-dd hh:mm:ss.xxxxxx

USA mm/dd/yyyy hh.mm AM/PM yyyy-mm-dd-hh.mm.ss.xxxxxx

EUR dd.mm.yyyy hh.mm.ss yyyy-mm-dd-hh.mm.ss.xxxxxx

JIS yyyy-mm-dd hh:mm:ss yyyy-mm-dd-hh.mm.ss.xxxxxx

This function returns a character string whose length is of sufficient size to hold the value.

Example: Converting Date and Time Values to Standard Formats

CHAR converts a date, time, or timestamp value to a standard format. The following examples
use the constants CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP. Assume the
current date is November 17, 2011:

CHAR(CURRENT DATE, USA) returns 11/17/2011

CHAR(CURRENT DATE, ISO) returns 2011-11-17

CHAR (CURRENT TIME, USA) returns 03:45 PM

21. SQL Data Type Conversion Functions

Functions Reference 367

CHAR (CURRENT TIME, ISO) returns 15.45.00

CHAR(CURRENT TIMESTAMP, ISO) returns 2011-11-17 15:45:00

DATE: Converting to a Date

The DATE function converts its argument to a date. The type of the argument value may be
character, date, or timestamp.

If the argument is:

A character, its value must correctly represent a date; that date is the result.

A date, its value is returned.

A timestamp, the date portion of the timestamp value is returned.

Syntax: How to Convert to a Date

DATE(arg)

where:

arg

character string, date, or timestamp

Is the value to be converted.

The DATE function returns a date in YYMD format.

Example: Converting to a Date

DATE converts a value to a date. This example,

DATE('1999-03-29 14:39:30')

returns 19990329.

DECIMAL: Converting to Decimal Format

The DECIMAL function converts a number to fixed-length decimal format.

DATE: Converting to a Date

368 Information Builders

Syntax: How to Convert to the Decimal Format

DECIMAL(arg, [length [,dec-places]])

where:

arg

Numeric

Is the input value.

length

Integer

The maximum number of digits in the integer portion of the result. The default is 15.

dec-places

Integer

Is the number of decimal places in the result. The default is the same number of decimal
places as in the type of the argument.

This function returns a numeric value in fixed-length decimal format.

Example: Converting to Decimal Format

DECIMAL converts a number to fixed-length decimal format. This example,

DECIMAL(5.12345, 4, 2)

returns 5.12.

FLOAT: Converting to Floating Point Format

The FLOAT function converts a number to floating-point format.

Syntax: How to Convert to the Floating Point Format

FLOAT(arg)

where:

arg

Numeric

21. SQL Data Type Conversion Functions

Functions Reference 369

Is the input value.

This function returns the value in floating-point format.

Example: Converting to Floating Point Format

FLOAT converts a number to floating-point format. This example,

FLOAT(3)

returns 3.0.

INT: Converting to an Integer

The INT function converts a number to an integer. If the input value is not an integer, the result
is truncated.

INTEGER is identical to INT.

Syntax: How to Convert to an Integer

INT(arg)

where:

arg

Numeric

Is the input value.

This function returns the number in integer format.

Example: Converting to an Integer

INT converts a number to an integer. This example,

INT(4.8)

returns 4.

SMALLINT: Converting to a Small Integer

The SMALLINT function converts a number to a small integer. Generally, a small integer
occupies only two bytes in memory.

Syntax: How to Convert to a Small Integer

SMALLINT(arg)

INT: Converting to an Integer

370 Information Builders

where:

arg

Numeric

Is the input value.

This function returns the number in small integer format.

Example: Converting to a Small Integer

SMALLINT converts a number to a small integer. This example,

SMALLINT(3.5)

returns 3.

TIME: Converting to a Time

The TIME function converts its argument to a time. The type of the argument value may be
character, time, or timestamp.

If the argument is a character, its value must correctly represent a time; that time is the
result.

If the argument is a time, its value is returned.

If the argument is a timestamp, the time portion of the timestamp value is returned.

Syntax: How to Convert to a Time

TIME(arg)

where:

arg

character string, time, or timestamp

Is the input value.

This function returns a time.

Example: Converting to a Time

TIME converts a value argument to a time. This example,

TIME('2004-03-15 01:02:03.444')

21. SQL Data Type Conversion Functions

Functions Reference 371

returns 010203444.

TIMESTAMP: Converting to a Timestamp

The TIMESTAMP function converts its argument to a timestamp. The argument type can be
character, date, time, or timestamp.

If the argument is a character, its value must correctly represent a timestamp; that
timestamp is the result.

If the argument is a date, the value of the result is the timestamp, with the date
component equal to the argument and the time component equal to midnight.

If the argument is a time, the value of the result is the timestamp, with the date
component equal to the current date, and the time component equal to the argument.

If the argument is a timestamp, its value is returned.

Syntax: How to Convert to a Timestamp

TIMESTAMP(arg)

where:

arg

character string, date, time, or timestamp

Is the input value.

This function returns a timestamp.

Example: Converting to a Timestamp

TIMESTAMP converts a value to a timestamp. This example,

TIMESTAMP('2004-06-24')

returns 20040624000000.

This example,

TIMESTAMP('11:22:33')

returns 20010101112233, if the current date is January 1, 2001.

TIMESTAMP: Converting to a Timestamp

372 Information Builders

Chapter22
SQL Numeric Functions

SQL numeric functions perform calculations on numeric constants and fields.

In this chapter:

ABS: Returning an Absolute Value (SQL)

CEIL: Returning the Smallest Integer Greater Than or Equal to a Value

FLOOR: Returning the Largest Integer Less Than or Equal to a Value (SQL)

GREATEST: Returning the Largest Value

LEAST: Returning the Smallest Value

LOG: Returning a Logarithm (SQL)

EXP: Returning e Raised to a Power

MOD: Returning the Remainder of a Division

POWER: Raising a Value to a Power (SQL)

SQRT: Returning a Square Root (SQL)

ABS: Returning an Absolute Value (SQL)

The ABS function returns the absolute value of a number.

Syntax: How to Return an Absolute Value

ABS(arg)

where:

arg

Numeric

Is the input value.

This function returns the value as the same data type as the argument. For example, if the
argument is an integer, the result will be also be an integer.

Functions Reference 373

Example: Returning an Absolute Value

ABS returns the absolute value of a number. This example,

ABS(-5.5)

returns 5.5.

CEIL: Returning the Smallest Integer Greater Than or Equal to a Value

CEIL returns the smallest integer value not less than the argument. CEILING is a synonym for
CEIL.

Syntax: How to Return the Smallest Integer Greater Than or Equal to a Value

CEIL(n)

where:

n

Numeric or Alphanumeric

Is the value less than or equal to the returned integer. For exact-value numeric arguments,
the return value has an exact-value numeric type. For alphanumeric or floating-point
arguments, the return value has a floating-point type.

Example: Returning an Integer Greater Than or Equal to a Value

CEIL returns an integer greater than or equal to the argument.

CEIL(N)

For N=1.23, the result is 2.

For N=-1.23, the result is -1.

FLOOR: Returning the Largest Integer Less Than or Equal to a Value (SQL)

FLOOR returns the largest integer value not greater than a value.

Syntax: How to Return the Largest Integer Less Than or Equal to a Value

FLOOR(n)

CEIL: Returning the Smallest Integer Greater Than or Equal to a Value

374 Information Builders

where:

n

Numeric or Alphanumeric

Is the value greater than or equal to the returned integer. For exact-value numeric
arguments, the return value has an exact-value numeric type. For alphanumeric or floating-
point arguments, the return value has a floating-point type.

Example: Returning an Integer Less Than or Equal to a Value

FLOOR returns an integer less than or equal to the argument.

FLOOR(N)

For N=1.23, the result is 1.

For N=-1.23, the result is -2.

GREATEST: Returning the Largest Value

With two or more arguments, GREATEST returns the largest (maximum-valued) argument. The
arguments are compared using the following rules:

If any argument is NULL, the result is NULL. No comparison is needed.

If the return value is used in an INTEGER context, or all arguments are integer-valued, they
are compared as integers.

If the return value is used in a floating-point context, or all arguments are floating-point-
valued, they are compared as floating-point values.

If the arguments comprise a mix of numbers and strings, they are compared as numbers.

If any argument is a character string, the arguments are compared as character strings. In
all other cases, the arguments are compared as binary strings.

Syntax: How to Return the Largest Value

GREATEST(value1, value2, ... , valuen)

where:

value1, value2,... , valuen

Numeric or alphanumeric

Are the values to be compared.

22. SQL Numeric Functions

Functions Reference 375

Example: Returning the Largest Value

GREATEST returns the largest argument.

GREATEST(X,Y,Z)

For X=2, Y=0, and Z=-1, the result is 2.

For X='B', Y='A', and Z='C', the result is 'C'.

LEAST: Returning the Smallest Value

With two or more arguments, LEAST returns the smallest (minimum-valued) argument. The
arguments are compared using the following rules:

If any argument is NULL, the result is NULL. No comparison is needed.

If the return value is used in an INTEGER context, or all arguments are integer-valued, they
are compared as integers.

If the return value is used in a floating-point context, or all arguments are floating-point-
valued, they are compared as floating-point values.

If the arguments comprise a mix of numbers and strings, they are compared as numbers.

If any argument is a character string, the arguments are compared as character strings. In
all other cases, the arguments are compared as binary strings.

Syntax: How to Return the Smallest Value

LEAST(value1, value2, ... , valuen)

where:

value1, value2,... , valuen

Numeric or alphanumeric

Are the values to be compared.

Example: Returning the Smallest Value

LEAST returns the smallest argument.

LEAST(X,Y,Z)

For X=2, Y=0, and Z=-1, the result is -1.

For X='B', Y='A', and Z='C', the result is 'A'.

LEAST: Returning the Smallest Value

376 Information Builders

LOG: Returning a Logarithm (SQL)

The LOG function returns the natural logarithm of the input value.

Syntax: How to Return a Logarithm

LOG(arg)

where:

arg

Numeric

Is the input value.

This function returns double precision numbers with three decimal places.

Example: Returning a Logarithm

LOG returns the natural logarithm of a value. This example,

LOG(4)

returns 1.386.

EXP: Returning e Raised to a Power

The EXP function returns the mathematical constant e raised to a power.

Syntax: How to Return e Raised to a Power

EXP(arg)

where:

arg

Numeric

Is the value of the power to which to raise the mathematical constant e.

Example: Returning e Raised to a Power

EXP returns the mathematical constant e to a power. This example,

EXP(4)

returns 54.598.

22. SQL Numeric Functions

Functions Reference 377

MOD: Returning the Remainder of a Division

The SQL function MOD returns the remainder of the first argument divided by the second
argument.

Syntax: How to Return the Remainder of a Division

MOD(n,m)

where:

n

Numeric

Is the dividend (number to be divided).

m

Numeric

Is the divisor (number to divide by). If the divisor is zero (0), MOD returns NULL.

Example: Returning the Remainder of a Division

MOD returns the remainder of n divided by m.

MOD(N,M)

For N=16 and M=5, the result is 1.

For N=34.5 and M=3, the result is 1.5.

POWER: Raising a Value to a Power (SQL)

The POWER function returns the value calculated by raising the first argument to the power
specified by the second argument.

Syntax: How to Return a Value Raised to a Power

POWER(arg1, arg2)

where:

arg1

Numeric

Is the value to be raised to the power specified by arg2.

MOD: Returning the Remainder of a Division

378 Information Builders

arg2

Numeric

Is the value of the power to which to raise arg1.

Example: Returning a Value Raised to a Power

POWER returns the value calculated by raising the first argument to the value specified by the
second argument. This example,

EXP(2,4)

returns 16.000.

SQRT: Returning a Square Root (SQL)

The SQRT function returns the square root of the input value.

Syntax: How to Return a Square Root

sqrt(arg)

where:

arg

Numeric

Is the input value.

This function returns double precision numbers with three decimal places.

Example: Returning a Square Root

SQRT returns the square root of a value. This example,

SQRT(4)

returns 2.000.

22. SQL Numeric Functions

Functions Reference 379

SQRT: Returning a Square Root (SQL)

380 Information Builders

Chapter23
SQL Miscellaneous Functions

The SQL functions described in this chapter perform a variety of conversions, tests, and
manipulations.

In this chapter:

COUNTBY: Incrementing Column Values Row by Row

DB_EXPR: Inserting an SQL Expression Into a Request (SQL)

HEX: Converting to Hexadecimal

IF: Testing a Condition

LENGTH: Obtaining the Physical Length of a Data Item

VALUE: Coalescing Data Values

COUNTBY: Incrementing Column Values Row by Row

The COUNTBY function produces a column whose values are incremented row by row by a
specified amount.

Syntax: How to Increment Column Values Row by Row

COUNTBY(arg)

where:

arg

Integer

Is the value that is incremented for each record.

This function returns an integer value.

Example: Incrementing Column Values Row by Row

In the query,

SELECT COUNTBY(1), COUNTBY(2) FROM T

Functions Reference 381

the first column takes on the values 1, 2, 3, ..., and the second column takes on the values 2,
4, 6, ...

DB_EXPR: Inserting an SQL Expression Into a Request (SQL)

The DB_EXPR function inserts a native SQL expression exactly as entered into the native SQL
generated for a FOCUS or SQL language request.

The DB_EXPR function can be used in a DEFINE command, a DEFINE in a Master File, a
WHERE clause, a FILTER FILE command, a filter in a Master File, or in an SQL statement. It
can be used in a COMPUTE command if the request is an aggregate request (uses the SUM,
WRITE, or ADD command) and has a single display command. The expression must return a
single value.

Syntax: How to Insert an SQL Expression Into a Request With DB_EXPR

DB_EXPR(native_SQL_expression)

where:

native_SQL_expression

Is a partial native SQL string that is valid to insert into the SQL generated by the request.
The SQL string must have double quotation marks (") around each field reference, unless
the function is used in a DEFINE with a WITH phrase.

Reference: Usage Notes for the DB_EXPR Function

The expression must return a single value.

Any request that includes one or more DB_EXPR functions must be for a synonym that has
a relational SUFFIX.

Field references in the native SQL expression must be within the current synonym context.

The native SQL expression must be coded inline. SQL read from a file is not supported.

DB_EXPR: Inserting an SQL Expression Into a Request (SQL)

382 Information Builders

Example: Inserting the DB2 BIGINT and CHAR Functions Into a TABLE Request

The following TABLE request against the WF_RETAIL data source uses the DB_EXPR function in
the COMPUTE command to call two DB2 functions. It calls the BIGINT function to convert the
squared revenue to a BIGINT data type, and then uses the CHAR function to convert that value
to alphanumeric.

TABLE FILE WF_RETAIL
SUM REVENUE NOPRINT
AND COMPUTE BIGREV/A31 = DB_EXPR(CHAR(BIGINT("REVENUE" * "REVENUE"))) ;
AS 'Alpha Square Revenue'
BY REGION
ON TABLE SET PAGE NOPAGE
END

The trace shows that the expression from the DB_EXPR function was inserted into the DB2
SELECT statement:

 SELECT
 T11."REGION",
 SUM(T1."Revenue"),
 ((CHAR(BIGINT(SUM(T1."Revenue") * SUM(T1."Revenue")))))
 FROM
 wrd_fact_sales T1,
 wrd_dim_customer T5,
 wrd_dim_geography T11
 WHERE
 (T5."ID_CUSTOMER" = T1."ID_CUSTOMER") AND
 (T11."ID_GEOGRAPHY" = T5."ID_GEOGRAPHY")
 GROUP BY
 T11."REGION "
 ORDER BY
 T11."REGION "
 FOR FETCH ONLY;
END

HEX: Converting to Hexadecimal

The HEX function converts its input value to hexadecimal.

Note: This function is available only for DB2, Ingres, and Informix.

Syntax: How to Convert to Hexadecimal

HEX(character)

where:

character

Is the input value.

23. SQL Miscellaneous Functions

Functions Reference 383

This function returns an alphanumeric value.

Example: Converting a Value to Hex

This example,

HEX('n')

returns 6E.

IF: Testing a Condition

The IF function tests a condition and returns a value based on whether the condition is true or
false.

Syntax: How to Test a Condition

IF(test, val1, val2)

where:

test

Condition

Is an SQL search condition, which evaluates to true or false.

val1, val2

Are expressions of compatible types.

This function returns a value of the type of val1 and val2. If test is true, val1 is returned,
otherwise val2 is returned.

Example: Testing a Condition

This example tests COUNTRY. If the value is ENGLAND, it returns LONDON. Otherwise, it
returns PARIS.

IF(COUNTRY = 'ENGLAND', 'LONDON', 'PARIS') =
 'LONDON' if COUNTRY is 'ENGLAND'
 'PARIS' otherwise.

This example tests COUNTRY. If the value is ENGLAND, it returns LONDON. If the value is
FRANCE, it returns PARIS. Otherwise, it returns ROME.

IF: Testing a Condition

384 Information Builders

IF(COUNTRY = 'ENGLAND', 'LONDON',
 IF(COUNTRY = 'FRANCE', 'PARIS', 'ROME')) =
 'LONDON' if COUNTRY is 'ENGLAND'
 'PARIS' if COUNTRY = 'FRANCE'
 'ROME' otherwise.

LENGTH: Obtaining the Physical Length of a Data Item

The LENGTH function returns the actual length in memory of a data item.

Syntax: How to Obtain the Physical Length of a Data Item

LENGTH(arg)

where:

arg

Any type

Is the length of the argument. It can be between 1 and 16 bytes.

This function returns an integer value.

Example: Obtaining the Physical Length of a Data Item

LENGTH returns the length in memory of a data item. This example,

LENGTH('abcdef')

returns 6.

This example,

LENGTH(3)

returns 4.

VALUE: Coalescing Data Values

Note: The SQL function VALUE is not supported. Instead, use the SQL operator COALESCE. For
more information see COALESCE: Coalescing Data Values on page 389.

23. SQL Miscellaneous Functions

Functions Reference 385

VALUE: Coalescing Data Values

386 Information Builders

Chapter24
SQL Operators

SQL operators are used to evaluate expressions.

In this chapter:

CASE: SQL Case Operator

COALESCE: Coalescing Data Values

NULLIF: NULLIF Operator

CASE: SQL Case Operator

The CASE operator allows a value to be computed depending on the values of expressions or
the truth or falsity of conditions.

Syntax: How to Use the SQL Case Operator

In the first format below the value of test-expr is compared to value-expr-1, ..., value-expr-n in
turn:

If any of these match, the value of the result is the corresponding result-expr.

If there are no matches and the ELSE clause is present, the result is else-expr.

If there are no matches and the ELSE clause is not present, the result is NULL.

In the second format below the values of cond-1, ..., cond-n are evaluated in turn.

If any of these are true, the value of the result is the corresponding result-expr.

If no conditions are true and the ELSE clause is present, the result is else-expr.

If no conditions are true and the ELSE clause is not present, the result is NULL.

Format 1

CASE test-expr
 WHEN value-expr-1 THEN result-expr-1
 . . .
 WHEN value-expr-n THEN result-expr-n
 [ELSE else-expr]
END

Functions Reference 387

Format 2

CASE
 WHEN cond-1 THEN result-expr-1
 . . .
 WHEN cond-n THEN result-expr-n
 [ELSE else-expr]
END

where:

test-expr

Any type

Is the value to be tested in Format 1.

value-expr1, ... , value-expr-n

Any type of compatible with test-expr.

Are the values test-expr is tested against in Format 1.

result-expr1, ... , result-expr-n

Any type

Are the values that become the result value if:

The corresponding value-expr matches test-expr (Format 1).

or

The corresponding cond is true (Format 2).

The result expressions must all have a compatible type.

cond-1, ..., cond-n

Condition

Are conditions that are tested in Format 2.

else-expr

Any type

Is the value of the result if no matches are found. Its type must be compatible with the
result expressions.

This operator returns the compatible type of the result expressions.

CASE: SQL Case Operator

388 Information Builders

Example: Using the SQL Case Operator

CASE returns values based on expressions. This example,

CASE COUNTRY
 WHEN 'ENGLAND' THEN 'LONDON'
 WHEN 'FRANCE' THEN 'PARIS'
 WHEN 'ITALY' THEN 'ROME'
 ELSE 'UNKNOWN'
END

returns LONDON when the value is ENGLAND, PARIS when the value is FRANCE, ROME when
the value is ITALY, and UNKNOWN when there is no match.

COALESCE: Coalescing Data Values

The COALESCE operator can take 2 or more arguments. The first argument that is not NULL is
returned. If all arguments are NULL, NULL is returned.

Syntax: How to Coalesce Data Values

COALESCE(arg1, arg2, [... argn])

where:

arg1, arg2, ..., argn

Any type

Are data values. The types of the arguments must be compatible.

This operator returns the compatible type of the arguments.

Example: Coalescing Data Values

This example,

COALESCE('A', 'B')

return A.

This example,

COALESCE(NULL, 'B')

return B.

This example,

COALESCE(NULL, NULL)

24. SQL Operators

Functions Reference 389

return NULL.

NULLIF: NULLIF Operator

The NULLIF operator returns NULL if its two arguments are equal. Otherwise, the first argument
is returned.

Syntax: How to Use the NULLIF Operator

NULLIF(arg1, arg2)

where:

arg1, arg2

Any type

Are data values. The types of the two arguments must be compatible.

This operator returns the compatible type of the arguments.

Example: Using the NULLIF Operator

NULLIF operator returns NULL if two values are equal. This example,

NULLIF(IDNUM, -1)

returns NULL if the identification number is -1, otherwise it returns the number.

NULLIF: NULLIF Operator

390 Information Builders

Index

A

ABS function 271, 272, 373

alphanumeric strings 253

analytic functions 29

ARGLEN function 84, 116, 117

ASIS function 84, 85

ATODBL function 253, 254

AYMD function 210

B

bit strings 87, 88

BITSON function 86, 87

BITVAL function 87, 88

BUSDAYS parameter 171

business days 171

BUSDAYS parameter 171

BYTVAL function 88, 89

C

CASE operator 387

CAST function 365

CEILING function 267

CHAR function 245, 366, 367

CHAR_LENGTH function 64, 341

character functions, simplified 63

CHAR_LENGTH 64

CONCAT 64

DIGITS 65

character functions, simplified 63

LAST_NONBLANK 67

LOWER 69

LPAD 69

LTRIM 70

PATTERNS 71

POSITION 72

REGEX 72

REPLACE 74

RPAD 75

RTRIM 76

SPLIT 76

SUBSTRING 77

TOKEN 78

TRIM 79

UPPER 80

character functions

ARGLEN 84, 116, 117

ASIS 84, 85

BITSON 86, 87

BITVAL 87, 88

BYTVAL 88, 89

CHKFMT 89–91

CHKNUM 91

CTRAN 91, 92

CTRFLD 93

DCTRAN 127

DSTRIP 130, 131

EDIT 94

Functions Reference 391

character functions

GETTOK 95

LCWORD 96, 98

LCWORD2 97, 98

LCWORD3 98

LJUST 99

LOCASE 99, 100

OVRLAY 100

PARAG 101–103

POSIT 104, 105

RJUST 106

SOUNDEX 106, 107

SPELLNM 107, 108

SQL 341

SQUEEZ 108, 109

STRIP 109–111

SUBSTR 111–113, 123

TRIM 113, 114

TRIMV 124

UPCASE 114, 115

variable length 119

XMLDECOD 115

XMLENCOD 116

character strings 84, 99

bits 86, 87

centering 93

comparing 106

converting case 99, 114

Dialogue Manager 84

dividing 101

character strings 84, 99

extracting characters 94

extracting substrings 95, 111, 113, 123

finding substrings 104

format 89

justifying 99, 106

measuring length 84

overlaying 100

reducing spaces 108

right-justifying 106

spelling out numbers 107

translating characters 88, 91, 92

CHECKMD5 function 141

CHECKSUM function 142

CHGDAT function 211, 213

CHKFMT function 89–91

CHKNUM function 91

CHKPCK function 272

CLSDDREC 309

COALESCE function 143

COALESCE operator 389

COMPACTFORMAT function 246

components 226

CONCAT function 64, 342

conversion functions, simplified 245

CHAR 245

CTRLCHAR 247

HEXTYPE 249

TO_INTEGER 251

TO_NUMBER 251

Index

392 Information Builders

conversion functions,simplified

PHONETIC 250

converting formats 253

COUNTBY function 381

cross-referenced data sources 155

CTRAN function 91, 92

CTRFLD function 93

CTRLCHAR function 247

CURRENT_DATE function 353

CURRENT_TIME function 354

CURRENT_TIMESTAMP function 354

D

DA functions 214

DADMY function 214

DADYM function 214

DAMDY function 214

DAMYD function 214

data source functions 141

FIND 154

LAST 154, 155

LOOKUP 155, 156

data sources 141

cross-referenced 155

decoding values 152

retrieving values 154, 155

values 141

verifying values 154

data type conversion functions 365

date and time functions 170, 222

arguments and 226

AYMD 210

CHGDAT 211, 213

DA 214

DADMY 214

DADYM 214

DAMDY 214

DAMYD 214

DATEADD 177

DATECVT 179

DATEDIF 181

DATEMOV 183

DATETRAN 187

DAYDM 214

DAYMD 214

DOWK 215

DOWKL 215

HADD 227

HCNVRT 229

HDATE 230

HDIFF 230, 231

HDTTM 232

HGETC 233, 234

HGETZ 234

HHMMSS 235

HHMS 236

HINPUT 237

HMIDNT 238

HNAME 239

Index

Functions Reference 393

date and time functions 170, 222

HPART 239, 240

HSETPT 240

HTIME 241, 242

JULDAT 218

legacy 210

SQL 353

standard 170

TODAY 208

YM 219

date formats

international 187

DATE function 368

date functions, simplified 159

DT_CURRENT_DATE 160

DT_CURRENT_DATETIME 160

DT_CURRENT_TIME 161

DTPART 165

DTRUNC 166

date functions

work days 171

date-time values

adding 210

converting 241

converting formats 211, 214, 218, 229, 230,

232

elapsed time 219

finding day of week 215

finding difference 181, 215, 230

incrementing 227

date-time values

moving dates 183

retrieving components 239

retrieving time 235, 236

returning dates 208

setting time 238

storing 233, 234

subtracting 210

DATEADD function 177

DATECVT function 179

DATEDIF function 181

DATEFORMAT parameter 223

DATEMOV function 183

DATETRAN function 187, 195

DAY function 355

DAYDM function 214

DAYMD function 214

DAYS function 356

DB_EXPR function 143, 382

DB_LOOKUP function 150

COMPUTE command 150

DEFINE 150

MODIFY 150

TABLE COMPUTE 150

DCTRAN function 127

DECIMAL function 368

DECODE function 152, 153

decoding functions 141, 152, 153

decoding values 152

from files 152

Index

394 Information Builders

decoding values 152

in a function 152, 153

DEDIT function 128

DIGITS function 65, 343

DMOD function 273, 274

DMY function 215

double exponential smoothing 38

FORECAST_DOUBLEXP 38

double-byte characters 127, 130

DOWK function 215

DOWKL function 215

DSTRIP function 130, 131

DSUBSTR function 131

DT_CURRENT_DATE function 160

DT_CURRENT_DATETIME function 160

DT_CURRENT_TIME function 161

DTADD function 161

DTDIFF function 163

DTPART function 165

DTRUNC function 166

DTSTRICT parameter 225

E

EDIT function 94, 255, 344

ENCRYPT function 300

environment variables 305

assigning values 305

retrieving values 305

error messages 304

EXP function 274, 275, 377

EXPN function 275

exponential moving average 35

FORECAST_EXPAVE 35

EXTRACT function 356

F

FEXERR function 304

FGETENV function 305

FIND function 153, 154

FIQTR function 205

FIYR function 203

FIYYQ function 207

FLOAT function 369

FLOOR function 268

FMOD function 273, 274

FORECAST_DOUBLEXP

double exponential smoothing 38

FORECAST_EXPAVE

exponential moving average 35

FORECAST_LINEAR

linear regression equation 45

FORECAST_MOVAVE

simple moving average 29

FORECAST_SEASONAL

triple exponential smoothing 40

format conversion functions

ATODBL 253, 254

EDIT 255

FPRINT 255

FTOA 256, 257

Index

Functions Reference 395

format conversion functions

HEXBYT 257–259

ITONUM 259

ITOPACK 260

ITOZ 261, 262

PCKOUT 262

PTOA 263

TSTOPACK 264

UFMT 265

format conversions 253

packed numbers 262

to alphanumeric 256, 263

to characters 257

to hexadecimal 265

to zoned format 261

formats 253

alphanumeric 255

converting 253

FPRINT function 248, 255

FPUTENV function 305, 306

FTOA function 256, 257

function types

data source 141

decoding 141

numeric 271

system 303

functions 150

analytic 29

character 341

data type conversion 365

functions 150

date and time 170, 210, 222, 353

FIND 154

FIQTR 205

FIYR 203

FIYYQ 207

numeric 373

SLEEP 310

SQL 341, 353, 365, 373, 381

STRREP 110

variable length character 119

G

geography functions 313

geograpny functions

GIS_DISTANCE 318

GIS_DRIVE_ROUTE 320

GIS_GEOCODE_ADDR 322

GIS_GEOCODE_ADDR_CITY 323

GIS_GEOCODE_ADDR_POSTAL 325

GIS_GEOMETRY 326

GIS_IN_POLYGON 328

GIS_LINE 330

GIS_POINT 332

GIS_SERV_AREA_XY 337

GIS_SERVICE_AREA 335

GET_TOKEN function 66

GETENV function 301

GETTOK function 95

GETUSER function 307, 308

Index

396 Information Builders

GIS_DISTANCE function 318

GIS_DRIVE_ROUTE function 320

GIS_GEOCODE_ADDR function 322

GIS_GEOCODE_ADDR_CITY function 323

GIS_GEOCODE_ADDR_POSTAL function 325

GIS_GEOMETRY function 326

GIS_IN_POLYGON function 328

GIS_LINE function 330

GIS_POINT function 332

GIS_REVERSE_COORDINATE function 334

GIS_SERV_AREA_XY function 337

GIS_SERVICE_AREA function 335

H

HADD function 227

hash value 141, 142

HCNVRT function 229

HDATE function 230

HDIFF function 230, 231

HDTTM function 232

HEX function 383

HEXBYT function 257–259

HEXTYPE function 249

HGETC function 233, 234

HGETZ function 234

HHMMSS function 235

HHMS function 236

HINPUT function 237

HMIDNT function 238

HNAME function 239

holidays 171, 172, 174

holiday files 172, 174

HOUR function 357

HPART function 239, 240

HSETPT function 240

HTIME function 241, 242

HTMTOTS function 242

HYYWD function 243

I

IF function 384

IMOD function 273, 274

INITCAP function 67

INT function 276, 277, 370

INTEGER function 370

international date formats 187

ITONUM function 259

ITOPACK function 260

ITOZ function 261, 262

J

JOBNAME function 307

JULDAT function 218

K

KKFCUT function 137

L

lag values 58

Index

Functions Reference 397

LAST function 154, 155

LAST_NONBLANK function 67

LCASE function 345

LCWORD function 96, 98

LCWORD2 function 97, 98

LCWORD3 function 98

LEADZERO parameter 176

legacy date functions

DMY 215

legacy versions 210

MDY 215

YMD 215

LENGTH function 385

linear regression equation 45

FORECAST_LINEAR 45

LJUST function 99

LOCAS function

variable length 120

LOCASE function 99, 100

LOG function 277, 377

LOOKUP function 155, 156

LOWER function 69, 345

LOWERCASE function 345

LPAD function 69

LTRIM function 70, 345

M

MAX function 277, 278

MD5 hash value 141

MDY function 215

MICROSECOND function 358

MILLISECOND function 359

MIN function 277, 278

MINUTE function 359

MODIFY data source functions 154

MONTH function 360

N

NORMSDST function 278, 280, 281

NORMSINV function 278, 281, 282

NULLIF function 157

NULLIF operator 390

numbers 271

absolute value 271

calculating remainders 273

generating random 282, 283

greatest integer 276

logarithms 277

maximum 277

minimum 277

raising to a power 274

square root 283

standard normal deviation 278, 280, 281

validating packed fields 272

numeric functions 271, 373

ABS 271, 272

CHKPCK 272

DMOD 273, 274

EXP 274, 275

FMOD 273, 274

Index

398 Information Builders

numeric functions 271, 373

IMOD 273, 274

INT 276, 277

LOG 277

MAX 277, 278

MIN 277, 278

NORMSDST 278, 280, 281

NORMSINV 278, 281, 282

PRDNOR 282

PRDUNI 282

RDNORM 283

RDUNIF 283

SQRT 283, 284

numeric values 271

O

OVRLAY function 100

P

packed numbers, writing to an output file 265

PARAG function 101–103

PARTITION_AGGR 49

PARTITION_REF 58

PATTERN function 103

PATTERNS function 71

PCKOUT function 262

PHONETIC function 250

POSIT function 104, 105

POSITION function 72, 346

POWER function 378

PRDNOR function 282

PRDUNI function 282

prior values 58

process IDs 307

PTOA function 263

PUTDDREC 309

PUTENV function 301

Q

QUARTER function 361

R

RDNORM function 283

RDUNIF function 283

REGEX function 72

REPLACE function 74

retrieving environment variable values 305

REVERSE function 105

RJUST function 106

rolling calculations 49

RPAD function 75

RTRIM function 76, 347

S

SECOND function 360

SET parameters 171

BUSDAYS 171

DTSTRICT 225

HDAY 172, 174

LEADZERO 176

Index

Functions Reference 399

SFTDEL function 138

SFTINS function 139

simple moving average 29

FORECAST_MOVAVE 29

simplified character functions 63

simplified conversion functions 245

simplified date functions 159

simplified geography functions

GIS_REVERSE_COORDINATE 334

simplified system functions 299

single-byte characters 127, 130

SLEEP function 310

SMALLINT function 370

SOUNDEX function 106, 107

SPELLNM function 107, 108

SPLIT function 76

SQL functions 341, 353, 365, 373, 381

SQL operators 387

SQRT function 283, 284, 379

SQUEEZ function 108, 109

standard date and time functions 170

standard normal deviation 278, 280, 281

statistical functions 285

string replacement 110

STRIP function 109–111

STRREP function 110

SUBSTR function 111–113, 123, 347

variable length 123

SUBSTRING function 77, 347

substrings 94

extracting 94, 95, 111, 113, 123

finding 104

overlaying character strings 100

system functions 303

FEXERR 304

FGETENV 305

FPUTENV 305, 306

GETUSER 307, 308

JOBNAME 307

SYSVAR 311

SYSVAR function 311

T

TIME function 371

TIMESTAMP function 372

TO_INTEGER function 251

TO_NUMBER function 251

TODAY function 208

TOKEN function 78

TRIM function 113, 114, 349

TRIM_ function 79

TRIMV function 124

triple exponential smoothing 40

FORECAST_SEASONAL 40

TSTOPACK function 264

U

UCASE function 350

UFMT function 265

Index

400 Information Builders

UPCASE function 114, 115

UPPER function 80, 350

UPPERCASE function 350

user IDs 307

V

VALUE function 385

values 152

decoding 152

verifying 154

variable length character functions 119

W

WEEKDAY function 362

WEEKFIRST parameter 223

work days 171

business days 171

holidays 171, 172, 174

X

XMLDECOD function 115

XMLENCOD function 116

XTPACK function 265

Y

YEAR function 362

YM function 219

YMD function 215

Index

Functions Reference 401

Index

402 Information Builders

Feedback
Customer success is our top priority. Connect with us today!

Information Builders Technical Content Management team is comprised of many talented
individuals who work together to design and deliver quality technical documentation products.
Your feedback supports our ongoing efforts!

You can also preview new innovations to get an early look at new content products and
services. Your participation helps us create great experiences for every customer.

To send us feedback or make a connection, contact Sarah Buccellato, Technical Editor,
Technical Content Management at Sarah_Buccellato@ibi.com.

To request permission to repurpose copyrighted material, please contact Frances Gambino,
Vice President, Technical Content Management at Frances_Gambino@ibi.com.

Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Functions Reference
Release 7709

DN3502239.0219

	Contents
	Preface
	Conventions
	Related Publications
	Customer Support
	Information You Should Have
	User Feedback
	iWay Software Training and Professional Services

	1. Functions Overview
	Function Arguments
	Function Categories
	Character Chart for ASCII and EBCDIC

	2. Simplified Analytic Functions
	FORECAST_MOVAVE: Using a Simple Moving Average
	Syntax: How to Calculate a Simple Moving Average Column
	Example: Calculating a New Simple Moving Average Column
	Example: Displaying Original Field Values in a Simple Moving Average Column

	FORECAST_EXPAVE: Using Single Exponential Smoothing
	Syntax: How to Calculate a Single Exponential Smoothing Column
	Example: Calculating a Single Exponential Smoothing Column

	FORECAST_DOUBLEXP: Using Double Exponential Smoothing
	Syntax: How to Calculate a Double Exponential Smoothing Column
	Example: Calculating a Double Exponential Smoothing Column

	FORECAST_SEASONAL: Using Triple Exponential Smoothing
	Syntax: How to Calculate a Triple Exponential Smoothing Column
	Example: Calculating a Triple Exponential Smoothing Column

	FORECAST_LINEAR: Using a Linear Regression Equation
	Syntax: How to Calculate a Linear Regression Column
	Example: Calculating a New Linear Regression Field

	PARTITION_AGGR: Creating Rolling Calculations
	Syntax: How to Generate Rolling Calculations Using PARTITION_AGGR
	Example: Calculating a Rolling Average

	Reference: Usage Notes for PARTITION_AGGR

	PARTITION_REF: Using Prior Field Values in Calculations
	Syntax: How to Retrieve Prior Field Values for Use in a Calculation
	Example: Retrieving a Previous Record With PARTITION_REF

	Reference: Usage Notes for PARTITION_REF

	3. Simplified Character Functions
	CHAR_LENGTH: Returning the Length in Characters of a String
	Syntax: How to Return the Length of a String in Characters
	Example: Returning the Length of a String

	CONCAT: Concatenating Strings After Removing Trailing Blanks From the First
	Syntax: How to Concatenate Strings After Removing Trailing Blanks From the First
	Example: Concatenating Strings After Removing Blanks From the First

	DIGITS: Converting a Number to a Character String
	Syntax: How to Convert a Number to a Character String
	Example: Converting a Number to a Character String

	Reference: Usage Notes for DIGITS

	GET_TOKEN: Extracting a Token Based on a String of Delimiters
	Syntax: How to Extract a Token Based on a String of Delimiters
	Example: Extracting a Token Based on a String of Delimiters

	INITCAP: Capitalizing the First Letter of Each Word in a String
	Syntax: How to Capitalize the First Letter of Each Word in a String
	Example: Capitalizing the First Letter of Each Word in a String

	LAST_NONBLANK: Retrieving the Last Field Value That is Neither Blank nor Missing
	Syntax: How to Return the Last Value That is Neither Blank nor Missing
	Example: Retrieving the Last Non-Blank Value

	LOWER: Returning a String With All Letters Lowercase
	Syntax: How to Return a String With All Letters Lowercase
	Example: Converting a String to Lowercase

	LPAD: Left-Padding a Character String
	Syntax: How to Pad a Character String on the Left
	Example: Left-Padding a String

	Reference: Usage Notes for LPAD

	LTRIM: Removing Blanks From the Left End of a String
	Syntax: How to Remove Blanks From the Left End of a String
	Example: Removing Blanks From the Left End of a String

	PATTERNS: Returning a Pattern That Represents the Structure of the Input String
	Syntax: How to Return a String That Represents the Pattern Profile of the Input Argument
	Example: Returning a Pattern Representing an Input String

	POSITION: Returning the First Position of a Substring in a Source String
	Syntax: How to Return the First Position of a Substring in a Source String
	Example: Returning the First Position of a Substring

	REGEX: Matching a String to a Regular Expression
	Syntax: How to Match a String to a Regular Expression
	Example: Matching a String Against a Regular Expression

	REPLACE: Replacing a String
	Syntax: How to Replace all Instances of a String
	Example: Replacing a String
	Example: Replacing All Instances of a String

	RPAD: Right-Padding a Character String
	Syntax: How to Pad a Character String on the Right
	Example: Right-Padding a String

	Reference: Usage Notes for RPAD

	RTRIM: Removing Blanks From the Right End of a String
	Syntax: How to Remove Blanks From the Right End of a String
	Example: Removing Blanks From the Right End of a String

	SPLIT: Extracting an Element From a String
	Syntax: How to Extract an Element From a String
	Example: Extracting an Element From a String

	SUBSTRING: Extracting a Substring From a Source String
	Syntax: How to Extract a Substring From a Source String
	Example: Extracting a Substring From a Source String

	TOKEN: Extracting a Token From a String
	Syntax: How to Extract a Token From a String
	Example: Extracting a Token From a String

	TRIM_: Removing a Leading Character, Trailing Character, or Both From a String
	Syntax: How to Remove a Leading Character, Trailing Character, or Both From a String
	Example: Trimming a Character From a String

	UPPER: Returning a String With All Letters Uppercase
	Syntax: How to Return a String With All Letters Uppercase
	Example: Converting Letters to Uppercase

	4. Character Functions
	ARGLEN: Measuring the Length of a String
	Syntax: How to Measure the Length of a Character String
	Example: Measuring the Length of a Character String

	ASIS: Distinguishing Between Space and Zero
	Syntax: How to Distinguish Between a Space and a Zero
	Example: Distinguishing Between a Space and a Zero

	Reference: Usage Notes for ASIS

	BITSON: Determining If a Bit Is On or Off
	Syntax: How to Determine If a Bit Is On or Off
	Example: Evaluating a Bit in a Field

	BITVAL: Evaluating a Bit String as an Integer
	Syntax: How to Evaluate a Bit String
	Example: Evaluating a Bit String

	BYTVAL: Translating a Character to Decimal
	Syntax: How to Translate a Character
	Example: Translating the First Character of a Field

	CHKFMT: Checking the Format of a String
	Syntax: How to Check the Format of a Character String
	Example: Checking the Format of a Field

	CHKNUM: Checking a String for Numeric Format
	Syntax: How to Check the Format of a Character String
	Example: Checking a String for Numeric Format

	CTRAN: Translating One Character to Another
	Syntax: How to Translate One Character to Another
	Example: Translating Spaces to Underscores on an ASCII Platform

	CTRFLD: Centering a Character String
	Syntax: How to Center a Character String
	Example: Centering a Field

	EDIT: Extracting or Adding Characters
	Syntax: How to Extract or Add Characters
	Example: Extracting Characters

	GETTOK: Extracting a Substring (Token)
	Syntax: How to Extract a Substring (Token)
	Example: Extracting a Token

	LCWORD: Converting a String to Mixed-Case
	Syntax: How to Convert a Character String to Mixed-Case
	Example: Converting a Character String to Mixed-Case

	LCWORD2: Converting a String to Mixed-Case
	Syntax: How to Convert a Character String to Mixed-Case
	Example: Converting a Character String to Mixed-Case

	LCWORD3: Converting a String to Mixed-Case
	Syntax: How to Convert a Character String to Mixed-Case Using LCWORD3
	Example: Converting a Character String to Mixed-Case Using LCWORD3

	LJUST: Left-Justifying a String
	Syntax: How to Left-Justify a Character String
	Example: Left-Justifying a String

	LOCASE: Converting Text to Lowercase
	Syntax: How to Convert Text to Lowercase
	Example: Converting a String to Lowercase

	OVRLAY: Overlaying a Character String
	Syntax: How to Overlay a Character String
	Example: Replacing Characters in a Character String

	PARAG: Dividing Text Into Smaller Lines
	Syntax: How to Divide Text Into Smaller Lines
	Example: Dividing Text Into Smaller Lines

	PATTERN: Generating a Pattern From a String
	Syntax: How to Generate a Pattern From an Input String
	Example: Producing a Pattern From Alphanumeric Data

	POSIT: Finding the Beginning of a Substring
	Syntax: How to Find the Beginning of a Substring
	Example: Finding the Position of a Letter

	REVERSE: Reversing the Characters in a String
	Syntax: How to Reverse the Characters in a String
	Example: Reversing the Characters in a String

	RJUST: Right-Justifying a Character String
	Syntax: How to Right-Justify a Character String
	Example: Right-Justifying a String

	SOUNDEX: Comparing Character Strings Phonetically
	Syntax: How to Compare Character Strings Phonetically
	Example: Comparing Character Strings Phonetically

	SPELLNM: Spelling Out a Dollar Amount
	Syntax: How to Spell Out a Dollar Amount
	Example: Spelling Out a Dollar Amount

	SQUEEZ: Reducing Multiple Spaces to a Single Space
	Syntax: How to Reduce Multiple Spaces to a Single Space
	Example: Reducing Multiple Spaces to a Single Space

	STRIP: Removing a Character From a String
	Syntax: How to Remove a Character From a String
	Example: Removing Occurrences of a Character From a String

	STRREP: Replacing Character Strings
	Syntax: How to Replace Character Strings
	Reference: Usage Note for STRREP Function
	Example: Replacing Commas and Dollar Signs

	SUBSTR: Extracting a Substring
	Syntax: How to Extract a Substring
	Example: Extracting a String

	TRIM: Removing Leading and Trailing Occurrences
	Syntax: How to Remove Leading and Trailing Occurrences
	Example: Removing Leading Occurrences

	UPCASE: Converting Text to Uppercase
	Syntax: How to Convert Text to Uppercase
	Example: Converting a Mixed-Case String to Uppercase

	XMLDECOD: Decoding XML-Encoded Characters
	Syntax: How to Decode XML-Encoded Characters
	Example: Decoding XML-Encoded Characters

	XMLENCOD: XML-Encoding Characters
	Syntax: How to XML-Encode Characters
	Example: XML-Encoding Characters

	5. Variable Length Character Functions
	Overview
	LENV: Returning the Length of an Alphanumeric Field
	Syntax: How to Find the Length of an Alphanumeric Field
	Example: Finding the Length of an AnV Field

	LOCASV: Creating a Variable Length Lowercase String
	Syntax: How to Create a Variable Length Lowercase String
	Example: Creating a Variable Length Lowercase String

	POSITV: Finding the Beginning of a Variable Length Substring
	Syntax: How to Find the Beginning of a Variable Length Substring
	Example: Finding the Starting Position of a Variable Length Pattern

	SUBSTV: Extracting a Variable Length Substring
	Syntax: How to Extract a Variable Length Substring
	Example: Extracting a Variable Length Substring

	TRIMV: Removing Characters From a String
	Syntax: How to Remove Characters From a String
	Example: Creating an AnV Field by Removing Trailing Blanks

	UPCASV: Creating a Variable Length Uppercase String
	Syntax: How to Create a Variable Length Uppercase String
	Example: Creating a Variable Length Uppercase String

	6. Character Functions for DBCS Code Pages
	DCTRAN: Translating A Single-Byte or Double-Byte Character to Another
	Syntax: How to Translate a Single-Byte or Double-Byte Character to Another
	Example: Using DCTRAN to Translate Double-Byte Characters

	DEDIT: Extracting or Adding Characters
	Syntax: How to Extract or Add DBCS or SBCS Characters
	Example: Adding and Extracting DBCS Characters

	DSTRIP: Removing a Single-Byte or Double-Byte Character From a String
	Syntax: How to Remove a Single-Byte or Double-Byte Character From a String
	Example: Removing a Double-Byte Character From a String

	DSUBSTR: Extracting a Substring
	Syntax: How to Extract a Substring
	Example: Extracting a Substring

	JPTRANS: Converting Japanese Specific Characters
	Syntax: How to Convert Japanese Specific Characters
	Example: Using the JPTRANS Function

	Reference: Usage Notes for the JPTRANS Function

	KKFCUT: Truncating a String
	Syntax: How to Truncate a String
	Example: Truncating a String

	SFTDEL: Deleting the Shift Code From DBCS Data
	Syntax: How to Delete the Shift Code From DBCS Data
	Example: Deleting the Shift Code From a String

	SFTINS: Inserting the Shift Code Into DBCS Data
	Syntax: How to Insert the Shift Code Into DBCS Data
	Example: SFTINS: Inserting the Shift Code Into a String

	7. Data Source and Decoding Functions
	CHECKMD5: Computing an MD5 Hash Check Value
	Syntax: How to Compute an MD5 Hash Check Value
	Example: Calculating an MD5 Hash Check Value

	CHECKSUM: Computing a Hash Sum
	Syntax: How to Compute a CHECKSUM Hash Value
	Example: Calculating a CHECKSUM Hash Value

	COALESCE: Returning the First Non-Missing Value
	Syntax: How to Return the First Non-Missing Value
	Example: Returning the First Non-Missing Value

	DB_EXPR: Inserting an SQL Expression Into a Request
	Syntax: How to Insert an SQL Expression Into a Request With DB_EXPR
	Reference: Usage Notes for the DB_EXPR Function
	Example: Inserting the DB2 BIGINT and CHAR Functions Into a TABLE Request

	DB_INFILE: Testing Values Against a File or an SQL Subquery
	Syntax: How to Compare Source and Target Field Values With DB_INFILE
	Reference: Usage Notes for DB_INFILE
	Example: Comparing Source and Target Values Using an SQL Subquery File
	Example: Comparing Source and Target Values Using a Sequential File

	Syntax: How to Control DB_INFILE Optimization

	DB_LOOKUP: Retrieving Data Source Values
	Syntax: How to Retrieve a Value From a Lookup Data Source
	Reference: Usage Notes for DB_LOOKUP
	Example: Retrieving a Value From a LOOKUP Table

	DECODE: Decoding Values
	Syntax: How to Supply Values in the Function
	Example: Supplying Values Using the DECODE Function

	FIND: Verifying the Existence of a Value in a Data Source
	Syntax: How to Verify the Existence of a Value in a Data Source
	Example: Verifying the Existence of a Value in an Indexed Field

	LAST: Retrieving the Preceding Value
	Syntax: How to Retrieve the Preceding Value
	Example: Retrieving the Preceding Value

	LOOKUP: Retrieving a Value From a Cross-referenced Data Source
	Syntax: How to Retrieve a Value From a Cross-referenced Data Source
	Example: Using the LOOKUP Function

	NULLIF: Returning a Null Value When Parameters Are Equal
	Syntax: How to Return a Null Value for Equal Parameters
	Example: Testing for Equal Parameters

	8. Simplified Date and Date-Time Functions
	DT_CURRENT_DATE: Returning the Current Date
	Syntax: How to Return the Current Date
	Example: Returning the Current Date

	DT_CURRENT_DATETIME: Returning the Current Date and Time
	Syntax: How to Return the Current Date and Time
	Example: Returning the Current Date and Time

	DT_CURRENT_TIME: Returning the Current Time
	Syntax: How to Return the Current Time
	Example: Returning the Current Time

	DTADD: Incrementing a Date or Date-Time Component
	Syntax: How to Increment a Date or Date-Time Component
	Example: Incrementing the DAY Component of a Date

	Reference: Usage Notes for DTADD

	DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values
	Syntax: How to Return the Number of Component Boundaries
	Example: Returning the Number of Years Between Two Dates

	DTIME: Extracting Time Components From a Date-Time Value
	Syntax: How to Extract a Time Component From a Date-Time Value
	Example: Extracting Time Components

	DTPART: Returning a Date or Date-Time Component in Integer Format
	Syntax: How to Return a Date or Date-Time Component in Integer Format
	Example: Extracting the Quarter Component as an Integer

	DTRUNC: Returning the Start of a Date Period for a Given Date
	Syntax: How to Return the First or Last Date of a Date Period
	Example: Returning the First Date in a Date Period
	Example: Using the Start of Week Parameter for DTRUNC
	Example: Returning the Date of the Last Day of a Week

	9. Date Functions
	Overview of Date Functions
	Using Standard Date Functions
	Specifying Work Days
	Specifying Business Days
	Syntax: How to Set Business Days
	Example: Setting Business Days to Reflect Your Work Week

	Syntax: How to View the Current Setting of Business Days

	Specifying Holidays
	Reference: Rules for Creating a Holiday File
	Procedure: How to Create a Holiday File
	Syntax: How to Select a Holiday File
	Example: Creating and Selecting a Holiday File

	Syntax: How to FILEDEF or DYNAM the Holiday File
	Example: Defining a Holiday File
	Example: Allocating the Holiday File to a Sequential File on z/OS Under PDS Deployment
	Example: Allocating the Holiday File to a PDS Member on z/OS Under PDS Deployment

	Enabling Leading Zeros For Date and Time Functions in Dialogue Manager
	Syntax: How to Set the Display of Leading Zeros
	Example: Displaying Leading Zeros

	DATEADD: Adding or Subtracting a Date Unit to or From a Date
	Syntax: How to Add or Subtract a Date Unit to or From a Date
	Example: Adding or Subtracting a Date Unit to or From a Date

	DATECVT: Converting the Format of a Date
	Syntax: How to Convert a Date Format
	Example: Converting the Format of a Date

	DATEDIF: Finding the Difference Between Two Dates
	Syntax: How to Find the Difference Between Two Dates
	Example: Finding the Difference Between Two Dates

	DATEMOV: Moving a Date to a Significant Point
	Syntax: How to Move a Date to a Significant Point
	Example: Moving a Date to a Significant Point
	Example: Returning the Next Business Day
	Example: Using a DEFINE FUNCTION to Move a Date to the Beginning of the Week

	DATETRAN: Formatting Dates in International Formats
	Syntax: How to Format Dates in International Formats
	Reference: Usage Notes for the DATETRAN Function
	Example: Using the DATETRAN Function

	FIYR: Obtaining the Financial Year
	Syntax: How to Obtain the Financial Year
	Example: Obtaining the Financial Year

	FIQTR: Obtaining the Financial Quarter
	Syntax: How to Obtain the Financial Quarter
	Example: Obtaining the Financial Quarter

	FIYYQ: Converting a Calendar Date to a Financial Date
	Syntax: How to Convert a Calendar Date to a Financial Date
	Example: Converting a Calendar Date to a Financial Date

	TODAY: Returning the Current Date
	Syntax: How to Retrieve the Current Date
	Example: Retrieving the Current Date

	Using Legacy Date Functions
	Using Old Versions of Legacy Date Functions

	AYMD: Adding or Subtracting Days
	Syntax: How to Add or Subtract Days to or From a Date
	Example: Adding Days to a Date

	CHGDAT: Changing How a Date String Displays
	Reference: Short to Long Conversion
	Syntax: How to Change the Date Display String
	Example: Converting the Date Display From YMD to MDYYX

	DA Functions: Converting a Legacy Date to an Integer
	Syntax: How to Convert a Date to an Integer
	Example: Converting Dates and Calculating the Difference Between Them

	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	Syntax: How to Calculate the Difference Between Two Dates
	Example: Calculating the Number of Days Between Two Dates

	DOWK and DOWKL: Finding the Day of the Week
	Syntax: How to Find the Day of the Week
	Example: Finding the Day of the Week

	DT Functions: Converting an Integer to a Date
	Syntax: How to Convert an Integer to a Date
	Example: Converting an Integer to a Date

	GREGDT: Converting From Julian to Gregorian Format
	Syntax: How to Convert From Julian to Gregorian Format
	Example: Converting From Julian to Gregorian Format

	JULDAT: Converting From Gregorian to Julian Format
	Syntax: How to Convert From Gregorian to Julian Format
	Example: Converting From Gregorian to Julian Format

	YM: Calculating Elapsed Months
	Syntax: How to Calculate Elapsed Months
	Example: Calculating Elapsed Months

	10. Date-Time Functions
	Using Date-Time Functions
	Date-Time Parameters
	Specifying the Order of Date Components
	Syntax: How to Specify the Order of Date Components in a Date-Time Field

	Specifying the First Day of the Week for Use in Date-Time Functions
	Syntax: How to Set a Day as the Start of the Week
	Example: Setting Sunday as the Start of the Week

	Syntax: How to View the Current Setting of WEEKFIRST

	Controlling Processing of Date-Time Values
	Syntax: How to Enable Strict Processing of Date-Time Values

	Supplying Arguments for Date-Time Functions
	Reference: Arguments for Use With Date and Time Functions

	HADD: Incrementing a Date-Time Value
	Syntax: How to Increment a Date-Time Value
	Example: Incrementing a Date-Time Value
	Example: Converting Unix (Epoch) Time to a Date-Time Value

	HCNVRT: Converting a Date-Time Value to Alphanumeric Format
	Syntax: How to Convert a Date-Time Value to Alphanumeric Format
	Example: Converting a Date-Time Value to Alphanumeric Format

	HDATE: Converting the Date Portion of a Date-Time Value to a Date Format
	Syntax: How to Convert the Date Portion of a Date-Time Value to a Date Format
	Example: Converting the Date Portion of a Timestamp Value to a Date Format

	HDIFF: Finding the Number of Units Between Two Date-Time Values
	Reference: Usage Notes for HDIFF
	Syntax: How to Find the Number of Units Between Two Date-Time Values
	Example: Finding the Number of Units Between Two Date-Time Values

	HDTTM: Converting a Date Value to a Date-Time Value
	Syntax: How to Convert a Date Value to a Date-Time Value
	Example: Converting a Date to a Timestamp

	HGETC: Storing the Current Local Date and Time in a Date-Time Field
	Syntax: How to Store the Current Local Date and Time in a Date-Time Field
	Example: Storing the Current Date and Time as a Timestamp

	HGETZ: Storing the Current Coordinated Universal Time in a Date-Time Field
	Syntax: How to Store the Current Universal Date and Time in a Date-Time Field
	Example: Storing the Current Universal Date and Time as a Timestamp
	Example: Calculating the Time Zone

	HHMMSS: Retrieving the Current Time
	Syntax: How to Retrieve the Current Time
	Example: Retrieving the Current Time

	HHMS: Converting a Date-Time Value to a Time Value
	Syntax: How to Convert a Date-Time Value to a Time Value
	Example: Converting a Date-Time Value to a Time value

	HINPUT: Converting an Alphanumeric String to a Date-Time Value
	Syntax: How to Convert an Alphanumeric String to a Date-Time Value
	Example: Converting an Alphanumeric String to a Timestamp

	HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight
	Syntax: How to Set the Time Portion of a Date-Time Value to Midnight
	Example: Setting the Time Portion of a Timestamp to Midnight

	HNAME: Retrieving a Date-Time Component in Alphanumeric Format
	Syntax: How to Retrieve a Date-Time Component in Alphanumeric Format
	Example: Retrieving a Timestamp Date or Time Component as an Alphanumeric Value
	Example: Retrieving a Timestamp Date or Time Component as an Alphanumeric Value

	HPART: Retrieving a Date-Time Component as a Numeric Value
	Syntax: How to Retrieve a Date-Time Component in Numeric Format
	Example: Retrieving a Timestamp Date or Time Component as Numeric Value

	HSETPT: Inserting a Component Into a Date-Time Value
	Syntax: How to Insert a Component Into a Date-Time Value
	Example: Inserting a Component Into a Date-Time Value

	HTIME: Converting the Time Portion of a Date-Time Value to a Number
	Syntax: How to Convert the Time Portion of a Date-Time Value to a Number
	Example: Converting the Time Portion of a Date-Time Value to a Number

	HTMTOTS: Converting a Time to a Timestamp
	Syntax: How to Convert a Time to a Timestamp
	Example: Converting a Time to a Timestamp

	HYYWD: Returning the Year and Week Number From a Date-Time Value
	Syntax: How to Return the Year and Week Number From a Date-Time Value
	Example: Returning the Year and Week Number From a Date-time Value

	11. Simplified Conversion Functions
	CHAR: Returning a Character Based on a Numeric Code
	Syntax: How to Return a Character Based on a Numeric Code
	Example: Using the CHAR Function to Insert Control Characters Into a String

	COMPACTFORMAT: Displaying Numbers in an Abbreviated Format
	Syntax: How to Display Numbers in an Abbreviated Format
	Example: Displaying Numbers in an Abbreviated Format

	CTRLCHAR: Returning a Non-Printable Control Character
	Syntax: How to Return a Non-Printable Control Character
	Example: Using the CTRLCHAR Function to Insert Control Characters Into a String

	FPRINT: Displaying a Value in a Specified Format
	Syntax: How to Display a Value in a Specified Format
	Example: Displaying a Value in a Specified Format

	HEXTYPE: Returning the Hexadecimal View of an Input Value
	Syntax: How to Returning the Hexadecimal View of an Input Value
	Example: Returning a Hexadecimal View

	PHONETIC: Returning a Phonetic Key for a String
	Syntax: How to Return a Phonetic Key
	Example: Generating a Phonetic Key

	TO_INTEGER: Converting a Character String to an Integer Value
	Syntax: How to Convert a Character String to an Integer
	Example: Converting a Character String to an Integer Value

	TO_NUMBER: Converting a Character String to a Numeric Value
	Syntax: How to Convert a Character String to a Number
	Example: Converting a Character String to a Number

	12. Format Conversion Functions
	ATODBL: Converting an Alphanumeric String to Double-Precision Format
	Syntax: How to Convert an Alphanumeric String to Double-Precision Format
	Example: Converting an Alphanumeric Field to Double-Precision Format

	EDIT: Converting the Format of a Field
	Syntax: How to Convert the Format of a Field
	Example: Converting From Numeric to Alphanumeric Format

	FPRINT: Converting Fields to Alphanumeric Format
	Syntax: How to Convert Fields Using FPRINT
	Reference: Usage Notes for the FPRINT Function
	Example: Converting a Numeric Field to Alphanumeric Format

	FTOA: Converting a Number to Alphanumeric Format
	Syntax: How to Convert a Number to Alphanumeric Format
	Example: Converting From Numeric to Alphanumeric Format

	HEXBYT: Converting a Decimal Integer to a Character
	Syntax: How to Convert a Decimal Integer to a Character
	Example: Converting a Decimal Integer to a Character in ASCII and Unicode
	Example: Converting a Decimal Integer to a Character

	ITONUM: Converting a Large Number to Double-Precision Format
	Syntax: How to Convert a Large Binary Integer to Double-Precision Format
	Example: Converting a Large Binary Integer to Double-Precision Format

	ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format
	Syntax: How to Convert a Large Binary Integer to Packed-Decimal Format
	Example: Converting a Large Binary Integer to Packed-Decimal Format

	ITOZ: Converting a Number to Zoned Format
	Syntax: How to Convert a Number to Zoned Format
	Example: Converting a Number to Zoned Format

	PCKOUT: Writing a Packed Number of Variable Length
	Syntax: How to Write a Packed Number of Variable Length
	Example: Writing a Packed Number of Variable Length

	PTOA: Converting a Packed-Decimal Number to Alphanumeric Format
	Syntax: How to Convert a Packed-Decimal Number to Alphanumeric Format
	Example: Converting From Packed to Alphanumeric Format

	TSTOPACK: Converting an MSSQL or Sybase Timestamp Column to Packed Decimal
	Syntax: How to Convert an MSSQL or Sybase Timestamp Column to Packed Decimal
	Example: Converting a Microsoft SQL Server Timestamp Column to Packed Decimal

	UFMT: Converting an Alphanumeric String to Hexadecimal
	Syntax: How to Convert an Alphanumeric String to Hexadecimal
	Example: Converting an Alphanumeric String to Hexadecimal

	XTPACK: Writing a Packed Number With Up to 31 Significant Digits to an Output File
	Syntax: How to Store Packed Values in an Alphanumeric Field
	Example: Writing a Long Packed Number to an Output File

	13. Simplified Numeric Functions
	CEILING: Returning the Smallest Integer Value Greater Than or Equal to a Value
	Syntax: How to Return the Smallest Integer Greater Than or Equal to a Number
	Example: Returning the Ceiling of a Number

	EXPONENT: Raising e to a Power
	Syntax: How to Raise the Constant e to a Power
	Example: Raising e to a Power

	FLOOR: Returning the Largest Integer Less Than or Equal to a Value
	Syntax: How to Return the Largest Integer Less Than or Equal to a Number
	Example: Returning the Floor of a Number

	MOD: Calculating the Remainder From a Division
	Syntax: How to Calculate the Remainder From a Division
	Example: Calculating the Remainder From a Division

	POWER: Raising a Value to a Power
	Syntax: How to Raise a Value to a Power
	Example: Raising a Base Value to a Power

	14. Numeric Functions
	ABS: Calculating Absolute Value
	Syntax: How to Calculate Absolute Value
	Example: Calculating Absolute Value

	CHKPCK: Validating a Packed Field
	Syntax: How to Validate a Packed Field
	Example: Validating Packed Data

	DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
	Syntax: How to Calculate the Remainder From a Division
	Example: Calculating the Remainder From a Division

	EXP: Raising e to the Nth Power
	Syntax: How to Raise e to the Nth Power
	Example: Raising e to the Nth Power

	EXPN: Evaluating a Number in Scientific Notation
	Syntax: How to Evaluate a Number in Scientific Notation
	Example: Evaluating a Number in Scientific Notation

	INT: Finding the Greatest Integer
	Syntax: How to Find the Greatest Integer
	Example: Finding the Greatest Integer

	LOG: Calculating the Natural Logarithm
	Syntax: How to Calculate the Natural Logarithm
	Example: Calculating the Natural Logarithm

	MAX and MIN: Finding the Maximum or Minimum Value
	Syntax: How to Find the Maximum or Minimum Value
	Example: Determining the Minimum Value

	NORMSDST and NORMSINV: Calculating Normal Distributions
	NORMSDST: Calculating Standard Cumulative Normal Distribution
	Reference: Characteristics of the Normal Distribution
	Syntax: How to Calculate the Cumulative Standard Normal Distribution Function
	Example: Using the NORMSDST Function

	NORMSINV: Calculating Inverse Cumulative Normal Distribution
	Syntax: How to Calculate the Inverse Cumulative Standard Normal Distribution Function
	Example: Using the NORMSINV Function

	PRDNOR and PRDUNI: Generating Reproducible Random Numbers
	Syntax: How to Generate Reproducible Random Numbers
	Example: Generating Reproducible Random Numbers

	RDNORM and RDUNIF: Generating Random Numbers
	Syntax: How to Generate Random Numbers
	Example: Generating Random Numbers

	SQRT: Calculating the Square Root
	Syntax: How to Calculate the Square Root
	Example: Calculating the Square Root

	15. Simplified Statistical Functions
	Syntax: How to Specify the Partition Size for Simplified Statistical Functions
	CORRELATION: Calculating the Degree of Correlation Between Two Sets of Data
	Syntax: How to Calculate the Correlation Coefficient Between Two Fields
	Example: Calculating a Correlation

	KMEANS_CLUSTER: Partitioning Observations Into Clusters Based on the Nearest Mean Value
	Syntax: How to Partition Observations Into Clusters Based on the Nearest Mean Value
	Example: Partitioning Data Values Into Clusters

	MULTIREGRESS: Creating a Multivariate Linear Regression Column
	Syntax: How to Create a Multivariate Linear Regression Column
	Example: Creating a Multivariate Linear Regression Column

	RSERVE: Running an R Script
	Syntax: How to Run an R Script
	Example: Using RSERVE to Run an R Script

	STDDEV: Calculating the Standard Deviation for a Set of Data Values
	Reference: Calculate the Standard Deviation in a Set of Data
	Example: Calculating a Standard Deviation

	16. Simplified System Functions
	EDAPRINT: Inserting a Custom Message in the EDAPRINT Log File
	Syntax: How to Insert a Message in the EDAPRINT Log File
	Example: Inserting a Custom Message in the EDAPRINT Log File

	ENCRYPT: Encrypting a Password
	Syntax: How to Encrypt a Password
	Example: Encrypting a Password

	GETENV: Retrieving the Value of an Environment Variable
	Syntax: How to Retrieve the Value of an Environment Variable
	Example: Retrieving the Value of an Environment Variable

	PUTENV: Assigning a Value to an Environment Variable
	Syntax: How to Assign a Value to an Environment Variable
	Example: Assigning a Value to the UNIX PS1 Variable

	17. System Functions
	CLSDDREC: Closing All Files Opened by the PUTDDREC Function
	Syntax: How to Close All Files Opened by the PUTDDREC Function
	Example: Closing Files Opened by the PUTDDREC Function

	FEXERR: Retrieving an Error Message
	Syntax: How to Retrieve an Error Message
	Example: Retrieving an Error Message

	FGETENV: Retrieving the Value of an Environment Variable
	Syntax: How to Retrieve the Value of an Environment Variable

	FPUTENV: Assigning a Value to an Environment Variable
	Syntax: How to Assign a Value to an Environment Variable
	Example: Assigning a Value to an Environment Variable

	GETUSER: Retrieving a User ID
	Syntax: How to Retrieve a User ID
	Example: Retrieving a User ID

	JOBNAME: Retrieving the Current Process Identification String
	Syntax: How to Retrieve the Current Process Identification String
	Example: Retrieving a Process Identification String

	PUTDDREC: Writing a Character String as a Record in a Sequential File
	Syntax: How to Write a Character String as a Record in a Sequential File
	Example: Writing a Character String as a Record in a Sequential File

	SLEEP: Suspending Execution for a Given Number of Seconds
	Syntax: How to Suspend Execution for a Specified Number of Seconds
	Example: Suspending Execution for Four Seconds

	SYSVAR: Retrieving the Value of a z/OS System Variable
	Syntax: How to Retrieve the Value of a z/OS System Variable
	Example: Retrieving the Value of the z/OS SYSNAME Variable

	18. Simplified Geography Functions
	Sample Geography Files
	GIS_DISTANCE: Calculating the Distance Between Geometry Points
	Syntax: How to Calculate the Distance Between Geometry Points
	Example: Calculating the Distance Between Two Geometry Points

	GIS_DRIVE_ROUTE: Calculating the Driving Directions Between Geometry Points
	Syntax: How to Calculate the Drive Route Between Geometry Points
	Example: Calculating the Drive Route Between Two Geometry Points

	GIS_GEOCODE_ADDR: Geocoding a Complete Address
	Syntax: How to Geocode a Complete Address
	Example: Geocoding a Complete Address

	GIS_GEOCODE_ADDR_CITY: Geocoding an Address Line, City, and State
	Syntax: How to Geocode an Address Line, City, and State
	Example: Geocoding a Street Address, City, and State

	GIS_GEOCODE_ADDR_POSTAL: Geocoding an Address Line and Postal Code
	Syntax: How to Geocode an Address Line and Postal Code
	Example: Geocoding a Street Address and Postal Code

	GIS_GEOMETRY: Building a JSON Geometry Object
	Syntax: How to Build a JSON Geometry Object
	Example: Building a JSON Geometry Object

	GIS_IN_POLYGON: Determining if a Point is in a Complex Polygon
	Syntax: How to Determine if a Point is in a Complex Polygon
	Example: Determining if a Point is in a Polygon

	GIS_LINE: Building a JSON Line
	Syntax: How to Build a JSON Line
	Example: Building a JSON Line

	GIS_POINT: Building a Geometry Point
	Syntax: How to Build a Geometry Point
	Example: Building a Geometry Point

	GIS_REVERSE_COORDINATE: Returning a Geographic Component
	Syntax: How to Return a Geographic Component
	Example: Returning Geographic Components Associated With Coordinates

	GIS_SERVICE_AREA: Calculating a Geometry Area Around a Given Point
	Syntax: How to Calculate a Geometry Area Around a Point
	Example: Calculating a Service Area Around a Geometry Point

	GIS_SERV_AREA_XY: Calculating a Service Area Around a Given Coordinate
	Syntax: How to Calculate a Geometry Area Around a Coordinate
	Example: Calculating a Service Area Around a Coordinate

	19. SQL Character Functions
	CHAR_LENGTH: Finding the Length of a Character String
	Syntax: How to Find the Length of a Character String
	Example: Finding the Length of a Character String

	CONCAT: Concatenating Two Character Strings
	Syntax: How to Concatenate Two Character Strings
	Example: Concatenating Two Character Strings

	DIGITS: Converting a Numeric Value to a Character String
	Syntax: How to Convert a Numeric Value to a Character String
	Example: Converting a Numeric Value to a Character String

	EDIT: Editing a Value According to a Format (SQL)
	Syntax: How to Edit a Value According to a Format
	Example: Editing a Value According to a Format

	LCASE: Converting a Character String to Lowercase
	Syntax: How to Convert a Character String to Lowercase
	Example: Converting a Character String to Lowercase

	LTRIM: Removing Leading Spaces
	Syntax: How to Remove Leading Spaces
	Example: Removing Leading Spaces

	POSITION: Finding the Position of a Substring
	Syntax: How to Find the Position of a Substring
	Example: Finding the Position of a Substring

	RTRIM: Removing Trailing Spaces
	Syntax: How to Remove Trailing Spaces
	Example: Removing Trailing Spaces

	SUBSTR: Extracting a Substring From a String Value (SQL)
	Syntax: How to Extract a Substring From a String Value
	Example: Extracting a Substring From a String Value

	TRIM: Removing Leading or Trailing Characters (SQL)
	Syntax: How to Remove Leading or Trailing Characters
	Example: Removing Leading or Trailing Characters

	UCASE: Converting a Character String to Uppercase
	Syntax: How to Convert a Character String to Uppercase
	Example: Converting a Character String to Uppercase

	VARGRAPHIC: Converting to Double-byte Character Data
	Syntax: How to Convert to the Double-byte Character Format

	20. SQL Date and Time Functions
	CURRENT_DATE: Obtaining the Date
	Syntax: How to Obtain the Current Date
	Example: Obtaining the Current Date

	CURRENT_TIME: Obtaining the Time
	Syntax: How to Obtain the Current Time
	Example: Obtaining the Current Time

	CURRENT_TIMESTAMP: Obtaining the Timestamp (Date/Time)
	Syntax: How to Obtain the Current Timestamp
	Example: Obtaining the Current Timestamp

	DAY: Obtaining the Day of the Month From a Date/Timestamp
	Syntax: How to Obtain the Day of the Month From a Date or Timestamp
	Example: Obtaining the Day of the Month From a Date or Timestamp

	DAYS: Obtaining the Number of Days Since January 1, 0001
	Syntax: How to Obtain the Number of Days Since January 1, 1900
	Example: Obtaining the Number of Days Since January 1, 1900

	EXTRACT: Obtaining a Datetime Field From Date/Time/Timestamp
	Syntax: How to Obtain a Datetime Field From a Date, Time, or Timestamp
	Example: Obtaining a Datetime Field From a Date, Time, or Timestamp

	HOUR: Obtaining the Hour From Time/Timestamp
	Syntax: How to Obtain the Hour From a Time or Timestamp
	Example: Obtaining the Hour From a Time or Timestamp

	MICROSECOND: Obtaining Microseconds From Time/Timestamp
	Syntax: How to Obtain the Number of Microseconds From a Time or Timestamp
	Example: Obtaining the Number of Microseconds From a Time or Timestamp

	MILLISECOND: Obtaining Milliseconds From Time/Timestamp
	Syntax: How to Obtain the Number of Milliseconds From a Time or Timestamp
	Example: Obtaining the Number of Milliseconds From a Time or Timestamp

	MINUTE: Obtaining the Minute From Time/Timestamp
	Syntax: How to Obtain the Minute From a Time or Timestamp
	Example: Obtaining the Minute From a Time or Timestamp

	MONTH: Obtaining the Month From Date/Timestamp
	Syntax: How to Obtain the Month From a Date or Timestamp
	Example: Obtaining the Month From a Date or Timestamp

	SECOND: Obtaining the Second Field From Time/Timestamp
	Syntax: How to Obtain the Second Field From a Time or Timestamp
	Example: Obtaining the Second Field From a Time or Timestamp

	QUARTER: Returning the Quarter of the Year
	Syntax: How to Return the Quarter of the Year
	Example: Returning the Quarter of the Year

	WEEKDAY: Returning the Day of the Week
	Syntax: How to Return the Day of the Week
	Example: Returning the Day of the Week

	YEAR: Obtaining the Year From a Date or Timestamp
	Syntax: How to Obtain the Year From a Date or Timestamp
	Example: Obtaining the Year From a Date or Timestamp

	21. SQL Data Type Conversion Functions
	CAST: Converting to a Specific Data Type
	Syntax: How to Convert to a Specific Data Type
	Example: Converting to a Specific Data Type

	CHAR: Converting to a Character String
	Syntax: How to Convert to a Character String
	Example: Converting to a Character String

	CHAR: Converting to a Standard Date-Time Format
	Syntax: How to Convert a Date, Time, or Timestamp Value to a Standard Format
	Example: Converting Date and Time Values to Standard Formats

	DATE: Converting to a Date
	Syntax: How to Convert to a Date
	Example: Converting to a Date

	DECIMAL: Converting to Decimal Format
	Syntax: How to Convert to the Decimal Format
	Example: Converting to Decimal Format

	FLOAT: Converting to Floating Point Format
	Syntax: How to Convert to the Floating Point Format
	Example: Converting to Floating Point Format

	INT: Converting to an Integer
	Syntax: How to Convert to an Integer
	Example: Converting to an Integer

	SMALLINT: Converting to a Small Integer
	Syntax: How to Convert to a Small Integer
	Example: Converting to a Small Integer

	TIME: Converting to a Time
	Syntax: How to Convert to a Time
	Example: Converting to a Time

	TIMESTAMP: Converting to a Timestamp
	Syntax: How to Convert to a Timestamp
	Example: Converting to a Timestamp

	22. SQL Numeric Functions
	ABS: Returning an Absolute Value (SQL)
	Syntax: How to Return an Absolute Value
	Example: Returning an Absolute Value

	CEIL: Returning the Smallest Integer Greater Than or Equal to a Value
	Syntax: How to Return the Smallest Integer Greater Than or Equal to a Value
	Example: Returning an Integer Greater Than or Equal to a Value

	FLOOR: Returning the Largest Integer Less Than or Equal to a Value (SQL)
	Syntax: How to Return the Largest Integer Less Than or Equal to a Value
	Example: Returning an Integer Less Than or Equal to a Value

	GREATEST: Returning the Largest Value
	Syntax: How to Return the Largest Value
	Example: Returning the Largest Value

	LEAST: Returning the Smallest Value
	Syntax: How to Return the Smallest Value
	Example: Returning the Smallest Value

	LOG: Returning a Logarithm (SQL)
	Syntax: How to Return a Logarithm
	Example: Returning a Logarithm

	EXP: Returning e Raised to a Power
	Syntax: How to Return e Raised to a Power
	Example: Returning e Raised to a Power

	MOD: Returning the Remainder of a Division
	Syntax: How to Return the Remainder of a Division
	Example: Returning the Remainder of a Division

	POWER: Raising a Value to a Power (SQL)
	Syntax: How to Return a Value Raised to a Power
	Example: Returning a Value Raised to a Power

	SQRT: Returning a Square Root (SQL)
	Syntax: How to Return a Square Root
	Example: Returning a Square Root

	23. SQL Miscellaneous Functions
	COUNTBY: Incrementing Column Values Row by Row
	Syntax: How to Increment Column Values Row by Row
	Example: Incrementing Column Values Row by Row

	DB_EXPR: Inserting an SQL Expression Into a Request (SQL)
	Syntax: How to Insert an SQL Expression Into a Request With DB_EXPR
	Reference: Usage Notes for the DB_EXPR Function
	Example: Inserting the DB2 BIGINT and CHAR Functions Into a TABLE Request

	HEX: Converting to Hexadecimal
	Syntax: How to Convert to Hexadecimal
	Example: Converting a Value to Hex

	IF: Testing a Condition
	Syntax: How to Test a Condition
	Example: Testing a Condition

	LENGTH: Obtaining the Physical Length of a Data Item
	Syntax: How to Obtain the Physical Length of a Data Item
	Example: Obtaining the Physical Length of a Data Item

	VALUE: Coalescing Data Values

	24. SQL Operators
	CASE: SQL Case Operator
	Syntax: How to Use the SQL Case Operator
	Example: Using the SQL Case Operator

	COALESCE: Coalescing Data Values
	Syntax: How to Coalesce Data Values
	Example: Coalescing Data Values

	NULLIF: NULLIF Operator
	Syntax: How to Use the NULLIF Operator
	Example: Using the NULLIF Operator

	Index
	Feedback

